

Interoperability Standards as an essential basis

The role of OPC UA Companion Specifications

Andreas Faath

VDMA Managing Director Department Machine Information Interoperability

andreas.faath@vdma.org

The VDMA

- » Most important industrial association in Europe.
- The VDMA represents over 3,600 member companies in the engineering industry
- The VDMA is structured in
 - 38 trade associations,
 - 6 regional subsidiaries,
 - Berlin, Brussels and foreign subsidiaries (Brazil, China, India, Japan, America, Italy, BeNeLux, Poland, Austria)
 - Working groups and forums,
 - Departments and competence centers and
 - Companies and foundations.
- The VDMA is host of several European and global sector committees

2030 VISION FOR INDUSTRIE 4.0

Shaping Digital Ecosystems Globally

Autonomy

Self-determination and free scope for action guarantee competitiveness in digital business models.

- Technology development
- Security
- Digital infrastructure

Interoperability

Cooperation and open ecosystems permit plurality and flexibility.

- Regulatory framework
- Standards and integration
- Decentralised systems and artificial intelligence

Sustainability

Modern industrial value creation ensures high standard of living.

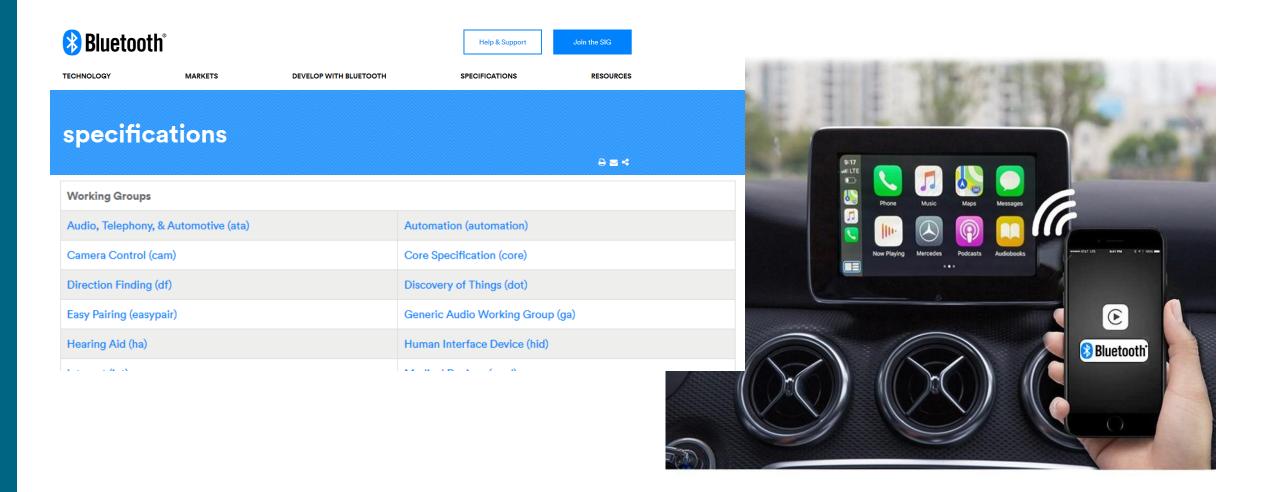
- Decent work and education
- Climate change mitigation and the circular economy
- Social participation

