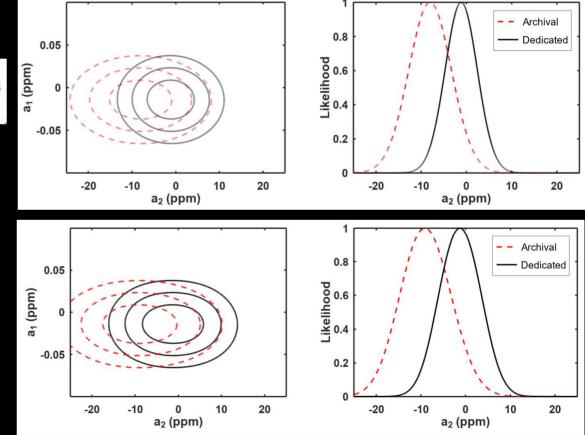
Phi in the Sky: Astrophysical Probes of Fundamental Physics

Lecture 3

Carlos.Martins@astro.up.pt


Varying α Cosmography

Model-independent approach: Taylor series expansion of possible redshift dependence of α [Martins et al. 2022]

$$\frac{\Delta\alpha}{\alpha}(y) = \frac{1}{\alpha_0} \left(\frac{d\alpha}{dy}\right)_0 y + \frac{1}{2\alpha_0} \left(\frac{d^2\alpha}{dy^2}\right)_0 y^2 + \frac{1}{6\alpha_0} \left(\frac{d^3\alpha}{dy^3}\right)_0 y^3$$
$$y \equiv \frac{z}{1+z}.$$

Atomic clocks constrain linear term, astrophysics constrains higher-order ones

No statistically significant evidence for variations ($<2\sigma$ even for archival data)

Counting Photons

The COBE-FIRAS black-body intensity spectrum of the CMB is among the most precise cosmological measurements, and yields the well known $T_0 = 2.7260 \pm 0.0013$ [Fixsen 2009]

- This is confirmed by other measurements in the Galaxy
- However, this says nothing about the CMB temperature at non-zero redshift
- Such non-zero redshift measurements are scarce

In standard cosmology, assuming adiabatic expansion and photon number conservation, the CMB temperature obeys $T_{CMB}(z) = T_0(1+z)$

- However, there are many non-standard scenarios which violate this (including all those where α varies)
- Typically can be parameterised as $T_{CMB}(z) = T_0(1+z)^{1-\beta}$ [Lima et al. 2000, ...]
- Opportunity to test many non-standard models

QSO Absorption Lines and T_{CMB}

 T_{CMB} determined from QSO absorption spectra with transitions between fine-structure levels partly populated by the CMB [Bahcall & Wolf 1968]

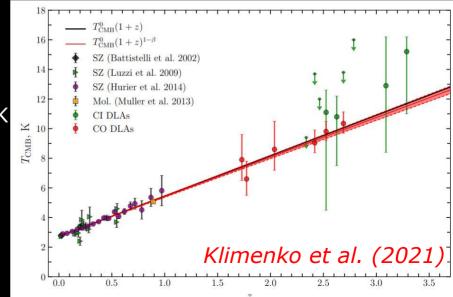
- McKellar (1941) identified Galactic CN 2.3 K transition excited by CMB with $T_0=2.729\pm0.027$ K, the first (indirect) CMB detection
- CN is best known CMB thermometer, but so far not identified outside our Galaxy

C⁰, C⁺ and CO have UV transitions redshifted to optical at $z \sim 1-3$ with fine-structure levels with T_{exc} close to the CMB

- C⁰ has 3 fine-structure levels with T_{exc} of 23.6 K & 38.9 K: used since 1980s, latest $T_{CMB}(z=2.4)=10\pm4$ K [Srianand et al. 2000]
- C⁺ has 2 fine-structure levels with T~91.3 K, which have been used to obtain $T_{CMB}(z = 3.0) = 12.1^{+1.7}_{-3.2}$ K [Molaro et al. 2002]
- Both of these fine-structure levels can by populated by processes other than the CMB radiation, degrading the method's performance

