

MINISTÉRIO DA SAÚDE

SECRETARIA DE SAÚDE INDÍGENA

DEPARTAMENTO DE PROJETOS E DETERMINANTES AMBIENTAIS DA SAÚDE INDÍGENA
COORDENAÇÃO-GERAL DE INFRAESTRUTURA E SANEAMENTO PARA SAÚDE INDÍGENA
COORDENAÇÃO DE ANÁLISE E ELABORAÇÃO DE PROJETOS DE INFRAESTRUTURA E SANEAMENTO

SECRETARIA DE SAÚDE INDÍGENA

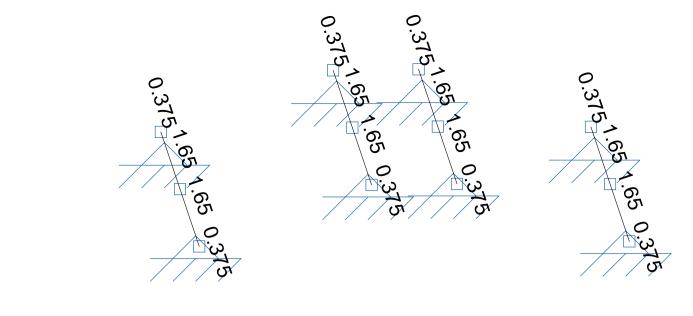
MÓDULO SANITÁRIO DOMICILIAR COLETIVO COM RESERVATÓRIO

ALDEIA

PROJETO DE REFERÊNCIA

BRASÍLIA

2024


	ÍNDICE						
NUMERAÇÃO DESENHO ESCALA							
CAPA							
00/00	CAPA	1:100					
ÍNDICE							
01/02	ÍNDICE	1:100					
PLANTA/ ISOMÉTRICO/	 VISTA LATERAL/ DETALHES						
02/02	ISOMÉTRICO - BARRAS	1:25					
02/02	ISOMÉTRICO - PERFIS 1:25						
02/02	PLANTA BAIXA - BARRAS	1:25					
02/02	PLANTA BAIXA - PERFIS	1:25					

SESAI
SECRETARIA DE SAÚDE INDÍGENA

MINISTÉRIO DA SAÚDE SECRETARIA DE SAÚDE INDÍGENA

DEPARTAMENTO DE PROJETOS E DETERMINANTES AMBIENTAIS DA SAÚDE INDÍGENA COORDENAÇÃO-GERAL DE INFRAESTRUTURA E SANEAMENTO PARA SAÚDE INDÍGENA COORDENAÇÃO DE ANÁLISE E ELABORAÇÃO DE PROJETOS DE INFRAESTRUTURA E SANEAMENTO

OBRA: MSC - MÓDULO SANITÁRIO DOMICILIA	DISCIPLINA DO PROJETO: PROJETO ESTRUTURAL TELHADO			
ENDEREÇO:			CONTEÚDO: ÍNDIC	E
PROPRIETÁRIO: MINISTÉRIO DA SAÚDE - SECRETARIA ESPECIAL DE SAÚDE INDÍGENA	AUTOR DO PROJETO: GABRIEL FERREIRA R	UELA	CREA/CAU: 227.924/D-MG	DATA: 20/03/2024
Nº:	.MSC.ECB.DE.R00	PROJETO EXECUTIVO	TIPO: MSC	01/02

MATERIAIS UTILIZADOS **MATERIAL** α_t (m/m°c) SERRADA (DICOTILEDÔNA), D60, CATEGORIA I E: Módulo de elasticidade v: Módulo de poisson α_{t:} coeficiente de dilatação γ: Peso especifico

ISOMÉTRICO - PERFIS

ESCALA 1:25

T-160x80

T-160x80

T-160x80

T-160x80

ISOMÉTRICO - BARRAS
ESCALA 1: 25

PLANTA BAIXA - BARRAS
ESCALA 1:25

	Material	0 ()	D. G	Comprimento	Volume (m³)	Peso (kg)
Tipo	Designação	Série	Perfil	(m)		
MADEIRA	SERRADA (DICOTILEDÔNEA), D60, CATEGORIA I	MACIÇA H160	160X80	16,200	0,207	165