Inhibited industrial transformation **VDMA**

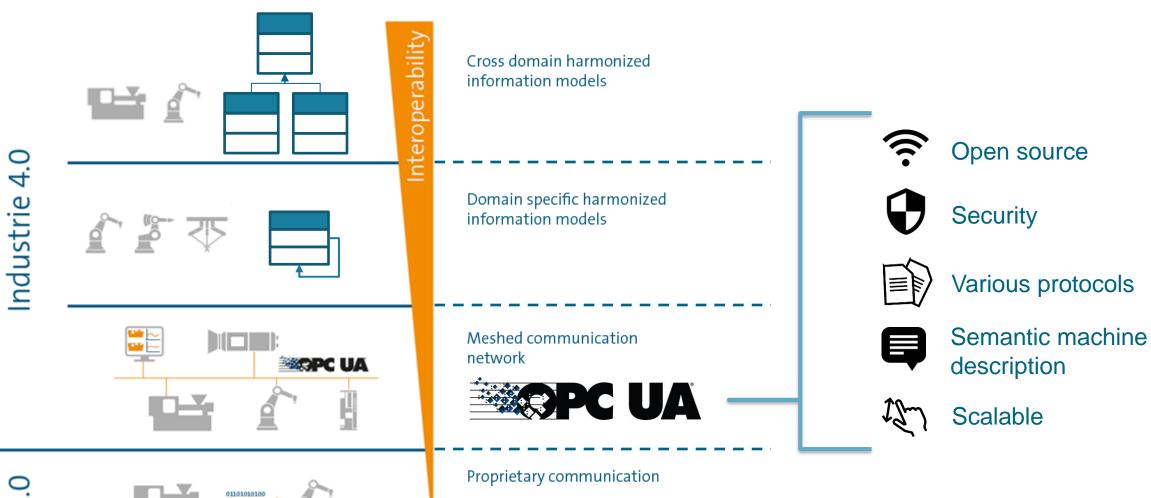
by proprietary data and information

- **✓** Efficient data storage
- X Availability of external Data
- Efficient data transfer
- **Data transperancy**
- X Comparability of data
- X Efficient data interpretation
- Error proof data interpretation
- X Information processing scalability
- Information-driven business models
- Efficient realization of information-related regulations

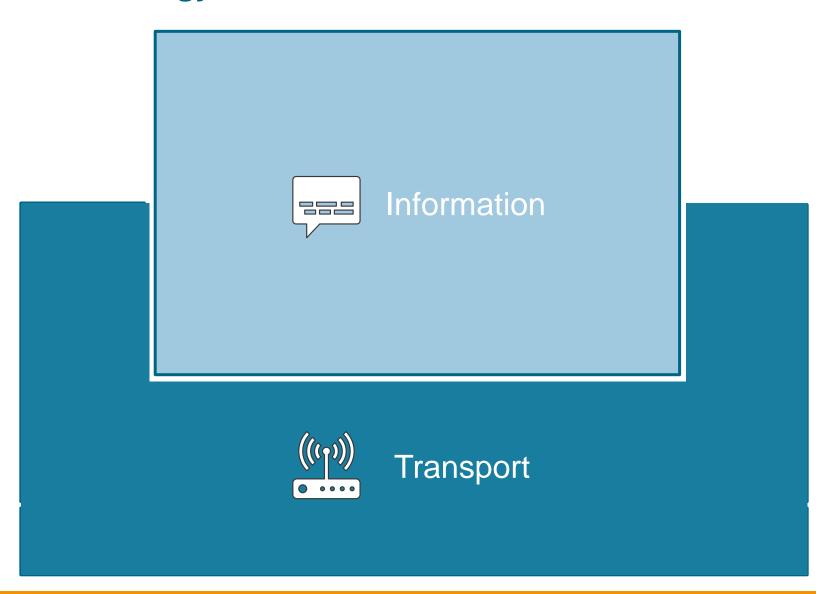
Interoperability Goals

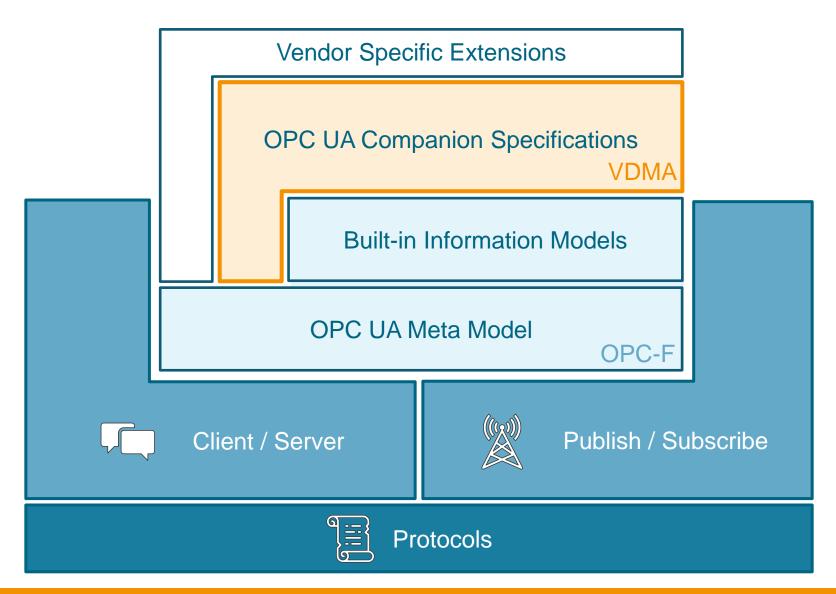

- Simplified interface development through standards
- Simplified integration into the shop floor through standard interfaces
- Simplified access to standardized production data

