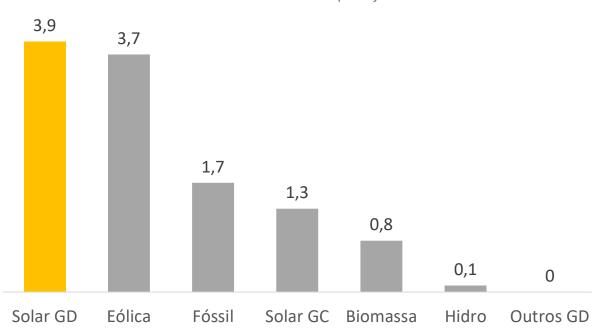


Estudos do Plano Decenal de Expansão de Energia 2032

Micro e Minigeração Distribuída & Baterias

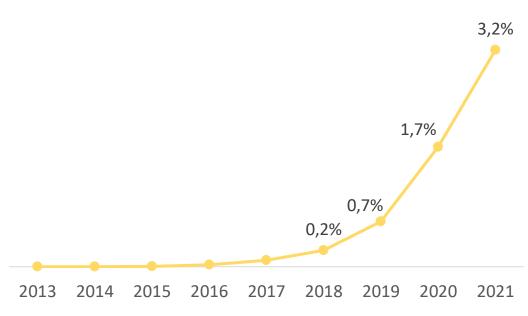
Superintendência de Estudos Econômicos e Energéticos

Outubro de 2022



Micro e Minigeração Distribuída (MMGD) tem se destacado nos últimos anos

A MMGD está se tornando protagonista da expansão da capacidade instalada no Brasil. Em 2021, a fonte solar a distribuída superou expansão de todas as fontes centralizadas.


Expansão da Oferta de Geração de Energia Elétrica em 2021 [GW] - Entrada em Operação

Fonte dos dados: ANEEL. Painel Interativo do RALIE (Janeiro de 2022) e base de MMGD (Acesso em 27/01/2022)

A MMGD também tem ganhado importância em termos de contribuição energética, atendendo cerca de 3% do consumo cativo nacional e a quase 10% em algumas distribuidoras do Brasil.

> Percentual do consumo de eletricidade cativo nacional atendido por MMGD

Fonte dos dados: EPE. Painel de Dados de Micro e Minigeração Distribuída

O novo marco legal da MMGD no Brasil

Lei nº 14.300/2022

Em janeiro de 2022, foi publicada a Lei nº 14.300 que cria o Marco Legal da Micro e Minigeração Distribuída.

Principais alterações trazidas pela Lei:

- Limite de mini GD FV reduzido de 5 MW para 3 MW;
- Estabelecido conceito de fontes despacháveis: hidro, biomassa, cogeração e FV + baterias;
- Permite sistemas com baterias e sistemas híbridos (regulamentação futura);
- Menor cobrança do custo de disponibilidade;
- Novas formas de associação civil permitidas na geração compartilhada;
- Cria Programa de Energia Renovável Social, que prevê contratação de MMGD com recursos do PEE para atender consumidores de baixa renda.

Componentes tarifárias

TI	USD	-D	istr	ib.

TUSD - Transm.

TUSD – Encargos

TUSD – Perdas

TE - Outros

TE – Energia

Como serão as regras de compensação da energia injetada na rede?

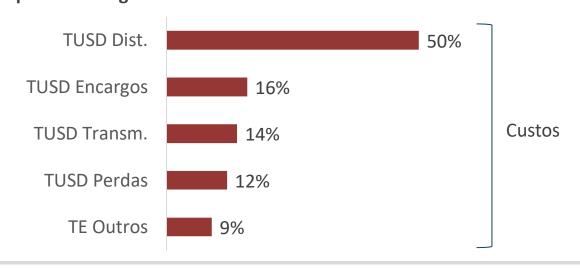
- Para geradores existentes e aqueles que protocolarem solicitação de acesso até 12 meses após publicação da Lei: compensação de todas as componentes tarifárias (regra atual) até 2045.
- Para os novos geradores (com exceção dos abaixo):