NOTAS:

TODAS AS MEDIDAS ESTÃO EM METROS, EXCETO NAS SEÇOES DOS PERFIS, QUE ESTÃO EM MILIMETROS;

SIGLAS

TERÇAS

- 1. CONFERIR TODAS AS MEDIDAS NA OBRA, ANTES DE INICIAR O RECORTE DAS PEÇAS;
- 2. RECOMENDA-SE TRATAMENTO DAS PEÇAS DE MADEIRA PARA MAIOR DURABILIDADE: TODAS AS PEÇAS RECEBERÃO LIMPEZA PARA REMOÇÃO DE ÓLEOS, GORDURAS, GRAXAS E PARTES OXIDADAS, E DEPOIS DUAS DEMÃOS DE PINTURA DE FUNDO, E APLICAÇÃO DE RESINA DE SILICONE HIDROFUGANTE OU IDEIAS SIMILARES;
- 3. NORMAS UTILIZADAS: NBR 7190, NBR 8800, NBR 6120 E NEBR 6123;
- 4. CHAPA DE AÇO GALVANIZADA: ASTM A-36 OU EQUIVALENTE, fy= 250 mpa;
- 5. PARAFUSOS A307 OU EQUIVALENTE. fy= 310 mpa & fu 415 Mpa. A FOLGA NO FURO DOS PARAFUSOS É DE NO MÁXIMO 0,5 mm PARA GARANTIR LIGAÇÃO RÍGIDA. (TAMBÉM PODE SER UTILIZADO BARRA ROSCADA ZINCADA COM RESISTÊNCIA EQUIVALENTE);
- 6. AS ARRUELAS NÃO PODEM TER TAMANHO MENOR QUE 3x (DIAMETRO DO PARAFUSO);
- 7. AS TERÇAS FORAM DIMENSIONADAS COM SEÇÃO 16 cm (LARGUŔA) x 8 cm (ALTURA);
- 8. VELOCIDADE DO VENTO CONSIDERADA: 35 m/s;
- 9. COBERTURA: TELHAS FIBROCIMENTO e=6 mm PESO 14 kg/m². VÃO MÁXIMO ENTRE APOIOS: 1.60 m;

SETOR/DEPART.