Carbon Monoxide

CO effectively systematic-free, as competing excitation mechanisms are almost negligible: measurements can be considered S/N dominated


- Sobolev et al. (2015) estimated a small correction that should be applied for excitation by collisions with hydrogen atoms or molecules, but this is small
- Relies on electronic transition between A and X states at ~1544A, falling in the optical at z>1.5; other transitions between different rotational states also used

Only recently used, due to lack of high-z CO detections (hard due to the low dust opacity required to observe background source)

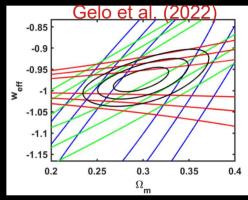
First detection [Srianand et al. 2008] $T_{z=2.4}=9.15\pm0.72$ K

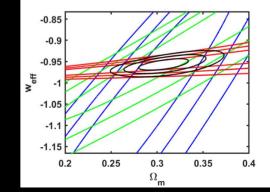
[Noterdaeme et al. 2011] provided 5 measurements with 0.7-1.3 K errors, later a 6^{th} , $T_{z=2.53}=9.6^{+0.7}_{-0.6}$ K

[Muller et al. (2013)] used mm-range absorptions in 13 different molecules to find $T_{z=0.9}=5.08\pm0.10$ K

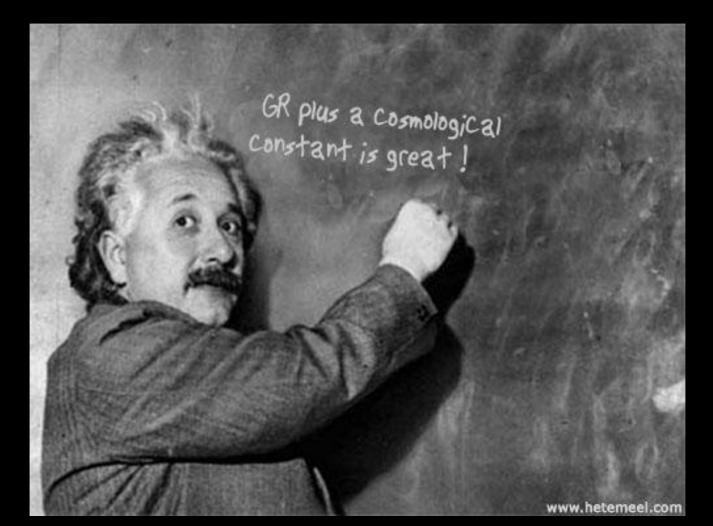
A Photon Consistency Test

$T(z)=T_0(1+z)$ is a robust prediction of standard cosmology


- Assumes adiabatic expansion and photon number conservation
- T(z) is a competitive cosmological probe [Gelo et al. 2022]
- A simple parametrization is $T(z)=T_0(1+z)^{1-\beta}$


$d_L = (1+z)^2 d_A$ is a robust prediction of standard cosmology

- Assumes metric theory of gravity, photon number conservation
- A simple parametrization is $d_L = (1+z)^{2+\epsilon} d_A$


In many models, $\beta = -2\epsilon/3$: distance duality tests also constrain β [Avgoustidis et al. 2012]

