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Constants & Extra Dimensions

Unification of fundamental forces requires additional space-time 
dimensions; in such models, the true fundamental constants are 
defined in higher dimensions

– (3+1)D constants are effective quantities, typically related to true 
ones via characteristic sizes of the extra dimensions

Expect space-time variation of such effective coupling constants
– E.g., a varying a is unavoidable (at some level) in string theory

Many simple examples exist, e.g. in
– Kaluza-Klein models [Chodos & Detweiler 1980, Marciano 1981]
– Superstring theories [Wu & Wang 1986]
– Brane worlds [Kiritsis 1999, Alexander 2000]



  

The Role of Constants

Asymptotic states (pointing to emergence of new phenomena)?
– c: Limit velocity of massive particle in flat space-time
– G: Limit potential of mass not forming black hole in curved space-time
– h: Limit uncertainty (quantum of action)

Convenient conversion factors?
– Can't be pushed arbitrarily far: e=c=G=1 is ok, but e=c=h=1 is not

How many are fundamental?
– The story so far: 3

Are they fixed by consistency conditions, or arbitrary?



  

Counterfactual Universes

If aEM were increased by 4% or aS reduced by 0.4% the Carbon-12 
resonance at 7.6 MeV (the Hoyle resonance) would not exist and the 
amount of carbon produced in stellar cores would be drastically reduced

– Similarly, a 4% decrease in aEM or a 0.4% increase in aS would see stellar 
production of oxygen greatly reduced

If aS were larger by 4% or smaller by 10%, Helium-2 (i.e. diprotons) 
would be stable; this would speed up nuclear fusion and greatly reduce 
stellar lifetimes

– Deuterium could not exist, so no carbon or oxygen would be produced at all

If =mp/me were much larger than its current value, no ordered 
molecular structures would exist



  

a(z), (z), T(z) and Beyond
In theories where a dynamical scalar field yields varying a, other 
couplings are also expected to vary, including =mp/me

– In GUTs the variation of a is related to that of LQCD, whence mnuc varies 
when measured in energy scale independent of QCD

– Expect a varying, measured with H2 [Thompson 1975] and other molecules
– Also will have violations of the T(z) law, constrained to sub-percent level 

[Avgoustidis et al. 2016, …]
– and the distance duality (a.k.a. Etherington) relation

Molecular observations measure the inertial masses (not the 
gravitational ones) and they may or may not be probing ...

– H2 measurements do probe mp/me; more complicated molecules probe 
mnuc/me~ few mp/me: but beware composition-dependent forces

– The ELT or ALMA may ultimately constrain these forces (H2 vs HD vs CO vs…)



  

So What's Your Point?
Wide range of possible a--T relations makes such measurements a 
unique discriminating tool between competing models

– Sensitive probe of unification scenarios [Coc et al. 2007, Luo et al. 2011, 
Ferreira et al. 2012, Ferreira et al. 2013, …]                     

                                                                                                                   
                                                                                                                
                                                                                                                
                                    

Theoretically, not all targets are equally useful – must actively search 
for ideal ones (for the ELT, ALMA, etc), where

– Several parameters can be measured simultaneously (e.g., +T relatively 
common both in optical/UV and radio/mm)

– Occasionally can measure a,  and gp (or T) in the same system

– One or more parameters can be measured in several independent ways (e.g.,  
measured from various molecules)
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Examples of Spectroscopic Constraints

aem: Fine-structure doublet

=mp/me: Molecular Rotational vs. Vibrational modes

aem
2gp: Rotational modes vs. Hyperfine H

aemgp: Hyperfine H vs. Fine-structure

aem
2gp: Hyperfine H vs. Optical

…
NB: Emission measurements are more straightforward than absorption ones, but 
much less sensitive [Albareti et al. 2015]; the available redshift range is similar 
[Brinchmann et al. 2004, …]



  