SECRETARIA DE SAÚDE INDÍGENA

PROJETISTA

MINISTÉRIO DA SAÚDE

SECRETARIA DE SAÚDE INDÍGENA

PROJETO DE EXECUTIVO

PROJETO ESTRUTURAL TELHADO

PLANTA/ ISOMÉTRICO/ VISTA LATERAL/ DETALHES

/20 - .MSC.ECB.DE.R00

KAIO CÉSAR ARNAUD DEON

MSC

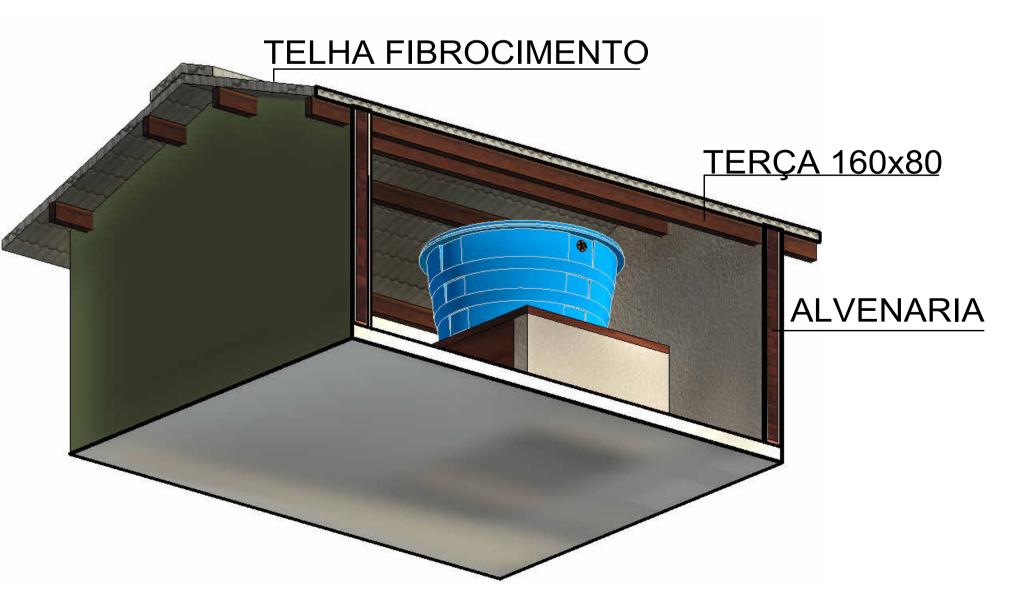
ÓRGÃO

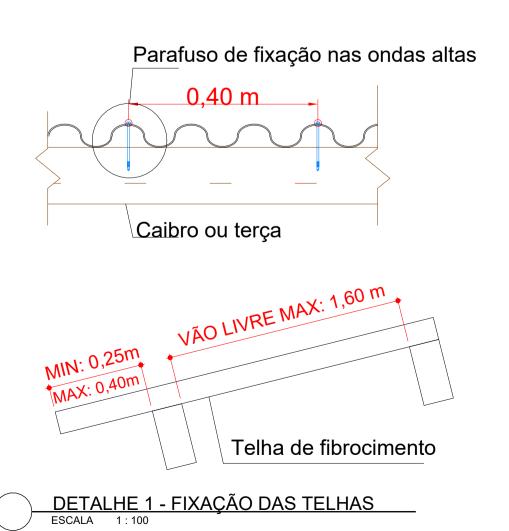
10. MADEIRA TIPO SERRADA (FOLHOSA) - CLASSE D60 -CATEGORIA I.

EXEMPLOS: MAÇARANDUBA, IPÊ, SUCUPIRA, JATOBÁ, TATAJUBA

SESAI

MSC - MÓDULO SANITÁRIO DOMICILIAR COLETIVO COM RESERVATÓRIO

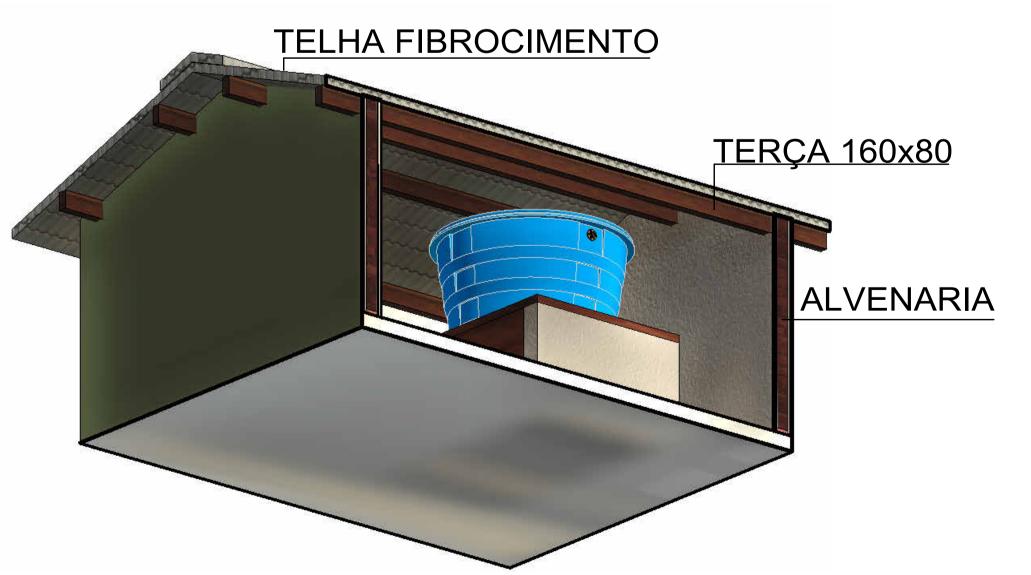

MINISTÉRIO DA SAÚDE - SECRETARIA ESPECIAL DE SAÚDE INDÍGENA


AUTOR DO PROJETO:

DISCIPLINA DO PROJETO:

AUXILIAR TÉCNIC

GABRIEL FERREIRA RUELA



0,08 0,49 0,08

2,49

PLANTA BAIXA - PERFIS

ESCALA 1:25

DETALHE 2 - FIXAÇÃO DAS TERÇAS NA ALVENARIA

0.375

30

DEPARTAMENTO DE PROJETOS E DETERMINANTES AMBIENTAIS DA SAÚDE INDÍGENA COORDENAÇÃO-GERAL DE INFRAESTRUTURA E SANEAMENTO PARA SAÚDE INDÍGENA COORDENAÇÃO DE ANÁLISE E ELABORAÇÃO DE PROJETOS DE INFRAESTRUTURA E SANEAMENTO 20/03/2024 227.924/D-MG CREA/CAU 24.566/D-DF QR CODE ART/RR QR CODE PROJETO: 02/02

MINISTÉRIO DA SAÚDE

SECRETARIA DE SAÚDE INDÍGENA

DEPARTAMENTO DE PROJETOS E DETERMINANTES AMBIENTAIS DA SAÚDE INDÍGENA
COORDENAÇÃO-GERAL DE INFRAESTRUTURA E SANEAMENTO PARA SAÚDE INDÍGENA
COORDENAÇÃO DE ANÁLISE E ELABORAÇÃO DE PROJETOS DE INFRAESTRUTURA E
SANEAMENTO

SECRETARIA DE SAÚDE INDÍGENA

MÓDULO SANITÁRIO COLETIVO COM RESERVATÓRIO - (MSC)

MEMORIAL DESCRITIVO E DE CÁLCULO DAS ESTRUTURAS EM MADEIRA (TELHADO)

PROJETO DE EXECUTIVO

BRASÍLIA – DF 2024

ÍNDICE

APRESENTAÇÃO	5
OBJETIVO	5
INFORMAÇÕES GERAIS	5
DADOS DO PROJETO	5
MEMORIAL DE ESPECIFICAÇÕES	e
ESTRUTURA DE MADEIRA	7
MEMORIAL DE CÁLCULO	9
Combinações	11
Deslocamentos	
Resistência	13
Flechas	14
NORMAS TÉCNICAS	16
	OBJETIVO NOTA GERAL

LISTA DE FIGURAS

Figura 1 - Telha fibrocimento	7
Figura 2 - Detalhamento da estrutura do telhado	S

LISTA DE TABELAS

Tabela 1 - Dados do projeto	6
Tabela 2 - Características físicas da madeira	8
Tabela 3 - Tabela resumo de madeiramento	8
Tabela 4 - Quantitativos de superfícies	g
Tabela 5 - Coeficientes E.L.U. Madeira	. 11
Tabela 6 - Coeficientes de deslocamentos	. 11
Tabela 7 - E.L.U Madeira	. 11
Tabela 8 - Deslocamento	. 13
Tabela 9 - Verificação de resistência	. 14
Tabela 10 - Flechas	. 15

1 APRESENTAÇÃO

1.1 OBJETIVO

Este memorial visa apresentar as premissas adotadas no cálculo das estruturas de telhado de madeira destinadas à cobertura do Módulo Sanitário Domiciliar Coletivo, juntamente com as especificações técnicas correspondentes. Além disso, tem como propósito destacar as determinações estabelecidas no projeto estrutural, abrangendo normas, especificações de serviços e materiais relevantes para as características específicas da obra em questão.

1.2 NOTA GERAL

As informações e dados apresentados neste documento foram definidas de acordo com as especificações contidas no projeto estrutural e a previsibilidade de informações obtidas a partir de objetos semelhantes executados pela SESAI. Em caso de inviabilidade, necessidade de alterações ou inconsistências identificadas, o Distrito Sanitário Especial Indígena (DSEI) poderá apresentar soluções para melhoria dos métodos adotados.

2 INFORMAÇÕES GERAIS

2.1 DADOS DO PROJETO

Na tabela 1 estão apresentados os dados referentes ao projeto Executivo, apenas em caráter representativo.