Pagamento sobre o crédito:	2023 a 2028	2029+
TUSD Distribuição	Cobrança gradual de	Regra a ser
TUSD Distribuição	15% a 90%	definida

Para novos acima de 500 kW de fontes não despacháveis e de autoconsumo remoto ou compartilhada com um titular com mais de 25% da participação na injeção:

Pagamento sobre o crédito:	2023 a 2028	2029+	
TUSD Distribuição	100%	Dogra a cor	
TUSD Transm.	40%	Regra a ser definida •	
Encargos P&D, PEE e TFSEE	100%	definida	

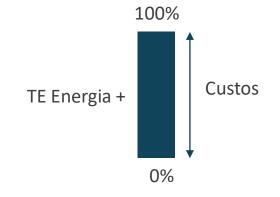
A partir de 2029, compensação será da TE Energia + benefícios. Os benefícios serão calculados pela ANEEL em até 18 meses a partir da publicação da Lei, seguindo diretrizes do CNPE e contribuições da sociedade.


PDE 2032 | Cenários para a MMGD

Incertezas na valoração dos benefícios

- A Lei nº 14.300 traz luz sobre o provável cenário regulatório para a MMGD. No entanto, ainda há incertezas relacionadas com a remuneração da energia injetada na rede a partir de 2029, decorrentes do cálculo de benefícios da MMGD para o setor elétrico. Essa definição deve ocorrer em até 18 meses a partir da publicação da Lei.
- Mesmo afetando a remuneração somente a partir de 2029, sua definição deve influenciar os investimentos ao longo da década pois afeta o fluxo de caixa desses empreendimentos.

Percentual médio de cada componente na tarifa 2021 B1, sem a parcela Energia

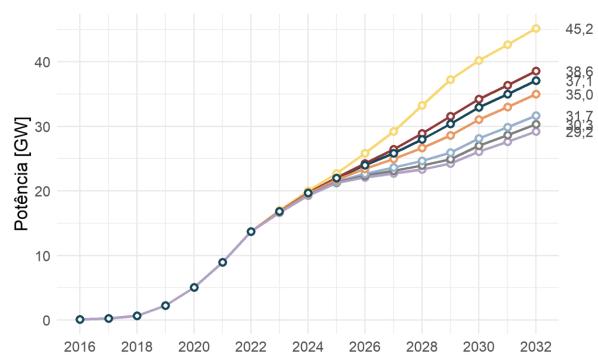

Cenário de Referência

O Cenário de Referência para a expansão da MMGD no PDE 2032 considera somente a cobrança de 100% TUSD Distribuição a partir de 2029. Isso implica que cerca de 50% dos custos (Encargos, Transmissão, Perdas e Outros) serão descontados através dos benefícios.

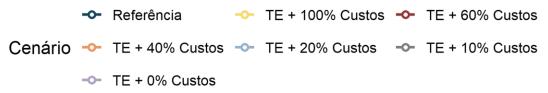
Sensibilidades:

Serão simulados cenários remunerações distintas da energia injetada na rede. Desde TE Energia + 0% dos custos acima, que seria a menor remuneração, até TE Energia + 100% dos custos, que significaria a compensação original de 1 para 1.

