Numerical Modeling of Seismic Wave Propagation
-- Elective Course; 3 credits ---
Topics:
-
Review of Fortran90:declaration of variables and constants; programming elements, reading and writing formatted and unformatted (binary files) data, use of modules, dynamic allocation, functions and subroutines;
-
Review of equations of elasticity and acoustics: first order equations in tension and velocities, second-order equations in displacements; transverse vertical isotropic (VTI) media and the isotropic media; simplification for the acoustic case, the first order equations, acoustic equation wave for general media and for media with small density gradient;
-
The finite difference method (MDF): simple and staggered grid formulations, finite difference operators; explicit and implicit schemes, properties of difference equations, stability and numerical dispersion.
-
Acoustic modeling with MDF: schemes in single and staggered grids (in second and fourth orders in space), application of seismic source, non-reflective boundary condition (CCNR), absorbing boundary conditions (ABC); stability criteria, criterion to avoid numerical dispersion;
-
ElasticmodelingwithMDF:simplesandstaggeredgridformulations,formulationsforsecond- order equations in displacements (or velocities) and formulations for the first-order equations in terms of stresses and velocities; formulations for isotropic media and VTI media;
-
Reverse time migration (RTM): basic processing review, stacking, zero offset section; the explosive reflector model and principle of imaging, zero-offset RTM and RTM with offset (post- and pre-stack); computational implementation and practical aspects.
Bibliography:
- Di Bartolo, L., 2013, Introdução à Modelagem Sísmica utilizando o MDF, Apostila Minicurso UNICAMP (6h).
- Chapman, C.H., 2004, Fundamentals of seismic wave propagation, Cambridge University Press.
- Kelly, K. R., Marfurt, K. J., 1980, Numerical Modeling of Seismic Wave Propagation, SEG, Geophysics reprint series n. 13.
- Alford, R. M., Kelly K. R, Boore, D. M., 1974, Accuracy of finite difference modeling of the acoustic wave equation, Geophysics, v 39, n. 6, pp.834-842.
- Kelly, K. R., Ward, R. W., Treitel, S., et al., 1976, Synthetic seismograms: a finite-difference approach, Geophysics, v. 41, n. 1, pp.2-27.
- Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, v 51, n. 4, pp.889-901.
- Levander A., 1989, Finite-difference forward modeling in seismology. In: James, D.(Ed), The encyclopedia of Solid Earth Geophysics, pp.410-430, New York.
- Levander A., 1988, Fourth-order finite-difference seismograms. Geophysics, v 53, n. 11, pp.1425-1436.
- Faria, E. L., Stoffa, P. L., 1994, Finite-difference modeling in transversely isotropic media, Geophysics, v. 59, n. 2, pp.282-289.
- Di Bartolo, L., 2010, Modelagem sísmica anisotrópica através do método das diferenças finitas utilizando sistemas de equações em 2a ordem. Tese de Doutorado, COPPE/PEC.
- Di Bartolo, L., 2012, A new family of finite-difference schemes to solve the heterogeneous acoustic wave equation, Geophysics, v 77, n. 5, pp.T187-T199.
- Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, v 51, n. 4, pp.889-901.