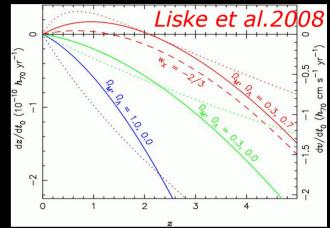
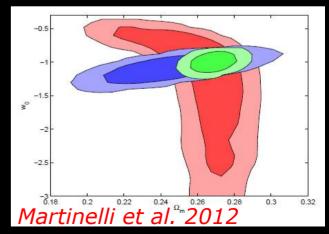
Phi in the Sky: Astrophysical Probes of Fundamental Physics

Lecture 4

Carlos.Martins@astro.up.pt

The Redshift Drift

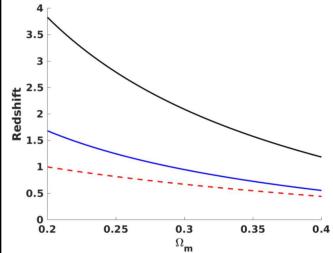

A direct non-geometric model-independent measurement of the universe's expansion history [Sandage 1962]


- Watching the universe expand in real time!
- Independent of gravity, geometry or clustering
- Not mapping (present-day) past light-cone, but directly comparing different past light-cones

$$\dot{z} \equiv \frac{\mathrm{d}z}{\mathrm{d}t_{\mathrm{obs}}}(t_0) = (1+z)H_0 - H(z).$$

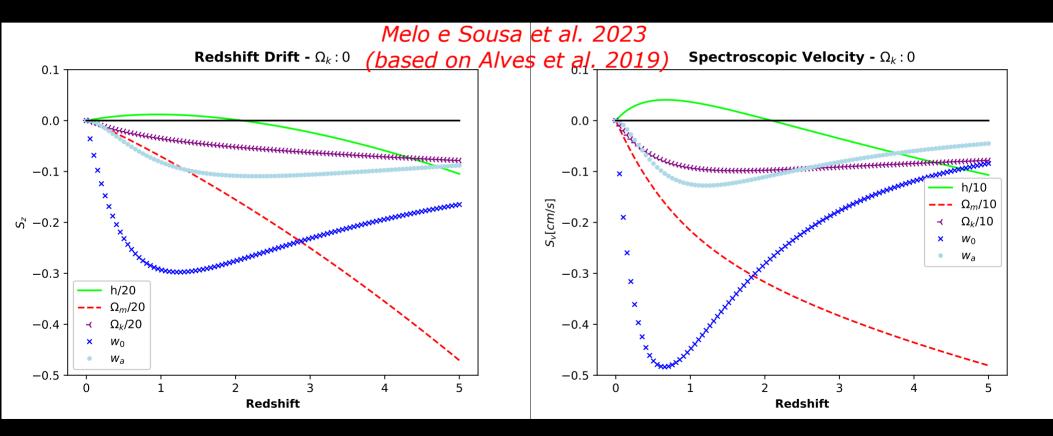
ELT flagship science driver (for z>2) [Liske et al. 2008], unique tool to close consistency loop and break parameter degeneracies

- SKAO can cover z<1 [Klockner et al. 2015, ...]
- In practice, measure a spectroscopic velocity