Remuneração pela injeção a partir de 2029:



PDE 2032 | Resultados dos Cenários



Projeção da capacidade instalada de MMGD (GW)

Por Cenário

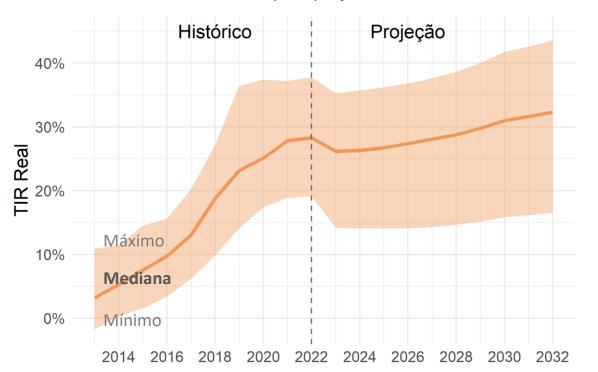
Nota: Data base da projeção: fevereiro de 2022

Resumo dos Resultados

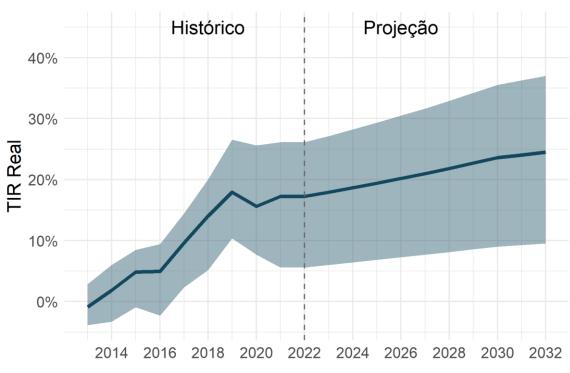
Por Cenário

Cenário	Adotantes (2032) Milhões	Potência (2032) GW	Geração (2032) GWméd	Investimentos (2022 a 2032) R\$ bilhões
TE + 100% C	5,8	45,2	7,5	148,8
TE + 60% C	5,0	38,6	6,3	121,5
Referência	4,8	37,1	6,0	115,4
TE + 40% C	4,6	35,0	5,6	106,8
TE + 20% C	4,2	31,7	5,0	93,5
TE + 10% C	4,0	30,3	4,8	88,3
TE + 0% C	3,8	29,2	4,6	83,9

Acesse a metodologia utilizada nas projeções



PDE 2032 | Estimativa da atratividade do investimento em MMGD

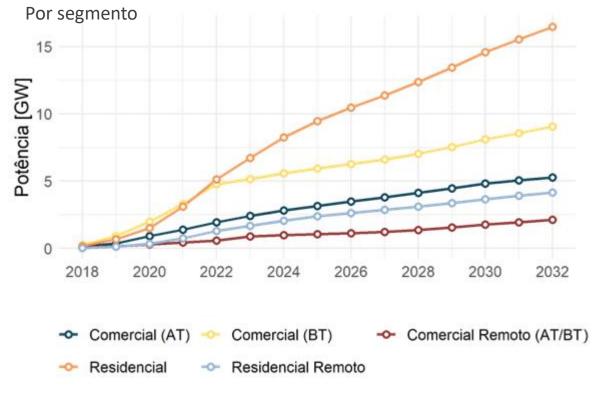

TIR real de um projeto fotovoltaico residencial local

Cenário Referência – Cálculo para projetos na área de 54 distribuidoras

TIR real de um projeto fotovoltaico comercial A4 local

Cenário Referência – Cálculo para projetos na área de 54 distribuidoras

Nota: Simulações para projetos típicos. Resultado sujeito à variações em casos específicos. Ambos casos consideram investimento com 100% de capital próprio.

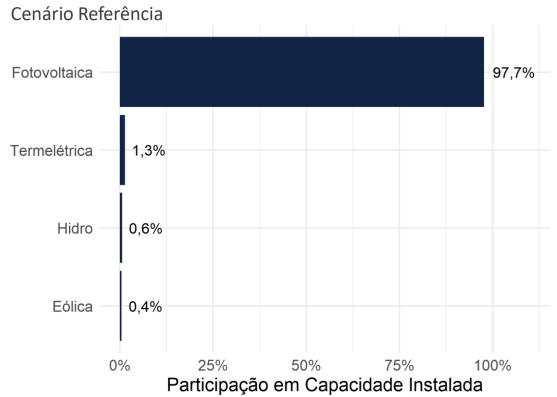

A cobrança pelo uso da rede proposta no Novo Marco Legal da GD deve impactar levemente os projetos instalados a partir de 2023. No entanto, a TIR permanece atrativa ao longo do horizonte decenal.