Joint likelihood analysis of all data [Martins & Vila Miñana 2019]
– Two bins (Red: z<1 ; Blue: z>1 ; Black: All)
– 1-2 sigma detections, even without Webb et al. data
– … but systematics known to be at the 3 ppm level

Before ESPRESSO: ca.375 QSO Measurements



  

Spatial Variations: Dipoles?
Webb et al. (2011): 4.2 s (stat) evidence for a dipole

– More recent analysis [Martins & Pinho 2017]: 2.3 s, A = 5.6 ± 1.8 ppm
– For , A < 1.9 ppm (95.4% cl), also different preferred directions
– ...but beware systematics! [Whitmore & Murphy 2015, ...]

Webb et al. (2019)
ca.3s (stat.)



  

Aiming Higher
Observations of the z=7.09 quasar J1120+0641 [Mortlock et al. 
2011] yield new direct measurements of a at z=5.51-7.06

– Previous highest-z direct a measurement: z = 4.18
– Look-back time 12.96 Gyr (for standard LCDM) 

30h of X-SHOOTER data, first measurement in the IR
– R=7000-10000, new AI-based analysis method



  

Pre-ESPRESSO Direct a Measurements

Wilczynska et al., Sci. Adv. 6 (2020) aay9672 [arXiv:2003.07627]





ESPRESSO Instrument Configurations



ESPRESSO Fundamental Physics GTO Plans

Science Goal: Possible targets

Direct measurements of a (various ions) 14 QSOs

Direct measurements of  (from H2, CO) 2 QSOs

Direct measurements of TCMB (from CO, CI) 4 QSOs

Primordial Deuterium abundance 2 QSOs

Redshift drift 2 QSOs

Others (Deep spectrum, Lensed QSOs, 12C/13C, ...) TBD



November 2018: First Data!



  

Detailed wavelength accuracy analysis in Schmidt et al. (2021); first 
constraint, at z=1.15, in Murphy et al. (2022)

– 16h of data on HE0515-44 (mv=15.2)
– Blinded analysis yields
– Most accurate constraint (and one of the most precise) to date

First ESPRESSO a Measurement



  



  

The ESPRESSO Bottleneck

Leite



  

Other Constraints (Briefly)
Atomic clocks: very high sensitivity of fewx10-19/yr [Filzinger et al. 2023] 

– Future: molecular & nuclear clocks, 10-21/yr likely achievable        

Compact objects can constrain environmental dependencies to ca. 10-4 sensitivity; 
these are limited by nuclear physics uncertainties

– Pop. III stars [Ekstrom et al. 2010], Solar-type stars [Vieira et al. 2012], Neutron 
stars [Pérez-García & Martins 2012], White dwarfs [Magano et al. 2017]

– White dwarf measurements do exist [Berengut et al. 2013, Bagdonaite et al. 2014]

– Solar twins constrain spatial variations in the Galaxy [Murphy et al. 2022]

Oklo (a natural nuclear reactor, 1.8 bn years ago, z~0.14): nominal sensitivity of 
fewx10-8 [Davis et al. 2014, ...], but not a clean measurement

– Assumptions somewhat simplistic; effectively constrains as

Percent-level constraints obtained from SZ clusters [de Martino et al. 2016, ...], 
the CMB [Martins et al. 2002, Planck 2015, ...] and BBN [Martins et al. 2010, ...]

– Tighter constraints can be obtained for specific model choices [Coc et al. 2007, etc]; 
e.g. Li problem might be solved in some GUT scenarios? [Stern 2008] 



  

High-redshift Constraints: CMB & BBN

CMB: Changes ionization history, but weak bounds due to degeneracies
– Energy levels & binding energies are shifted

– Changes the Thomson cross-section, as a2

BBN: Higher redshift, but model-dependent
– Changes Coulomb barrier, n-p mass difference, e.g. 

[Gasser & Leutwyler 1988]: Dm=2.05-0.76(1+Da/a) MeV

– NB: BBN counts photons, while the CMB weighs them


