Geodésia Física
--- Disciplina Eletiva; 3 créditos ---
Tópicos:
I. Introdução.
II. Campo da Gravidade
II.1 Gravitação e Gravidade.
II.2: Potencial da Gravidade.
II.2.1: Sentido Físico do Potencial da Gravidade.
III Desenvolvimento do Potencial Gravitacional (Wg) em série de harmônicos esféricos.
III.1 Exemplos de funções associadas de Legendre.
III.2 Representação Geométrica dos Harmônicos Esféricos Zonais.
III.3 Representação Geométrica dos Harmônicos Esféricos Setoriais.
III.4 Representação Geométrica dos Harmônicos Esféricos Tesserais.
III.5 Significado físico dos harmônicos esféricos.
III.6 Os coeficientes (Jnm, Knm) e (Cnm, Snm).
III.7 Fórmulas de recorrência.
IV Modelos de representação da Terra.
IV.1 A Terra normal.
V Esferopotencial.
V.1 O coeficiente J2,0.
V.2 Gravidade normal.
V.3 Potencial anômalo.
V.4 Anomalia e distúrbio da gravidade.
V.5 Altura geoidal e anomalia da gravidade em série de harmônicos esféricos.
V.6 Componentes principais do desvio da vertical, em série de harmônicos esféricos.
VI Determinação gravimétrica do geoide.
VI.1 Fórmula de Stokes.
VI.2 Considerações sobre a aplicação da formula de Stokes
VI.3 Desvio da vertical. Fórmulas de Vening Meinesz.
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Bibliografia:
- Aurenhammer, F (1991) Voronol diagrams: A survey of a fundamental data strucure. ACM Comput Survey 23 (3): 345-405
- Ayan, M E (1997) Updating nd computing the geoid using two dimensional fast Hartley transform and fast T transform. J Geod 71: 362-369
- Chauvenet, W (1854) Treatise on Plane and Spherical Trigonometry. J. B. Lippincott Co., Philadelphia, U.S.A
- Denker, H, Wenzel, H, -G (1987) Local geoid determination and comparison with GPS results. Bull Géod 61: 349-366
- Fosberg, R Siderls, M G (1993) Geoid computations by the multi-band spherical FFT approach. Manusc Geod 18: 82-90
- Fosberg, R, Tscheming, C C (1981) The use of height data in gravity field approximation vy collocation. J Geoph Res 86 (B9): 7843-7854
- Gemael, C (1999) Introdução à Geodésia Física. Ed. UFPR, Curitiba, Brazil Gil, A J, Sevilla, M J, Rodríguez-
- Caderot, G (1993), Geoid determination in central Spain from gravity and height data. Bull Géod 67: 41-50
- Haagmans, R, Min, E de, Gelderen, M von (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes integral. Manusc Geod 18: 227-241
- Hees, G S van (1986) Precision of the geoid, computed from terrestrial gravity measurements. Manusc Geod 11: 86-98
- Heiskanen, W and Moritz, H (1967) Physical Geodesy. W. H. Freeman, San Francisco.
- Jiang, Z and Duquenne, H (1997) On fast integration in geoid determination. J Geod 71: 59-69
- Kuroishi, Y (2001) An improved gravimetric geoid for Japan, JGEOID98, and relationships to marine gravity data. J Geod 74 (11-12): 745-765
- Jiang, Z and Duquenne, H (1997) On fast integration in geoid determination. J Geod 71: 59-69
- Kuroishi, Y (2001) An improved gravimetric geoid for Japan, JGEOID98, and relationships to marine gravity data. J Geod 74 (11-12): 745-765
- Lambert, W D (1930) The reduction of observed values of gravity to sea level. Bull Géod 26: 107-181
- Li, J, Sideris, M G (1997) Marine gravity and geoid determination by optimal combination of satellite altimetry and shipborne gravimetry data. J Geod 71 (4): 209-216
- Li, J, Sideris, M G (1997) Marine gravity and geoid determination by optimal combination of satellite altimetry and shipborne gravimetry data. J Geod 71 (4): 209-216
- Lehman, R (1997) Fast spacedomain evaluation of geodetic surface integrals. J Geod 71: 533-540
- Molina, E C, Ussami, N (1999) The geoid in southeastern Brazil and adjacent region: new constraints on density distribution and thermal state of the lithosphere. J Geodyn 28: 357-374
- Moritz, H (1984) Geodetic Reference System 1980, Bull Géod 58 (3): 388-398
- Nóvak, P, Vanícek, P, Véronneau, M, Holmes, S, Featherstone, W (2001) On the accuracy of modified Stokes s integration in high-frequency gravimetric geoid determination. J Geod 74 (9): 644-654
- Rapp, R H, Wang, Y M, Pavlis, N K (1991), The Ohio State University 1991 geopotential and sea surface topography harmonic coefficient models. Report No. 410, Department of Geodetic Science and Surveying, The Ohio State Univ., Columbus
- Rapp, R H and Basíc (1992), Oceanwide gravity anomalies from GEOS-3, Seasat and Geosat altimeter data. Geoph Res Lett 19 (19): 1979-1982
- Rupert, J (1988), A gravitational terrain correction program for IBM compatible personal computers, Vol. 2.21, Geological Survey of Canada, GSC, Open File 1834
- Santos & Escobar (2004), Discrete Stokes' integral by means of Voronoy and Delonay Diagrams. Journal of Geodesy, aproved.
- Sideris, M G, She, B B (1995), A new, high-resolution geoid for Canada and part of the U. S. by the 1D-FFT method. Bull Géod 69: 92-108.
- Sideris, M G (1995), Fourier geoid determination with irregular data. J Geod 70(1-2): 2- 12
- Stokes, G G (1849), On the variation of gravity on the surface of the earth. In: Mathematical and Physical Papers, Vol. II, New York, pp 131-171 (from the Trans. Of the Cambridge Philos. Soc., Vol. VIII, pp 672-695)
- Schwarz, K P, Sideris, M G and Forsberg, R (1990), The use of FFT techniques in physical geodesy. Geoph J Int 100: 485-514
- Tscherning, C C, Radwan, A, Tealab, A A, Mahmoud, S M, Abd El-Monum, M, Hassan, R, El-Syaed, I and
- Saker, K (2001), Local geoid determination combining gravity disturbances and GPS/levelling: a case study in the Lake Nasser Area, Aswan, Egypt. J Geod 75 (7-8): 343-348.
- Periódicos da área.