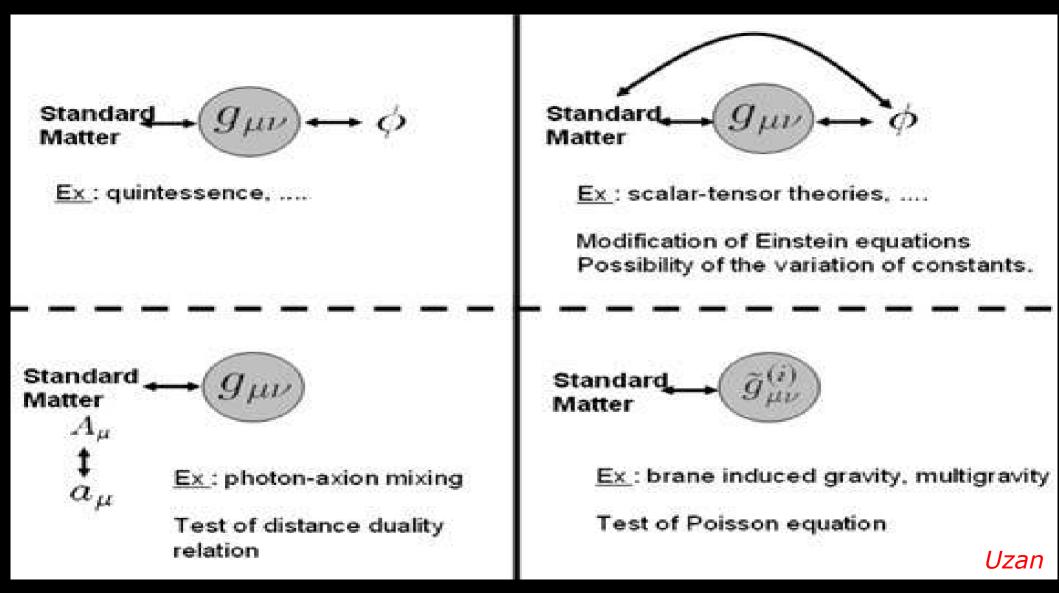
- Current constraint 0.8% [Avgoustidis et al 2016, ...]
- Important external data, e.g. for Euclid constraints on non-standard models [Martinelli et al. 2020]

Was Einstein Right?

Dark Energy & Varying Couplings

Universe dominated by unknown component whose gravitational behavior is similar to that of a cosmological constant

- A dynamical scalar field is (arguably) more likely
- Such a field must be slow-rolling (mandatory for p<0) and be dominating the dynamics around the present day

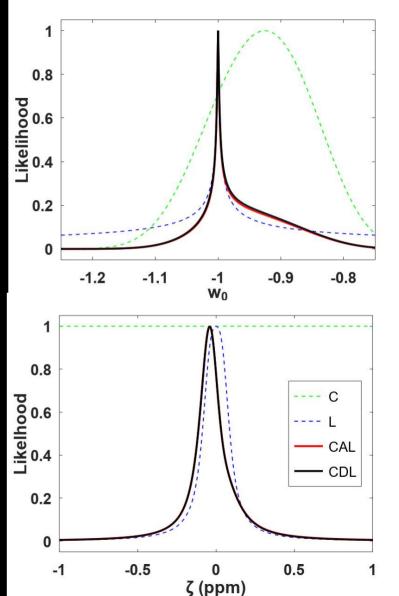

Couplings of this field will lead to potentially observable longrange forces and varying 'constants' [Carroll 1998, ...]

- These measurements (whether they are detections or null results) constrain fundamental physics and cosmology
- E.g., scalar field inevitably couples to nucleons, leading to WEP violations
- Current measurements already provide competitive constraints
- ESPRESSO provides significant improvements (and a testbed for the ELT)

How Low Should One Go?

Dark energy equation of state vs.Relative variation of α $(1+w_0)$ is naively O(1) $(\Delta \alpha / \alpha)$ is naively O(1)Observationally < 10^{-1} Observationally < 10^{-5}