PDE 2032 | Detalhes do Cenário Referência

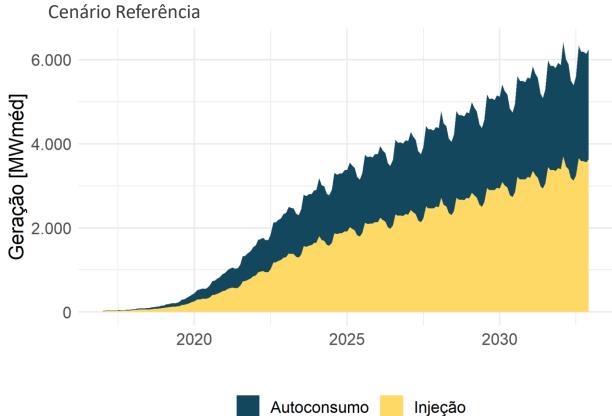
Projeção da capacidade instalada de MMGD (GW)

Nota: Comercial Remoto (AT/BT) representa sistemas de minigeração em unidades de Alta Tensão, mas que compensam remotamente os créditos em Baixa Tensão.

> Segmento residencial deve ser o líder em capacidade instalada no Cenário Referência.


Projeção da capacidade instalada de MMGD em 2032 (GW)

PDE 2032 | Detalhes do Cenário Referência

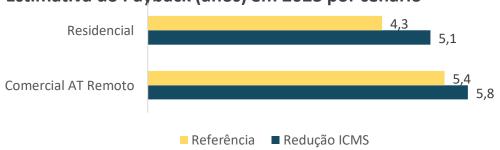


Participação por fonte em 2032

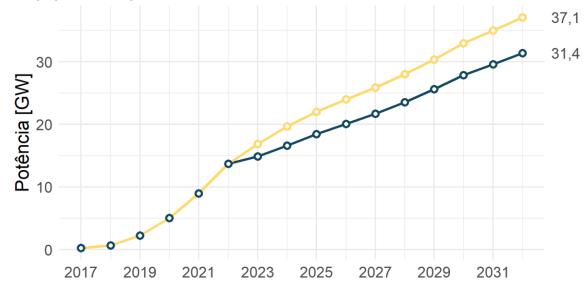
Fonte fotovoltaica se mantém como predominante entre as tecnologias de geração.

Projeção da geração mensal em MWméd, por componente¹

(1) Abertura por componente é uma estimativa baseada em fatores típicos por fonte e segmento de mercado.



PDE 2032 | Sensibilidade à redução de ICMS nas tarifas de eletricidade


- A Lei Complementar n⁰ 194/2022 limitou a cobrança de ICMS à 17% ou 18% (a depender da UF) sobre a energia elétrica. Adicionalmente, a Lei estabeleceu a não incidência de ICMS sobre "serviços de transmissão e distribuição e encargos setoriais vinculados às operações com energia elétrica".
- Com essas alterações, estima-se uma redução de aproximadamente 20% na tarifa final de energia elétrica do consumidor atendido em baixa tensão.
- A redução na tarifa implica numa menor economia gerada por um sistema de geração distribuída. Por outro lado, a não incidência de ICMS sobre a tarifa de demanda contratada beneficia a atratividade de sistemas remotos conectados em alta tensão (logo, esse segmento é menos afetado).

Estimativa do Payback (anos) em 2023 por cenário

A redução do ICMS oriunda da LC nº 194/2022 reduz a atratividade do investimento em MMGD. Com isso, estima-se uma redução de 15% na expansão da capacidade dessa modalidade no horizonte decenal.