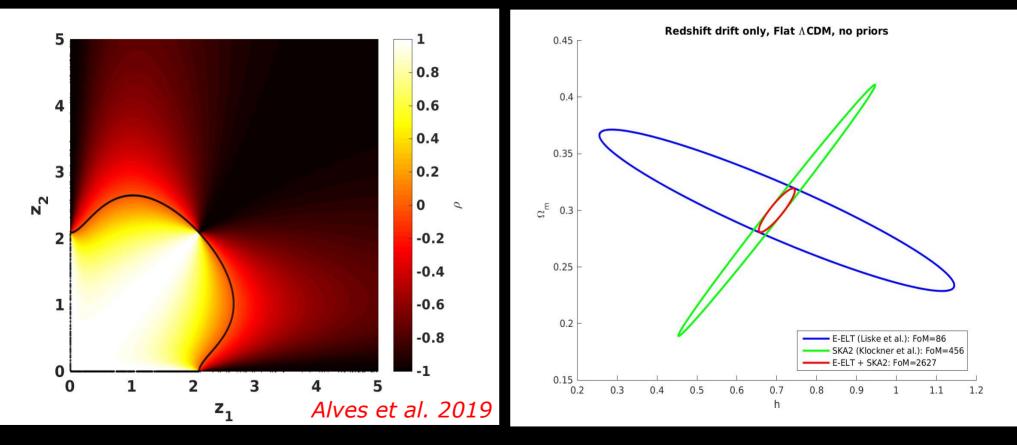


Redshift Drift vs Spectroscopic Velocity

In practice one measures a spectroscopic velocity; feasibility of LFC calibration being explored [*Probst et al. 2020*, <u>*Milakovic et al. 2020*</u>]


$$\frac{\Delta z}{\Delta t} = H_0 \left[1 + z - E(z) \right], \qquad \Delta v = \frac{c \Delta z}{1 + z} = \left(c H_0 \Delta t \right) \left[1 - \frac{E(z)}{1 + z} \right]$$

- The two have different redshift dependencies
- Cf. zero drift, maximal positive drift and maximal positive spectroscopic velocity for flat ΛCDM
- Unique feature: the signal grows linearly with the experiment time



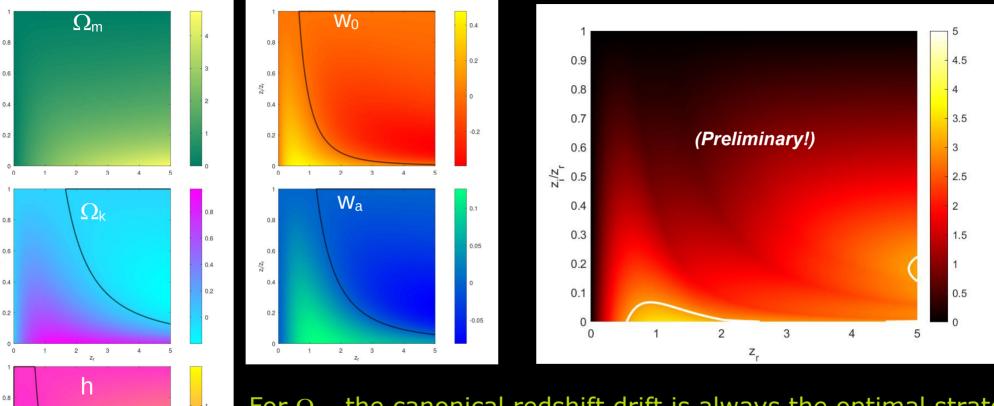
Cosmological parameter sensitivities are redshift-dependent, and correlations can change sign; this will impact constraining power and lead to high-low redshift synergies [Alves et al. 2019]

Cosmological Parameter Sensitivity (for a CPL fiducial model)

The Importance of a Redshift Lever Arm (A flat LCDM example)

Canonical vs Differential Redshift Drift

ELT differential redshift drift: measure drift between reference and intervening redshifts (rather than relative to z=0) [Cooke 2020]


- For suitable redshift pairs, Δv can be larger (thus easier to detect)
- Measured quantity becomes

$$\Delta v_{ir} = (cH_0\Delta t) \left[\frac{E(z_r)}{1+z_r} - \frac{E(z_i)}{1+z_i} \right]$$

Amplifying the spectroscopic velocity signal does not necessarily improve constraints on specific parameters [Esteves et al. 2021]

- Nevertheless, if one's goal is to improve cosmological constraints, suitable choices of redshifts can dramatically improve them
- Caveat: effectively treating reference and intervening redshifts as free parameters (in practice, we can only observe those we know...)