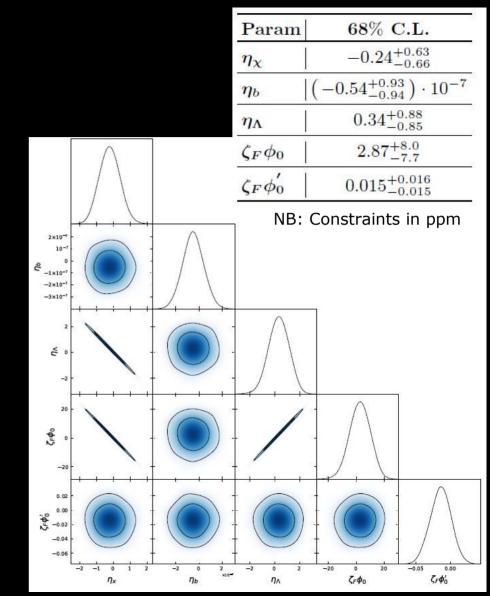
- If not O(1), no 'natural' scale for variation: either fine-tuning...
- ...or a new (currently unknown) symmetry forces it to be zero
- So is it worth pushing beyond ppm? Obviously yes!
 - Strong CP Problem in QCD: a parameter naively O(1) is known to be $<10^{-10}$, leading to postulate of Peccei-Quinn symmetry and axions
 - Tight bound implies either no dynamical cosmological fields or a new symmetry – whose existence would be even more significant
 - Anyway, strong dynamical dark energy and Equivalence Principle constraints

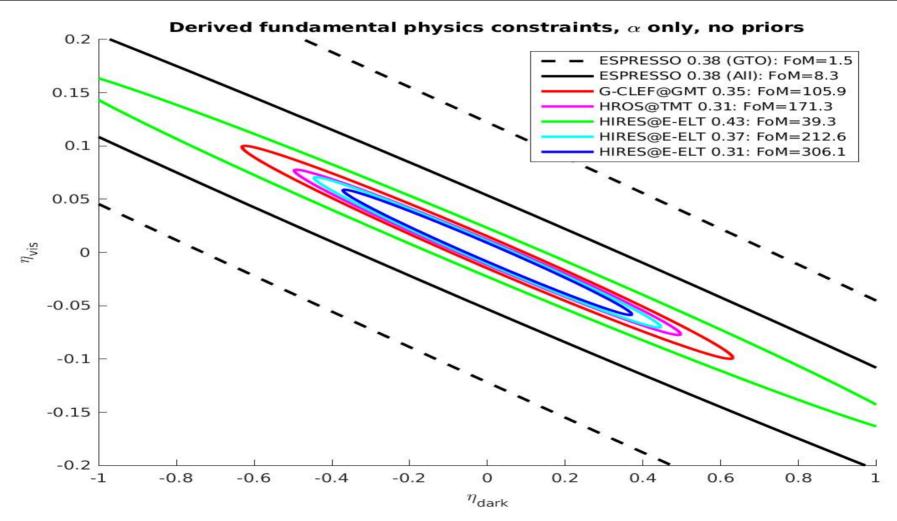

Two Model Classes

Class I: the same degree of freedom yields dynamical dark energy and $\boldsymbol{\alpha}$

 α evolution is parametrically determined, constrains dark energy equation of state

$$\frac{\Delta\alpha}{\alpha}(z) = \zeta \int_0^z \sqrt{3\Omega_\phi(z')\left(1 + w_\phi(z')\right)} \frac{dz'}{1 + z'}$$


- Can distinguish freezing and thawing models [Vilas Boas et al. 2020]
- Example: CPL [Martins et al. 2022], from ESPRESSO & other low-redshift data
- Local constraints (atomic clocks, WEP) dominate, but redshift lever arm relevant

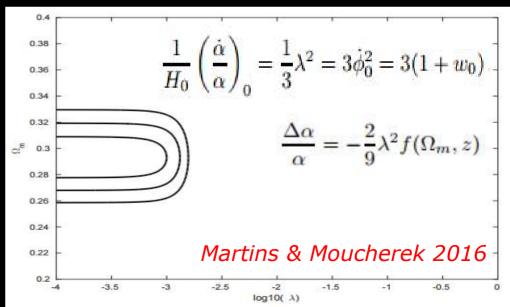

Two Model Classes

Class II: α dynamical d.o.f. only has subdominant effect on recent dynamics

- I.e., there is a cosmological constant providing (most of) the dark energy
- Identifiable through consistency tests, α still constrains model parameters
- Could be only non-ACDM fingerprint [Tavares & Martins 2020]
- Example: Bekenstein-type models, couplings constrained to sub-ppm
- Full analysis in [Vacher et al. 2022]