Projeção da capacidade instalada de MMGD (GW)

Redução ICMS Cenário Referência

PDE 2032 | Incertezas

Abertura do Mercado Livre (ML)

- O MME lançou em setembro de 2022 a Portaria 50/2022 que prevê a abertura do ML para consumidores do mercado de alta tensão. Adicionalmente, uma consulta pública foi aberta em outubro pelo Ministério para avaliar a abertura para todos os consumidores a partir de 2028.
- Paralelamente, o PL nº 414, que trata da modernização do setor elétrico brasileiro, traz, dentre outras medidas, a previsão de abertura do mercado livre para todos os consumidores em até 42 meses a partir da publicação da lei.
- Com a abertura do mercado livre, o consumidor terá a oportunidade de escolher outros fornecedores de eletricidade, com a possibilidade de contratar planos personalizados e que possivelmente lhe tragam economia.
- Nesse contexto, a geração distribuída passa a ter um concorrente, uma vez que, atualmente, consumidores livres não podem fazer parte do sistema de compensação de energia (Art. 9°, parágrafo único, da Lei nº 14.300).

Tarifa Multipartes

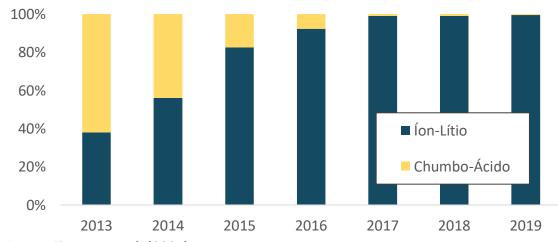
- O PL n⁰ 414 também prevê que após 60 meses da entrada em vigor da Lei, a tarifa pelo uso da rede de distribuição e transmissão (TUSD) não poderá ser cobrada volumetricamente (R\$/kWh).
- Como a compensação da MMGD ocorre a partir do volume de energia ativa injetada na rede, a TUSD poderia deixar de ser economizada pelos geradores com o novo formato de tarifação. Nesse caso, pode ser necessária uma compatibilização de conceitos entre a Lei nº 14.300 e o PL nº 414.

Efeitos da Lei n⁰ 14.300

As alterações trazidas pela Lei nº 14.300, especialmente a mudança nas regras de compensação a partir de 2023, devem acelerar as instalações ao longo de 2022. No entanto, como será a dinâmica com a entrada das novas regras? Deve haver uma desaceleração? Essa dinâmica é difícil de capturar através do modelo 4MD utilizado pela EPE e, portanto, introduz uma incerteza adicional das projeções do PDE 2032.

Baterias atrás do medidor

Contexto Aplicações Simulações de atratividade


PDE 2032 | Contexto Internacional

Contexto Internacional

- Mercado de baterias em grande expansão no mercado externo, para atendimento da indústria de eletrônicos, veículos elétricos e de eletricidade;
- Tecnologia de íon-lítio se tornando predominante (figura abaixo);
- Aplicação por consumidores residenciais e comerciais tem se popularizado em função da redução do custo e de desenhos tarifários que incentivam o deslocamento do consumo ou o armazenamento da geração distribuída excedente.

Market share por tecnologia para baterias residenciais na Alemanha

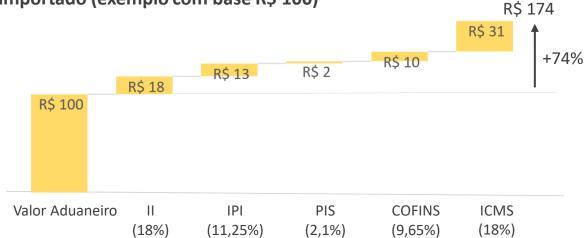
Fonte: Figgener et al. (2021)

Preço turn-key de sistemas de baterias na Alemanha vs. preço mundial de baterias de íon-lítio (valores médios em USD/kWh)

Notas: (1) Preco turn-key de sistemas entre 5 e 10 kWh; (2) Considera taxa de câmbio de 1,1 USD = 1 EUR.