TABELA 1 - DADOS DO PROJETO

	DADOS DO PROJETO						
ОВЈЕТО	Implantação do Módulo Sanitário Domiciliar Coletivo — Projeto de Referência.						
ENDEREÇO	SRTVN Quadra 702, bloco D, 4º andar, Ed. PO 700, Brasília - Brasil						
ÁREA TOTAL DO TERRENO							
ÁREA CONSTRUÍDA	19,67 m ² (MSD Coletivo)						
ÁREA ÚTIL	7,20 m ²						
ÁREA COBERTA	35,31 m ² (com varanda)						
TIPOLOGIA	Estabelecimento de saúde						

2.2 DOCUMENTOS DE PROJETO

3 MEMORIAL DE ESPECIFICAÇÕES

O telhado em questão será construído com estrutura de Madeira (vigas e terças) composto por telhas de fibrocimento. Nos itens a seguir, serão detalhadas as especificações e a metodologia de cálculo desses materiais e serviços.

3.1 TELHADO

As telhas serão do tipo fibrocimento, com espessura de 6 mm e peso médio de 14 kg/m² (FIGURA 1). A inclinação do telhado será variável de acordo com a extensão do pano, sendo recomendado um mínimo de 10%.

FIGURA I - TELHA FIBROCIMENTO

FIGURA 1 - TELHA FIBROCIMENTO

3.2 ESTRUTURA DE MADEIRA

As peças de madeira deverão ser de primeira categoria, isentas de defeitos por meio do método visual normalizado, e também submetidas a uma classificação mecânica para enquadramento nas classes de resistência especificadas na NBR 7190.

A estrutura de madeira será composta por madeiras tipo serrada (folhosa) de classe D60 - categoria 1, tais como Maçaranduba, Ipê, Sucupira, Jatobá, Tatajuba. As características da madeira estão descritas na tabela 2, enquanto quantitativos do madeiramento do telhado estão descritos na Tabela 3.

TABELA 2 - CARACTERÍSTICAS FÍSICAS DA MADEIRA

Materiais utilizados						
	Material	E (kgf/cm ²)	.,	G	α·t	Υ
Tipo	Tipo Designação		V	(kgf/cm ²)	(m/m°C)	(t/m ³)
Madeira	Serrada (dicotiledôneas), D60, categoria I	249.745,2	-	12.487,3	0.000005	0.80

Notação:

E: Módulo de elasticidade

v: Módulo de poisson

G: Módulo de corte

α_t: Coeficiente de dilatação

y: Peso específico

TABELA 3 - TABELA RESUMO DE MADEIRAMENTO

	Tabela resumo											
	Material			Co	omprime	ento		Volum	ie		Peso	
Tipo	Designação	Série	Perfil	Perfil (m)	Série (m)	Material (m)	Perfil (m³)	Série (m³)	Material (m³)	Perfil (kg)	Série (kg)	Material (kg)
Madeira	(dicotiledôneas)	Maciça h160	160x80	16.200	16.200	16.200	0.207	0.207	0.207	165.89	165.89	165.89

A estrutura adota uma concepção estrutural utilizando dois apoios já existentes. O madeiramento será embutido na alvenaria. As ligações entre a madeira e o telhado serão do tipo parafusadas, utilizando porcas e arruelas, conforme detalhamento em projeto, para garantir o aperto correto. Os parafusos utilizados serão do tipo A307 ou equivalente, com resistência Fy=310 MPa e fu=415 MPa. A folga no furo dos parafusos será de no máximo 0,5 mm para assegurar uma ligação rígida. As arruelas não devem ter tamanho menor que 3 vezes o diâmetro do parafuso.

Para garantir maior durabilidade, recomenda-se o tratamento das peças de madeira. Todas as peças serão submetidas à limpeza para remoção de óleos, gorduras, graxas e partes oxidadas, seguido por duas demãos de pintura de fundo e aplicação de resina de silicone hidrofugante ou similar. A Tabela 3 apresenta o quantitativo referente às áreas de madeira que deverão ser tratadas.

Além disso, é crucial conferir todas as medidas na obra antes de iniciar o recorte das peças.