Cosmological Parameter Sensitivity (CPL)

0.6

0.4

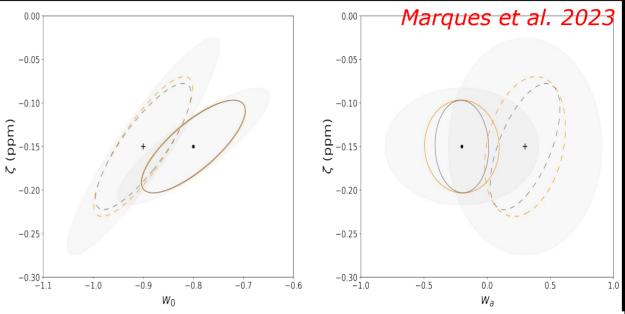
0.2

1

2

3

4

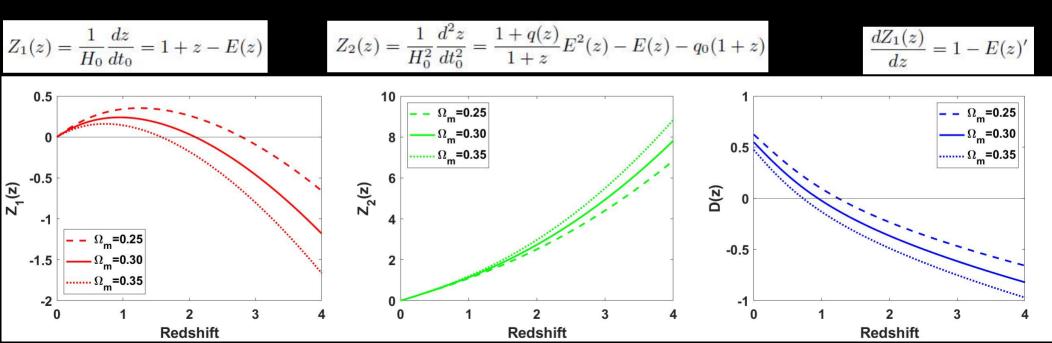

0.5

For Ω_m , the canonical redshift drift is always the optimal strategy H₀: redshift arm is key; Dark energy and Ω_k : span the acceleration epoch NB: Results can be model-dependent (and do not include instrument effects)

Synergies I: ANDES

Combining redshift drift and α data enables jointly constraining cosmological and fundamental physics model parameters

Fisher Matrix forecast code at https://github.com/CatarinaMMarques/FisherCosmology



	Freezing model				Parameter			Thawing model				
Dri	Bas	Opt	Dri+Bas	Dri+Opt	Priors		Priors	Dri	Bas	Opt	Dri+Bas	Dri+Opt
439	-	-	589	596	290	$FoM(\Omega_{ m m},h)$	290	529	. 	-	662	673
220	153	157	432	456	145	$FoM(w_0,\Omega_{ m m})$	145	252	149	151	439	449
69	50	59	138	159	36	$FoM(w_a,\Omega_{ m m})$	36	69	62	88	156	218
13	17	22	32	39	11	$FoM(w_a, w_0)$	11	12	20	35	34	52
-	198	209	541	630	177	$FoM(\zeta, \Omega_{ m m})$	329	-	331	333	865	881
-	152	162	230	262	132	$FoM(\zeta, w_0)$	186	-	196	201	281	291
-	23	37	41	63	13	$FoM(\zeta,w_a)$	25	-	43	63	64	89

Real-time Cosmography

First and second redshift derivatives are powerful test of the Λ CDM paradigm; cosmographic approach useful here [Martins et al. 2016]

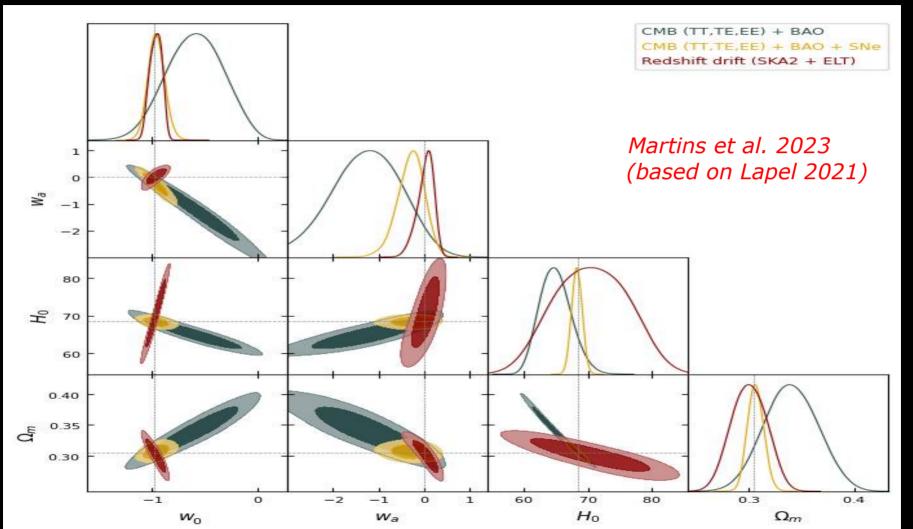
 The drift of the drift can be obtained numerically from a set of measurements of the drift at different redshifts, e.g. by the SKAO