ELTs: Collecting Area vs. Blue Coverage

A Simple Case Study: Rolling Tachyons


A rolling tachyon is a Born-Infeld scalar: well motivated in string theory, field dynamics unavoidably leads to α variations [Sen 2002, ...]

- Tachyon Lagrangian generalizes the one for a relativistic particle, like quintessence one generalizes that of a non-relativistic one
- Quintessence couplings not fixed in Standard Model; here they come from an effective D-brane action (i.e., a DBI type action)

Potential slope determines w and α : thawing models with $\Delta \alpha / \alpha < 0$, but extremely tightly constrained

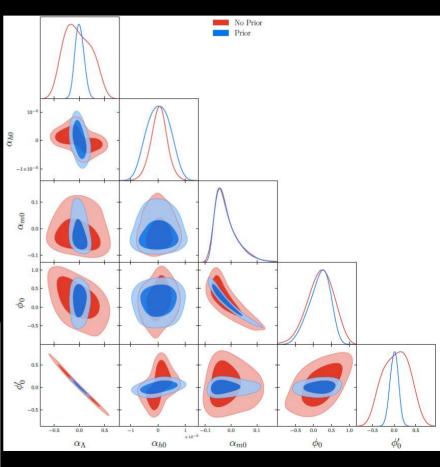
 $(1+w_0) < 2.4 \times 10^{-7}$, 99.7%*C.L.*

Background cosmology data will never distinguish this from $\Lambda\text{CDM},$ only α data can do it

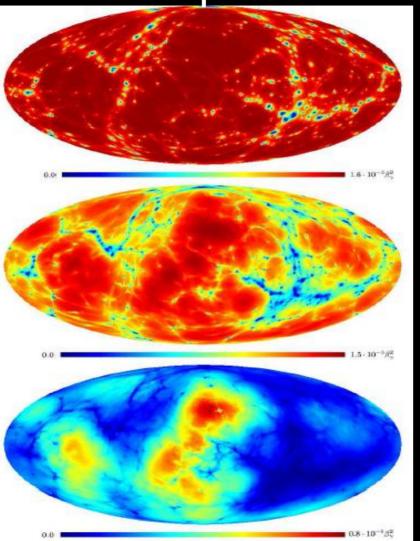
Constraining String Theory

Runaway dilaton [Damour et al. 2002] is a string-inspired model reconciling massless dilaton with experimental data

– Dilaton has couplings α_i with each component


$$\frac{2}{3-\phi'^2}\phi'' + \left(1-\frac{p}{\rho}\right)\phi' = -\sum_i \alpha_i(\phi)\frac{\rho_i - 3p_i}{\rho}$$

Constrained by cosmology, α and local data cf. [Vacher et al., Schoneberg et al. 2023]


- Order unity couplings are now ruled out
- (Also tight limits for Swampland Conjecture)

Parameter	68 % C.L.
$\alpha_{h,0}$	$(0.01^{+4.22}_{-4.17}) \times 10^{-6}$
$\alpha_{m,0}$	$\left \left(-1.68 {}^{+2.24}_{-5.78} \right) \times 10^{-2} \right.$
α_V	$(0.04^{+1.12}_{-1.27}) \times 10^{-1}$
ϕ_0	$(1.64^{+3.82}_{-2.53}) \times 10^{-1}$
ϕ'_0	$(0.02^{+1.36}_{-1.26}) \times 10^{-1}$