TABELA 4 - QUANTITATIVOS DE SUPERFÍCIES

Madeira: Quantitativos das superfícies a pintar								
Série	Perfil	Superfície unitária (m²/m)	Comprimento (m)	Formas (m²)				
Maciça h160	S-160x80	0.480	16.200	7.776				
		000000	Total	7.776				

4 MEMORIAL DE CÁLCULO

4.1 CRITÉRIOS DO PROJETO DA ESTRUTURA DE MADEIRA

O telhado será construído com uma inclinação de 25%, conforme ilustrado na figura 2 e detalhado no projeto. Para o cálculo estrutural, as terças de madeira foram apoiadas na alvenaria.

TELHA FIBROCIMENTO

TERÇA 160x80

ALVENARIA

FIGURA 2 - DETALHAMENTO DA ESTRUTURA DO TELHADO

Metodologia de Cálculo: Modelagem da Estrutura de madeira no software Cype3D para análise dos cálculos da estrutura, além de conferência dos esforços solicitantes e cálculos de ligações em planilhas assim como a quantificação de material.

Cargas consideradas: peso das telhas saturadas pela água da chuva, sobrecarga acidental de manutenção, e velocidade do vento. Para as distintas situações de projeto, as combinações de ações serão definidas de acordo com os seguintes critérios:

- Com coeficientes de combinação
- Sem coeficientes de combinação

Onde:

Gk Ação permanente Pk Acção de pré-esforço Qk Ação variável Ad Ação acidental

 γG Coeficiente parcial de segurança das ações permanentes

 γ P Coeficiente parcial de segurança da acção de pré-esforço

 γ Q,1 Coeficiente parcial de segurança da ação variável principal

 γ Q,i Coeficiente parcial de segurança das ações variáveis de acompanhamento

 γ Ad Coeficiente parcial de segurança da ação acidental

ψp,1 Coeficiente de combinação da ação variável principal

 ψ a,i Coeficiente de combinação das ações variáveis de acompanhamento

Para cada situação de projeto e estado limite, os coeficientes a utilizar serão:

• E.L.U. Madeira: NBR 7190

TABELA 5 - COEFICIENTES E.L.U. MADEIRA

Situação 1								
	Coeficientes par	ciais de segurança (🏿)	Coeficiente	es de combinação (1)				
	Favorável	Desfavorável	Principal (🛂 p)	Acompanhamento (🛂 a)				
Permanente (G)	1.000	1.300	-	-				
Sobrecarga (Q)	0.000	1.400	1.000	0.700				
Vento (Q)	0.000	1.400	0.750	0.500				

Deslocamentos

TABELA 6 - COEFICIENTES DE DESLOCAMENTOS

Ações variáveis sem sismo						
	Coeficientes parciais de segurança (🛭)					
	Favorável	Desfavorável				
Permanente (G)	1.000	1.000				
Sobrecarga (Q)	0.000	1.000				
Vento (Q)	0.000	1.000				

4.1.1 Combinações

Nomes das ações

PP Peso próprio
TELHADO FIBROCIMENTO
SOBRECARGA SOBRECARGA
VENTO 0° VENTO 0°
VENTO 90° VENTO 90°
VENTO 0° (1) VENTO 90° (1)
VENTO 90° (1)

TABELA 7 - E.L.U MADEIRA

Comb.	PP	TELHADO	SOBRECARGA NORMATIVA	VENTO 0°	VENTO 90°	VENTO 0° (1)	VENTO 90° (1)
1	1.000	1.000	6.286.286				
2	1.300	1.000					
3	1.000	1.300					
4	1.300	1.300	K N K				
5	1.000	1.000	1.400	L / A			
6	1.300	1.000	1.400				