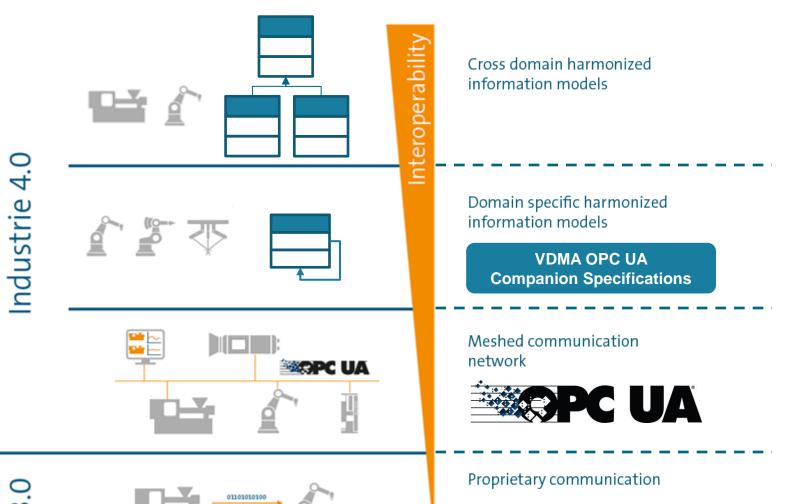
→ Increased competitiveness and cost reduction through standard interfaces


"The Global Production Language"

Manufacturer-neutral interoperability in the industrial environment desired




The OPC UA technology



The OPC UA technology

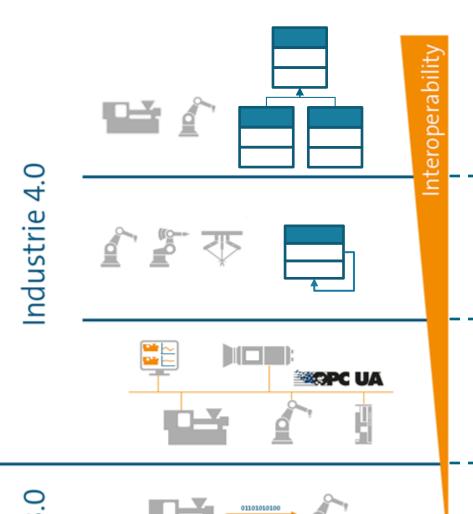
- » Additive Manufacturing
- » Agricultural Machinery
- » Air Conditioning & Ventilation
- » Air Pollution Control
- » Automated Guided Vehicles
- » Battery Production
- » Building Control and Management
- » Building Materials
- » Ceramic Machinery
- » Cleaning Systems
- » Compressors, Compressed Air and Vacuum Technology
- » Construction Equipment
- » Continuous Conveyors
- » Cranes
- » Die & Mould
- » Drying Technology
- » Electrical Automation
- » Engines & Systems

- » Fire Fighting Equipment
- » Fluid Power
- » Food Processing and Packaging Machinery
- » Foundry Machinery
- » Glass Machinery
- » Hydro Power Plants
- » Industrial Trucks
- » Integrated Assembly Solutions
- » Intralogistic Systems
- » Lasers and Laser Systems for Material Processing
- » Length Measurement Technology
- » Lifts & Escalators
- » Machine Tools and Manufacturing Systems
- » Machine Vision
- » Metallurgical Plants and Rolling Mills

» Micro Technologies

- » Mining
- » Photovoltaic Equipment
- » Plastics & Rubber Machinery
- » Power Transmission Engineering
- » Precision Tools
- » Printing & Paper Technology
- » Process Plant & Equipment
- » Productronic
- » Pumps & Systems
- » Refrigeration & Heat Pump Technology
- » Robotics
- » Security Systems
- » Software & Digitalization
- » Surface Technology
- » Testing Technology

- » Textile Care, Fabric and Leather Technology
- » Textile Machinery
- » Thermal Power Plants
- » Thermo Process Technology
- » Valves
- » Waste Treatment & Recycling
- » Weighing Technology
- » Welding & Pressure Gas Equipment
- » Wind Power Plants
- » Woodworking Machinery