Real-time Cosmography with the SKAO

Low-redshift measurements provide direct constraints on the cosmographic coefficients [Martins et al. 2016]

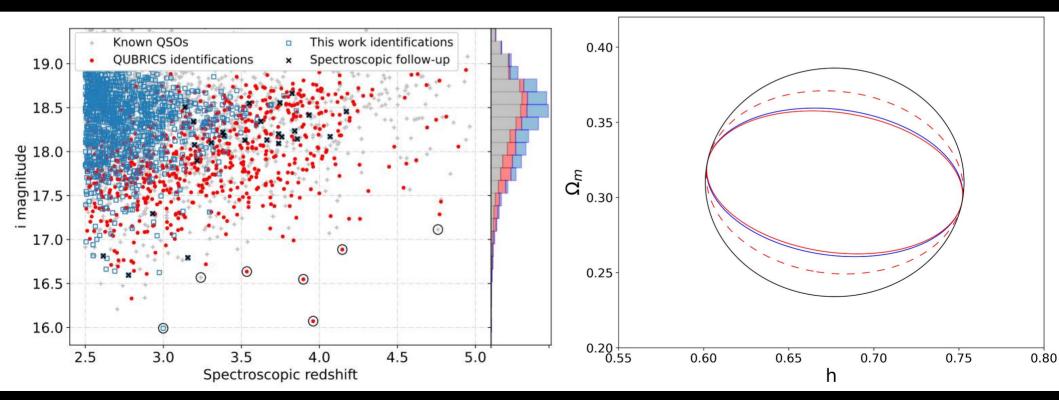
- To linear order,

$$Z_{1} = -q_{0}z + O(z^{2})$$


$$Z_{2} = j_{0}z + O(z^{2})$$

$$\frac{dZ_{1}(t_{0}, z)}{dz} = -q_{0} + (q_{0}^{2} - j_{0})z + O(z^{2})$$

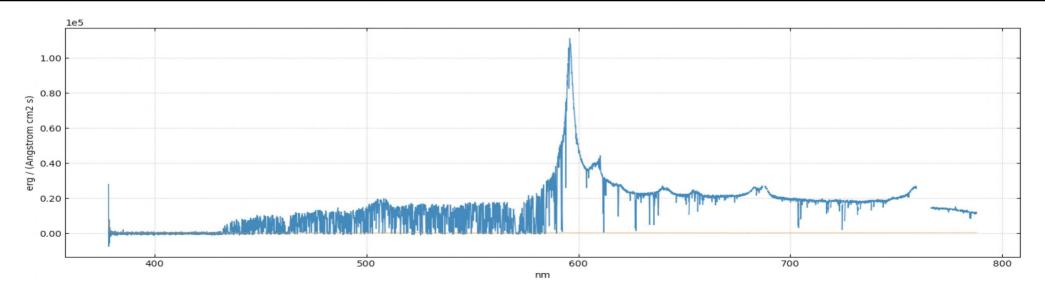
Asumming specs discussed in [Klockner et al. 2015], SKAO redshift drift measurements can reach $\sigma_{q0} \sim 0.006$ and $\sigma_{j0} \sim 0.13$


- Optimal way to measure q₀ with both accuracy and precision, which is not possible with traditional distance indicators [Neben & Turner 2013]
- A key consistency test: j(z)=1 at all redshifts for a flat Λ CDM universe
- More broadly, a positive drift implies SEC violation, hence dark energy