Comb.	PP	TELHADO	SOBRECARGA NORMATIVA	VENTO 0°	VENTO 90°	VENTO 0° (1)	VENTO 90°	° (1)
7	1.000	1.300	1.400					
8	1.300	1.300	1.400					
9	1.000	1.000		1.050				
10	1.300	1.000		1.050				
11	1.000	1.300		1.050		1000000		
12	1.300	1.300		1.050				
13	1.000	1.000	0.560	1.050				
14	1.300	1.000	0.560	1.050				
15	1.000	1.300	0.560	1.050				
16	1.300	1.300	0.560	1.050				
17	1.000	1.000	1.400	0.700				
18	1.300	1.000	1.400	0.700				
19	1.000	1.300	1.400	0.700				
20	1.300	1.300	1.400	0.700				
21	1.000	1.000			1.050			
22	1.300	1.000			1.050			
23	1.000	1.300			1.050			
24	1.300	1.300			1.050			
25	1.000	1.000	0.560		1.050			
26	1.300	1.000	0.560		1.050			
27	1.000	1.300	0.560		1.050			
28	1.300	1.300	0.560		1.050			
29	1.000	1.000	1.400		0.700			
30	1.300	1.000	1.400		0.700			
31	1.000	1.300	1.400		0.700			
32	1.300	1.300	1.400		0.700			
33	1.000	1.000		7		1.050		
34	1.300	1.000				1.050		
35	1.000	1.300				1.050		
36	1.300	1.300				1.050		
37	1.000	1.000	0.560			1.050		
38	1.300	1.000	0.560			1.050		
39	1.000	1.300	0.560			1.050		
40	1.300	1.300	0.560			1.050		
41	1.000	1.000	1.400			0.700		
42	1.300	1.000	1.400			0.700		
43	1.000	1.300	1.400			0.700		
44	1.300	1.300	1.400			0.700		
45	1.000	1.000					1.050	
46	1.300	1.000					1.050	
47	1.000	1.300					1.050	
48	1.300	1.300					1.050	
49	1.000	1.000	0.560				1.050	

Comb.	PP	TELHADO	SOBRECARGA NORMATIVA	VENTO 0°	VENTO 90°	VENTO 0° (1)	VENTO 90° (1)
50	1.300	1.000	0.560				1.050
51	1.000	1.300	0.560				1.050
52	1.300	1.300	0.560				1.050
53	1.000	1.000	1.400				0.700
54	1.300	1.000	1.400				0.700
55	1.000	1.300	1.400				0.700
56	1.300	1.300	1.400				0.700

4.1.2 Deslocamentos

TABELA 8 - DESLOCAMENTO

TELHADO	SOBRECARGA NORMATIVA	VENTO OF			
	SOBILECTING! NOTHINT	VENTO 0°	VENTO 90°	VENTO 0° (1)	VENTO 90° (1)
1.000					
1.000	1.000				
1.000		1.000			
1.000	1.000	1.000			
1.000			1.000		
1.000	1.000		1.000		
1.000				1.000	
1.000	1.000			1.000	
1.000					1.000
1.000	1.000				1.000
	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000	00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	00 1.000 00 1.000 00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	00 1.000 00 1.000 00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4.1.3 Resistência

Referências:

N: Esforço axial (t)

Vy: Esforço cortante segundo o eixo local Y da barra. (t)

Vz: Esforço cortante segundo o eixo local Z da barra. (t)

Mt: Momento torsor (t·m)

My: Momento fletor no plano 'XZ' (rotação da seção em relação ao eixo local 'Y' da barra). (t⋅m)

Mz: Momento fletor no plano 'XY' (rotação da seção em relação ao eixo local 'Z' da barra). (t⋅m)

Os esforços indicados são os correspondentes à combinação desfavorável, ou seja, aquela que solicita a máxima resistência da seção.

Origem dos esforços desfavoráveis:

G: Verticais

GV: Verticais + vento

GSis: Verticais + sismo

GVSis: Verticais + vento + sismo

 η : Aproveitamento da resistência. A barra cumpre as condições de resistência da Norma se cumprir que h £ 100 %.