OPC UA CS released

Release Candidate

Joint Working Group with OPC Foundation

OPC UA CS in work

Cross domain harmonized information models

Domain specific harmonized information models

VDMA OPC UA
Companion Specifications

Meshed communication network

Proprietary communication

» Additive Manufacturing

- Agricultural Machinery
- Air Conditioning & Ventilation

 Air Pollution Control

attery Production

- » Building Control and
- » Building Materials
- » Ceramic Machinery

Cleaning Systems Compressors, Compressed

- and Vacuum Technology
 » Construction Equipment
- » Continuous Conveyors
- » Cranes

 » Die & Mould
- Drying Technology
- Englished Addoniation

- » Fire Fighting Equipment
- » Fluid Power
 » Food Processing and
- Packaging Machinery

 ** Foundry Machinery
- » Glass Machinery
- » Hydro Power Plan
 » Industrial Trucks
- » Integrated Ass
- Intralogistic Systems
 Lasers and Laser Systems
 Air Material Processing
- » Length Measure Technology
- Lifts & Escalators
 Machine Tools and Manufacturing Systems
- Machine Vision
 Metallurgical Plants and

- » Micro Technologies
- » Photovoltaic Eq
 - Plastics & Rubber Machinery
 Power Transmission

Printing & Paper Technology

» Process Plant & Equipment

Refrigeration & Heat Pump

Security Systems

Testing Technology

Software & Digitalization

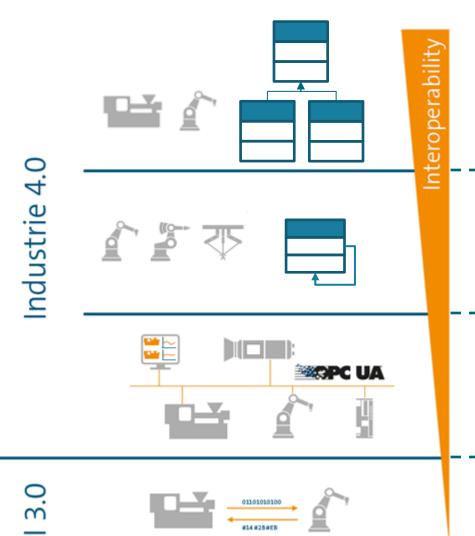
- » Waste Treatment & Recycling
 - » Weighing Technology

Textile Care. Fabric and

Leather Technology

Thermal Power Plants

Thermo Process Technolog


» Textile Machinery

- Welding & Pressure Gas
 Equipment
- Wind Power Plants
 Woodworking Machinery
- vectorioning intermery

OPC UA CS released
Release Candidate
Joint Working Group
with OPC Foundation
OPC UA CS in work

VDMA | Andreas Faath

Cross domain harmonized information models

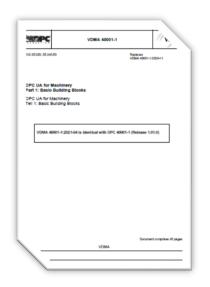
Domain specific harmonized information models

VDMA OPC UA Companion Specifications

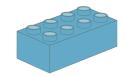
Meshed communication network

Proprietary communication

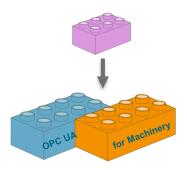
Published:


In Work:

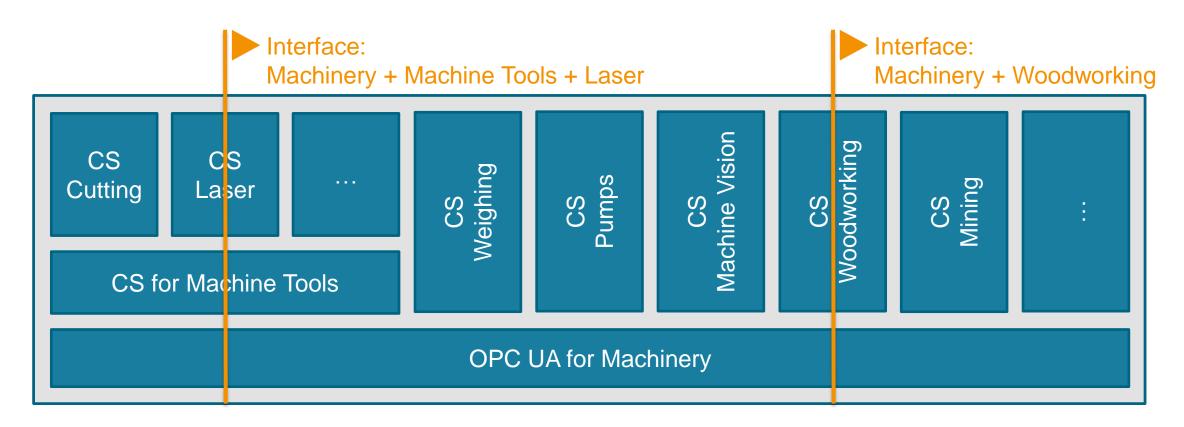
Basic Server Structure



OPC UA for Machinery



- OPC UA Companion Specification for the whole Mechanical Engineering Industry
 - Defines harmonized basic building blocks for broad use
 - Each building block stands for a specific use case



- Can be referenced from other Companion Specifications or implemented as standalone model
 - → OPC UA for Machinery forms the basis for interoperability

OPC UA for Machinery

Target Image

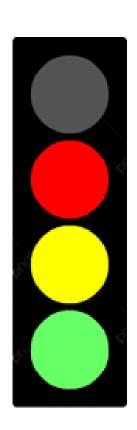
→ OPC UA for Machinery as Base CS for the whole field of mechanical engineering.

Standardization Example Machinery State

Working

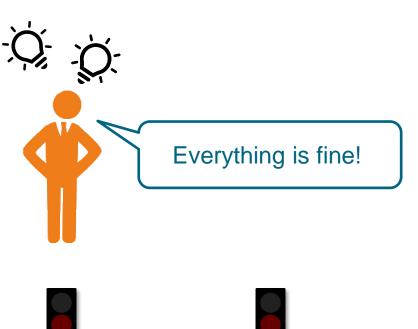
Executing

Production



Dry Run

Machinery State Machinery Item State Definition


Applicability: OPC UA Server running

Not available	The unit is not available and does not perform any activity*. (e.g. Switched Off, in Energy Saving Mode)
Out of Service	The unit is not functional and does not perform any activity*. (e.g. Error, Blocked)
Not Executing	The unit is available & functional and is not performing any activity*. It waits for an action from outside to start or restart an activity*.
Executing	The unit is available & functional and is actively performing an activity* (pursues a purpose)

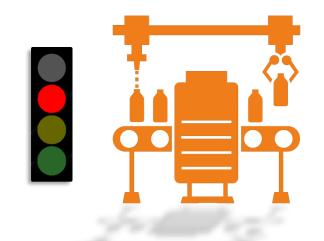
^{*} activity = part of the production, preparation or maintenance process

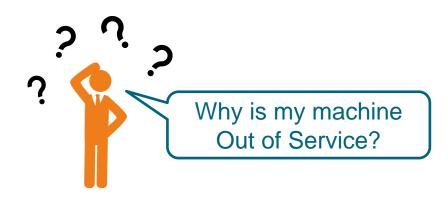
Machine View

Executing

Executing

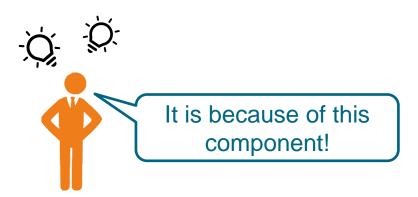
Executing





Executing

Machine Monitoring Component View



*This example shows a beverage filling line that is Out of Service due to a jammed gripper.