Fontes: BloombergNEF (2021) e Figgener et al. (2021)

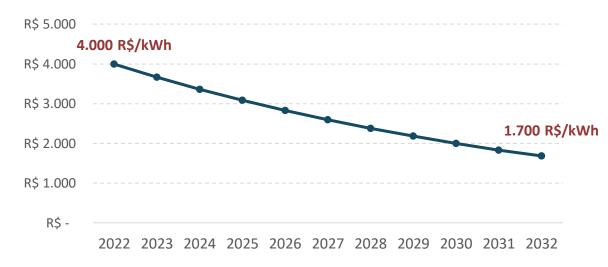
Dados da BloombergNEF apontam um custo internacional de US\$ 132/kWh para packs de baterias. No entanto, esse preço é verificado especialmente em veículos elétricos, e não inclui a instalação, equipamentos adicionais, margens de venda, etc., necessários em sistemas estacionários. Dessa forma, o preço da solução completa costuma ser bem superior.


PDE 2032 | Preço de baterias ao consumidor final no Brasil

Preço no Brasil

- Estudo da Greener e Newcharge (2021) considera valor de R\$ 4.000/kWh como referência para o Brasil para sistemas comerciais de grande porte. No entanto, esse valor pode variar de acordo com o fornecedor, com a escala e configuração do empreendimento.
- Estima-se que atualmente haja um aumento de 74% no preço final das baterias em função da incidência de tributos (figura abaixo).

Efeito tributário sobre o preço de um sistema de baterias de lítio importado (exemplo com base R\$ 100)



Nota: Números representam simulação feita para o NCM 8507.60.00 no Simulador da Receita Federal, em 12/08/2022. A base de cálculo pode variar de acordo com o tributo.

Qual será o preço das baterias em 2032?

- Em termos internacionais, o estudo de Schmidt et al. (2019) aponta uma queda no CAPEX de baterias de íon-lítio de 8,3% a.a. entre 2020 e 2030;
- Aplicando-se esse percentual anual de redução entre 2022 e 2032, se estima um preço final na faixa de R\$ 1.700/kWh em 2032;
- No entanto, a desoneração de alguns tributos nacionais poderia levar a preços ainda menores nos próximos dez anos.

Simulação de redução do preço de baterias no BR (R\$/kWh)

PDE 2032 | Contexto nacional e aplicações simuladas

Contexto Nacional

- Com exceção de aplicações em sistemas remotos, ainda há pouca difusão de baterias para uso junto às unidades consumidoras;
- A regulação da MMGD no Brasil não favorece o armazenamento da geração. É como se a rede funcionasse como uma bateria para o gerador;
- Não há regulação específica para o uso de baterias com injeção na rede. Porém, nada impede que o consumidor utilize o equipamento para fazer uma gestão interna do seu consumo e geração.

Principais aplicações para o uso de armazenamento atrás do medidor no Brasil

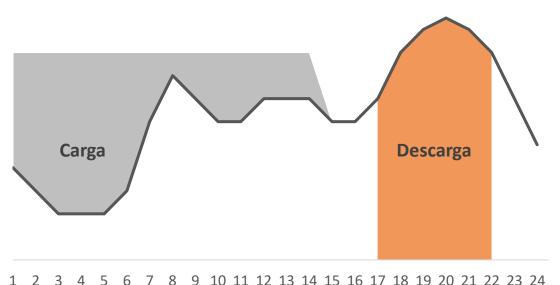
	Tarifa BT Convencional	Tarifa BT Branca	Tarifa A4 (Verde ou Azul)
Backup e qualidade	√	√	√
Redução do pico da demanda	Х	Х	√
Deslocamento do consumo	Х	✓ Avaliado no PDE	✓ Avaliado no PDE
Aumento do autoconsumo da MMGD	✓ Avaliado no PDE	√	√