Parameter	Prior on ϕ'_0	No prior on ϕ_0'
$\alpha_{h,0}$	$\left (-1.63^{+4.33}_{-4.71}) \times 10^{-6} \right $	$\left (0.21^{+2.97}_{-2.80}) \times 10^{-6} \right $
$\alpha_{m,0}$	$\left \left(-1.70 {}^{+2.08}_{-5.71} \right) \times 10^{-2} \right.$	$\left \left(-1.39^{+2.65}_{-6.03}\right) \times 10^{-2}\right $
α_{Λ}	$(0.50^{+8.94}_{-9.39}) \times 10^{-2}$	$\left \left(-0.16 {}^{+2.34}_{-3.65} \right) \times 10^{-1} \right.$
ϕ_0	$(16.7^{+3.68}_{-2.43}) \times 10^{-1}$	$(17.5^{+4.25}_{-3.23}) \times 10^{-1}$
ϕ'_0	$(0.20^{+9.97}_{-9.98}) \times 10^{-2}$	$(3.7^{+38.4}_{-31.0}) \times 10^{-2}$

Spatial Variations: Symmetrons

Analytic calculations plus N-body simulations: 3D α power spectrum

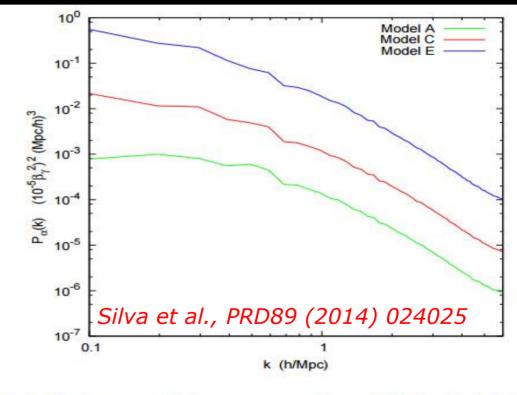
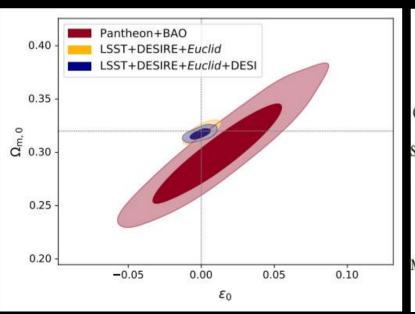



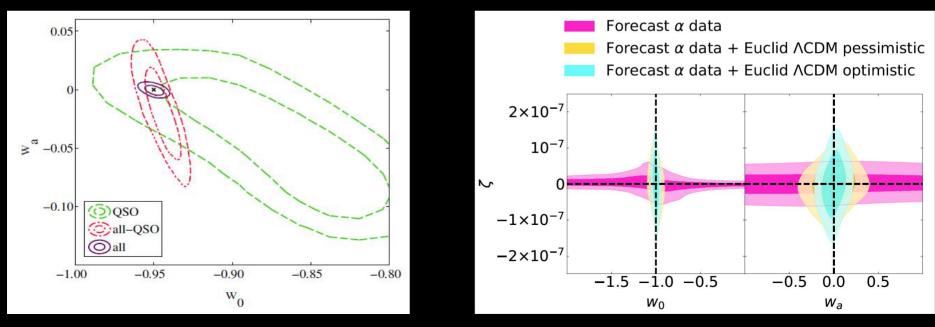
FIG. 9. The $(\alpha - \alpha_0)$ power-spectrum at z = 0 for the models A, C and E (solid).