KPI Calculations

Key Performance Indicators

Out of Service

+

Processing

2 hours

Not Executing

+

Processing

1 hour

Executing

+©Processing

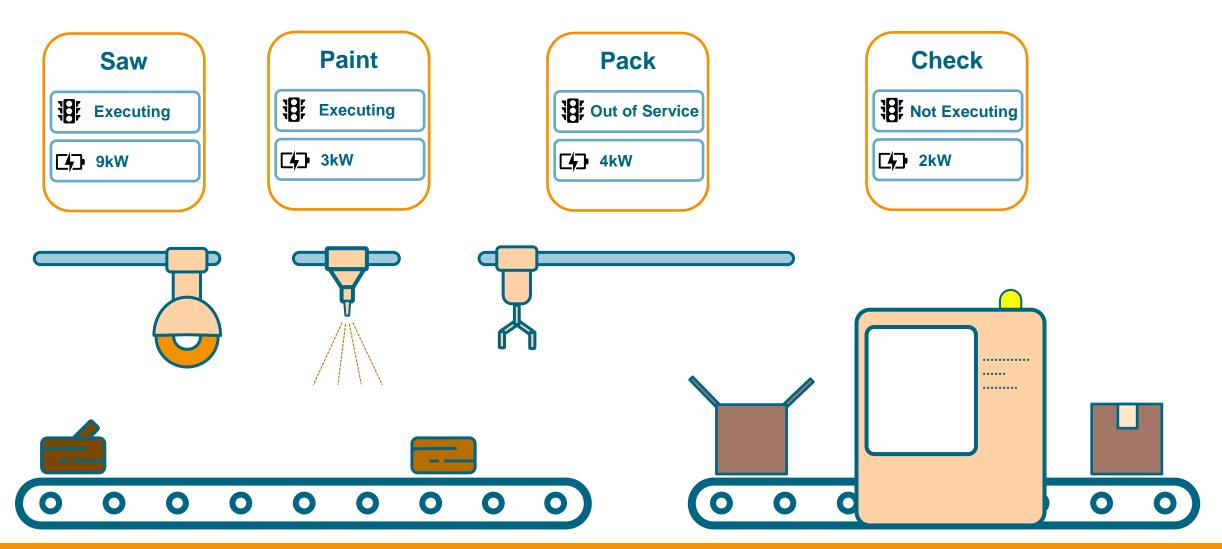
5 hours

Machinery Item State + Machinery Operation Mode

ISO 22400

Actual Production Time = 5 hours

Planned Busy Time = 8 hours


Availability =
$$\frac{APT}{PBT}$$
 = 62,5%

Easy example for a KPI Calculation (Other calculations need more information than provided here)

Enables KPI Calculations*

Cross-domain interoperability brought to reality by **OPC UA for Machinery**

Overview of Companion Specifications

Published

OPC 34100 for Energy Consumption Management	OPC 40444 for Textile Testing Devices
OPC 40001-1 for Machinery – Part 1: Basic Building Blocks	OPC 40450 for Joining Systems
OPC 40001-2 for Machinery – Part 2: Process Values	OPC 40451 for Tightening Systems
OPC 40001-3 for Machinery – Part 3: Job Management	OPC 40501 for Machine Tools
OPC 40001-101 for Machinery – Part 101: Result Transfer	OPC 40502 for Computerized Numerical Control (CNC) Systems
OPC 40010 for Robotics	OPC 40503 for Metal Forming
OPC 40020 for Cranes & Hoists	OPC 40504 for Cutting Tools
OPC 40077 for Plastics & Rubber – Data Exchange between	OPC 40530 for Laser Systems
Injection Moulding Machines and MES	OPC 40540 for Additive Manufacturing
OPC 40079 for Plastics & Rubber – Data Exchange between	OPC 40550 for Woodworking Machines
Injection Moulding Machines and Robots	OPC 40560 for Mining – General
OPC 40082 for Plastics & Rubber – Peripheral Devices	OPC 40561 for Mining – Extraction
OPC 40083 for Plastics & Rubber – General Type Definitions	OPC 40562 for Mining – Loading
OPC 40084 for Plastics & Rubber – Extrusion	OPC 40563 for Mining – Transport Dumping
OPC 40086 for Plastics & Rubber – Material Supply Systems	OPC 40564 for Mining – Mineral Processing
OPC 40087 for Plastics & Rubber – Particle Foam Machines	OPC 40565 for Mining – Development Support
OPC 40091 for Plastics & Rubber – Winder	OPC 40566 for Mining – Monitoring Supervision Services
OPC 40100 for Machine Vision	OPC 40567 for Mining – PELO Services
OPC 40200 for Weighing Technology	OPC 40568 for Mining - External Standards
OPC 40210 for Geometric Measurement Systems	OPC 40569 for Mining – Application and Use Cases
OPC 40223 for Pumps and Vacuum Pumps	OPC 40570 for Wire Harness Manufacturing
OPC 40250 for Compressed Air Systems	OPC 40600 for Weihenstephan Standards
OPC 40301 for Flat Glass	OPC 40719 for Plasma Surface Technology
OPC 40400 for Powertrain	OPC 40740 for Process Air Extraction and Filtration Systems