Aplicações simuladas neste caderno:

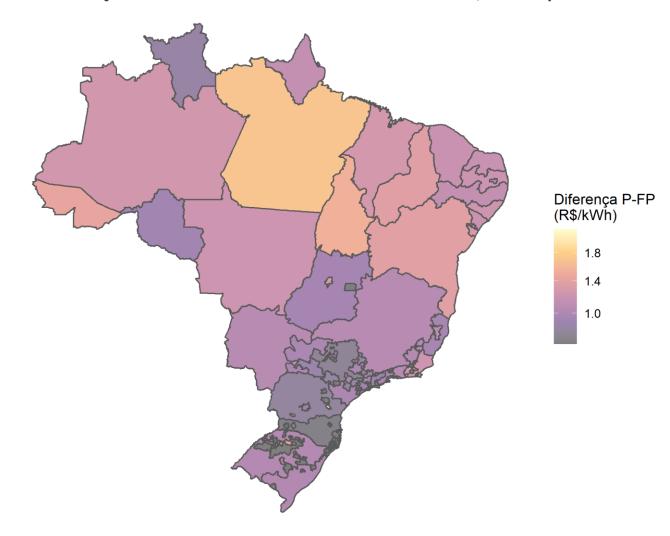
- Gestão do consumo com tarifa branca para consumidores atendidos em baixa tensão (BT);
- Gestão do consumo com tarifa A4 Verde para consumidores atendidos em média tensão. Simulação somente da bateria e também em comparação com solução diesel;
- Aumento do autoconsumo fotovoltaico para consumidores BT que possuem sistema de microgeração distribuída.

Sensibilidade ao preço do sistema de armazenamento

Devido à incerteza no preço das baterias e sua perspectiva futura, a EPE realizou as simulações com preço final de R\$ 500 a R\$ 4.000/kWh. Com essa sensibilidade, o leitor pode estimar a viabilidade com base em diferentes valores.

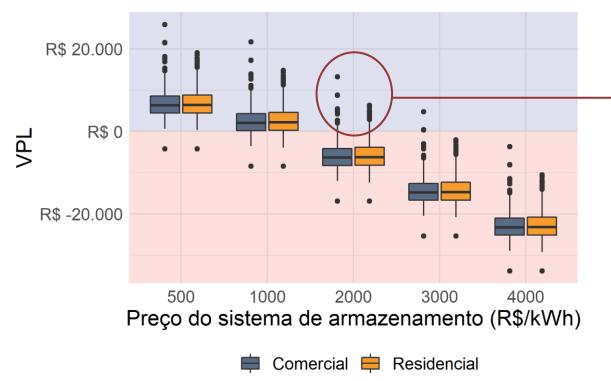


PDE 2032 | Aplicação I: Gestão do consumo com Tarifa Branca



- Desde 2018, consumidores atendidos em baixa tensão podem optar pela Tarifa Branca, com tarifas diferenciadas ao longo do dia;
- As baterias podem ser utilizadas para deslocar o consumo da ponta para fora da ponta. Quanto maior a diferença entre as tarifas, maior a atratividade;
- Diferença entre Tarifa de Ponta e Fora Ponta na Tarifa Branca é menor do que a diferença nas Tarifas do Grupo A.

Ilustração do funcionamento das baterias para a aplicação I


Diferença entre Tarifa Ponta menos Tarifa Fora Ponta, com impostos

PDE 2032 | Aplicação I: Gestão do consumo com Tarifa Branca

Distribuição do VPL do investimento em baterias para gestão do consumo com Tarifa Branca. Análise para diferentes distribuidoras.