Interlude: A Euclid Test

Euclid & other surveys probe Etherington relation (which holds for metric theories of gravity with photon number conservation)

- Improved previous constraints by factor 2.5 [Martinelli et al. 2020]
- Euclid improvement: 6x with parametric methods...
- ... or 3x with non-parametric methods (MLGA reconstruction)

Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes*


M. Martinelli^{1**}, C.J.A.P. Martins^{2,3}, S. Nesseris¹, D. Sapone⁴, I. Tutusaus^{5,6}, A. Avgoustidis⁷, S. Camera^{8,9,10},
C. Carbone¹¹, S. Casas¹², S. Ilić^{13,14,15}, Z. Sakr^{15,16}, V. Yankelevich¹⁷, N. Auricchio¹⁸, A. Balestra¹⁹, C. Bodendorf²⁰, D. Bonino¹⁰, E. Branchini^{21,22,23}, M. Brescia²⁴, J. Brinchmann³, V. Capobianco¹⁰, J. Carretero²⁵, M. Castellano²³,
S. Cavuoti^{24,26,27}, R. Cledassou²⁸, G. Congedo²⁹, L. Conversi^{30,31}, L. Corcione¹⁰, F. Dubath³², A. Ealet³³, M. Frailis³⁴, E. Franceschi¹⁸, M. Fumana¹¹, B. Garilli¹¹, B. Gillis²⁹, C. Giocoli^{35,36,37}, F. Grupp^{20,38}, S.V.H. Haugan³⁹,
W. Holmes⁴⁰, F. Hormuth⁴¹, K. Jahnke⁴², S. Kermiche⁴³, M. Kilbinger¹², T.D. Kitching⁴⁴, B. Kubik⁴⁵, M. Kunz⁴⁶, H. Kurki-Suonio⁴⁷, S. Ligori¹⁰, P.B. Lilje³⁹, I. Lloro⁴⁸, O. Marggraf⁴⁹, K. Markovic⁴⁰, R. Massey⁵⁰, S. Mei⁵¹, M. Meneghetti^{35,37}, G. Meylan⁵², L. Moscardini^{18,36,53}, S. Niemi⁴⁴, C. Padilla⁵⁴, S. Paltani³², F. Pasian³⁴, V. Pettorino¹², S. Pires¹², G. Polenta⁵⁵, M. Poncet²⁸, L. Popa⁵⁶, L. Pozzetti¹⁸, F. Raison²⁰, J. Rhodes⁴⁰, M. Roncarelli^{18,36}, R. Saglia^{20,38}, P. Schneider⁴⁹, A. Secroun⁴³, S. Serrano^{5,6}, C. Sirignano^{57,58}, G. Sirri⁵³, F. Sureau¹², A.N. Taylor²⁹, I. Tereno^{59,60}, R. Toledo-Moreo⁶¹, L. Valenziano^{18,53}, T. Vassallo³⁸, Y. Wang⁶², N. Welikala²⁹, J. Weller^{20,38}, A. Zacchei³⁴

Interlude: Euclid & Varying α

Euclid forecast constraints on dark energy coupled to electromagnetism, with astrophysical and laboratory data [Martinelli et al. 2021]

 Improves Euclid dark energy FoM by between 8% and 26%, depending on the correct fiducial model (larger improvements in the null case)

Increasing redshift lever arm is crucial [Calabrese et al. 2014]

Interlude: Strong Gravity

GR well tested in weak field regime (table-top, solar system, pulsars), but two strong-field effects have no weak-field limit

- Presence of a horizon around collapsed objects
- No stable circular orbits near a black hole or neutron star

Strong-field tests of gravity are important too, and the Galactic Centre is an ideal environment in which to do it

- Direct test of metric theories (e.g., Kerr black hole solution not unique to GR)
- May provide further insight on the nature of spacetime (GR is classical, and may break down in this limit)

In GR, post-Newtonian effects depend exclusively on distance from center; in alternative theories other factors play a role

- The closer one gets to the center the stronger the constraints, and the higher the chances of identifying new physics
- Horizon size of Schwarzschild $4 \times 10^6 M_{\odot}$ black hole at GC is ~10 µas

Mind Your Cosmological Priors

into all the data. If w = T, then that NCDM I S. ർ S ມ .eteb ant lie ot the 5 // M LOUI . ↓ ₹ ₹ ₩