Upcoming

OPC UA for Machinery – Energy Management

Battery Production

Cleaning Machines

Dryer

Electrolyzers

Foam Cutting Machines

High Pressure Die Casting

M2X Intralogistics Communication

Machine Tending

Material Supply Systems

Mining - Conveying

Shot-Blasting Technology

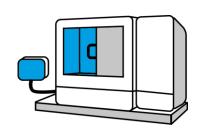
Temperature Control Devices

Weihenstephan Standards – WS Sweets

Weihenstephan Standards – WS Bake

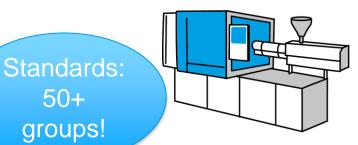
Wind Turbines

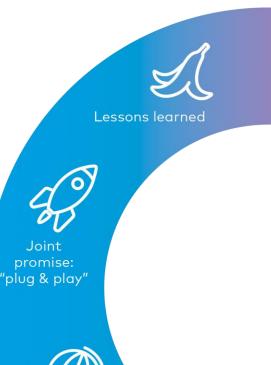
Wireless Machine Tool Peripherals


More than 115 publications!

https://www.vdma.org/catalogs

Bringing machine builders and users together





Machine builders

Associations, working groups

acceptance

Agreement of identical

Best practises

Feedback from users

Joint proof of inshowcase

Users

Various sectors, multiple machinery

The World: Millions

| Andreas Faath

a network of strong partners

umati umati

Currently ~350 partners worldwide

research partners

EU Data Act

A fundamental legal reorganization of data access and data use

- Data should be able to flow within the EU and across sectors for the benefit of all
- Balanced relationship between right to data access and incentive to invest in data without changing existing data protection rules (fair value distribution)
- The EU Commission wants to create a **data economy**, a **single market** for data with **more data** available (easier access and use)
- The EU should become an attractive, secure and dynamic data economy. The new regulations are expected to create an additional EUR 270 billion in GDP for the EU member states by 2028.

Establishing a data economy as the primary goal

- Cross-industry regulation of who may use which data for which purposes (fair distribution of benefits, data use between companies, consumers and public institutions)
- The rules for access to and use of data should be fair, practical and clear.
- European regulations, in particular the protection of privacy and data protection as well as competition law, should be fully complied with.
- Facilitate provider switching between cloud providers and strengthen interoperability.

Publication Overview: Interoperability

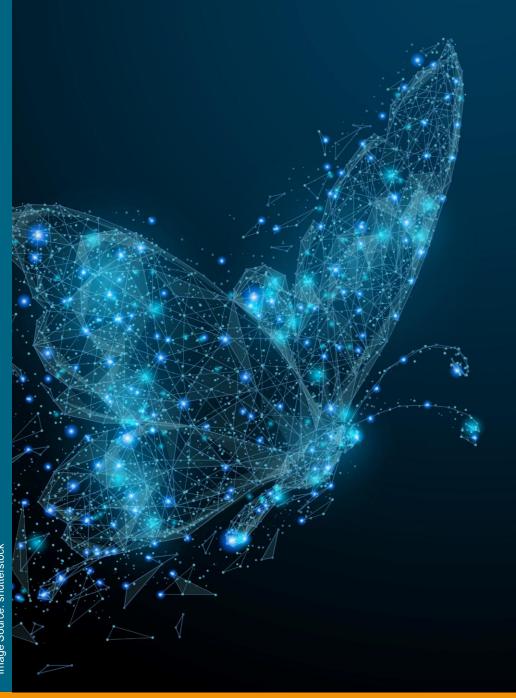
VDMA Quick Guide "Interoperable interface standards for successfully dealing with the EU Data Act"

Industrie 4.0 Communication Guideline - Based on OPC UA

VDMA study
"Interoperability in
Machinery and Plant
Engineering"

Industrie 4.0
Interoperability through
OPC UA with Companion
Specifications - Benefits
for Stakeholders in
Machinery and Equipment
Manufacturing

Capabilities and Skills in Production Automation


Thank you for your attention!

Andreas Faath

VDMA Managing Director
Department Machine Information Interoperability

andreas.faath@vdma.org

Thank you Thank you

for your attention!