TABELA 9 - VERIFICAÇÃO DE RESISTÊNCIA

Varificação do resistência										
Verificação de resistência Esforços desfavoráveis										
	h (%)	Posição (m)		Es						
Barra			N	Vy	Vz	Mt	Му	Mz	Origem	Estado
		(111)	(t)	(t)	(t)	(t·m)	(t·m)	(t·m)		
N9/N1	1.71	0.375	0.000	0.000	0.050	0.000	-0.009	0.000	G	Passa
N1/N17	39.98	1.650	0.000	0.000	-0.065	0.000	0.358	0.000	G	Passa
N17/N8	39.98	0.000	0.000	0.000	0.065	0.000	0.358	0.000	G	Passa
N8/N10	1.71	0.000	0.000	0.000	-0.050	0.000	-0.009	0.000	G	Passa
N11/N3	1.71	0.375	0.000	0.000	0.050	0.000	-0.009	0.000	G	Passa
N3/N18	39.98	1.650	0.000	0.000	-0.065	0.000	0.358	0.000	G	Passa
N18/N7	39.98	0.000	0.000	0.000	0.065	0.000	0.358	0.000	G	Passa
N7/N12	1.71	0.000	0.000	0.000	-0.050	0.000	-0.009	0.000	G	Passa
N13/N4	1.71	0.375	0.000	0.000	0.050	0.000	-0.009	0.000	G	Passa
N4/N19	39.98	1.650	0.000	0.000	-0.065	0.000	0.358	0.000	G	Passa
N19/N5	39.98	0.000	0.000	0.000	0.065	0.000	0.358	0.000	G	Passa
N5/N14	1.71	0.000	0.000	0.000	-0.050	0.000	-0.009	0.000	G	Passa
N15/N2	1.71	0.375	0.000	0.000	0.050	0.000	-0.009	0.000	G	Passa
N2/N20	39.98	1.650	0.000	0.000	-0.065	0.000	0.358	0.000	G	Passa
N20/N6	39.98	0.000	0.000	0.000	0.065	0.000	0.358	0.000	G	Passa
N6/N16	1.71	0.000	0.000	0.000	-0.050	0.000	-0.009	0.000	G	Passa

4.1.4 Flechas

Referências:

Pos.: Valor da coordenada sobre o eixo 'X' local do grupo de flecha no ponto onde se produz o valor péssimo da flecha.

L.: Distância entre dois pontos de corte consecutivos da deformada com a reta que une os nós extremos do grupo de flecha.

TABELA 10 - FLECHAS

Flechas										
Grupo	abs Flech	na máxima soluta xy na máxima ativa xy	Flecha máxima absoluta xz Flecha máxima			abs Flecha a	soluta xy	absoluta xz Flecha ativa relativa		
	Pos. Flecha				ha	Pos.	Flecha	Pos.	Flecha	
N1/N8	-	0.00 L/(>1000)	1.650	L/759.5		-	L/(>1000)	1.650	L/866.9	
N9/N1	-	0.00 L/(>1000)	0.375	L/(>100	0)	-	L/(>1000)	0.375	L/(>1000)	
N8/N1 0	0.000	0.00 L/(>1000)	0.187 0.187	L/(>100	0.00 0)	0.000	0.00 L/(>1000)	0.187 0.187	0.00 L/(>1000)	
N4/N5	0.000	0.00 L/(>1000)	1 650		434	0.000	0.00	1 650	5 30	
N13/N 4	0.000	0.00 L/(>1000)	0.188		0.00	0.000	0.00	0.188	0.00	
N5/N1 4	0.000	0.00 L/(>1000)	0.187		0.00	0.000	0.00	0.187	0.00	
N2/N6	0.000	0.00 L/(>1000)	1.650		4.34	0.000	0.00	1.650	5.30	
N15/N 2	0.000	0.00 L/(>1000)	0.375		0.01	0.000	0.00	0.375	0.01	
N6/N1 6		0.00 L/(>1000)								
N11/N 12	0.000	0.00 L/(>1000)	4.050		15.81	0.000	0.00	4.050	19.40	

5 NORMAS TÉCNICAS

A lista de normas abaixo e suas eventuais substitutas ou atualizações, não é exaustiva, dada a dinâmica de modificação dos normativos e sua grande gama de orientações.

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6120: Ações para o cálculo de estruturas de edificações.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6123: Forças devidas ao vento em edificações.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7190: Projeto de estruturas de madeira.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 8800:
 Projeto e execução de estruturas de aço de edifícios (Método dos estados limites) Procedimento