Synergies II: ELT + SKAO

An ANDES Golden Sample

Recently discovered bright high-z QUBRICS QSOs significantly reduce observation time for the same return [Cristiani et al. 2023]


The ESPRESSO Redshift Drift Experiment

Current limits 1000x larger than expected signal, and systematics-dominated

- [Darling 2012] in the radio at z<0.7, [Cooke 2020] in the optical at z>2

ESPRESSO can improve this by a factor ${\sim}10$ with an experiment time of 1 year and an observation time of 40h for 2 QUBRICS 'superbright' QSOs

- Test and optimise methodology with real data, test instrument stability
- Two independent experiments, also 'zeroth epoch' for ANDES (calibration permitting)

Stay tuned for the ANDES Science White Papers (you will see them on the arXiv in a few weeks...)

The ESPRESSO I2 Cell Experiment

It is obvious that completeness and significant redundancy in the ANDES calibration systems are scientifically mandatory

- Inter alia, ANDES must have a means to verify requirements on stability of wavelength calibration, including non-common path errors, bearing in mind that the LFC light might not* follow the same optical path as the QSO light

Including an I2 cell in the optical design to verify the primary LFC calibration is a possible (and, if viable, the simplest/cheapest) solution

- This will enable a check on how well the LFC wavelength calibration is transferred to that of a point-source, absorption-line science target; measuring this 'transfer function' is mandatory for competitive fundamental physics tests with ANDES

* unless one uses drone or satellite based calibrations (on which there is very significant progress)

An ELT Fundamental Physics Roadmap

The ELT can be a leading gravity/fundamental cosmology probe

- Direct model-independent probe of the universe dynamics
- Weak Equivalence Principle tests (mostly from α data)
- Composition-dependent force tests (mostly from μ data)
- Testing temperature redshift relation, distance duality, and BBN
- Strong-field tests, including 'No-hair Theorem' (MICADO, ...)
- Mapping dark side from z=0 to z=4 (ANDES, HARMONI, ...)
- Constraining dark sector couplings, and environmental dependencies
- Weak acceleration 'MOND-like' regime in Milky Way outskirts?

Most of these are ANDES science cases (and some are ELT flagship cases), but other ELT instruments can play a meaningful role too

Can We Be Competitive?

The core science cases are photon-starved but systematics-limited

For ANDES to be a competitive 2030s fundamental cosmology facility, it must significantly and cumulatively improve on the ESPRESSO

- Precision
- Accuracy
- Stability
- UV coverage

Addittionally, one needs

	U	В	V	R	IZ	Y	J	Н	К
	0.35- 0.41	0.40- 0.50	0.49- 0.63	0.62- 0.76	0.75- 0.95	0.95- 1.13	1.12- 1.36	1.41- 1.80	1.80- 2.40
Precision <0.7m/s (goal 0.5 m/s)	SC1 SC2	SC1 SC2	SC1 SC2	(SC1) SC2	SC2	(SC2)	(SC2)	(SC2)	
Accuracy <1 m/s	SC2	SC2	SC2	SC2	SC2	(SC2)	(SC2)	(SC2)	
Stability (goal) < 0.01 m/s	SC1	SC1	SC1	(SC1)					

- 50-250 nights of telescope time (over the telescope's lifetime)
- Further 'optimal' targets (especially for μ)
- Better lab wavelengths of key transitions (mainly below 1600 A)

So What's Your Point Again?

The acceleration of the universe shows that canonical theories of cosmology & particle physics are incomplete, if not incorrect

 Precision astrophysical spectroscopy provides a direct and competitive probe of the (still unknown) new physics that must be out there

Nothing varies at ~ fewx10⁻⁶ level, a very tight bound (e.g. stronger than Cassini bound, and far stronger than w bounds)

- ESPRESSO is here, new and more robust measurements coming soon
- With MICROSCOPE and atomic clocks, stringent new tests possible

The ELT (mainly ANDES) can be the flagship tool for the 2030s generation of precision consistency tests of fundamental physics

- Competitive 'guaranteed science' implications for dark energy
- Unique synergies with other facilities (including Euclid & SKAO)

Let's do it!