- Com o preço atual de R\$ 4.000/kW, a aplicação I é inviável economicamente para todos os consumidores simulados e em todas as distribuidoras.
- Com preço de R\$ 2.000/kWh, em algumas (pequenas) distribuidoras há viabilidade (VPL positivo):

EFLUL

COCEL

Equatorial PA

Energisa Nova Friburgo

EFLJC

Energisa TO

Energisa AC

Eletrocar

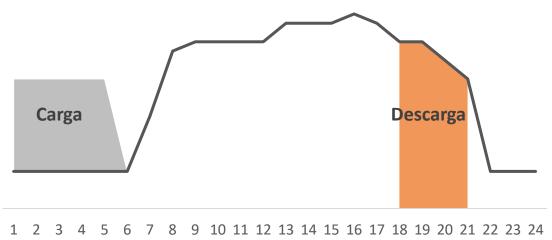
HIDROPAN

Maior Viabilidade

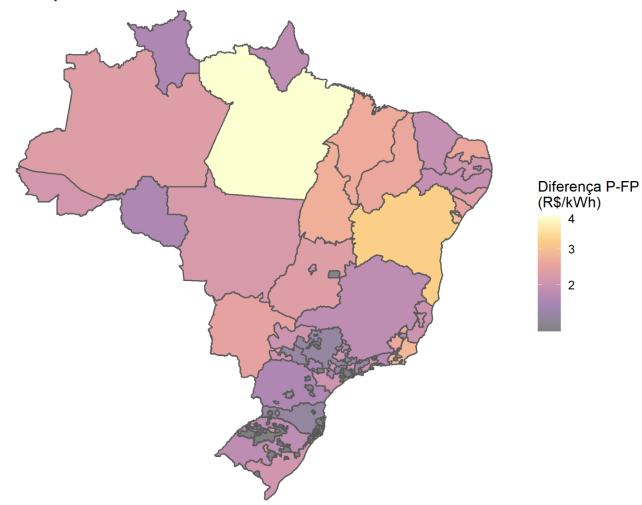
Menor viabilidade (VPL ≈ 0)

Nota: Preço final para o consumidor, representado em reais por unidade de armazenamento

Para a aplicação I, simulações demonstram que o preço das baterias teria que cair muito além do atual para que o investimento seja viável economicamente.



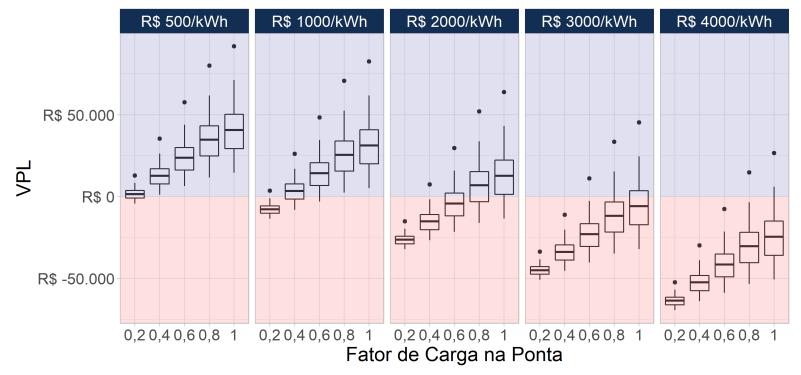
PDE 2032 | Aplicação II: Gestão de consumo com Tarifa A4 - Verde



- Desde 1988, consumidores atendidos em alta tensão são submetidos às tarifas horo-sazonais, com diferença entre horário de ponta e fora ponta;
- As baterias podem ser utilizadas para deslocar o consumo da ponta para fora da ponta. Quanto maior a diferença entre as tarifas, maior a atratividade;
- No entanto, ressalta-se que muitos consumidores utilizam geradores a diesel para evitar o consumo no horário de ponta. Em 2015, a EPE estimou entre 7-9 GW de geradores para esse fim (EPE, 2015).

Ilustração do funcionamento das baterias para a aplicação II

Diferença entre Tarifa A4 Verde Ponta menos Tarifa Fora Ponta, com impostos



PDE 2032 | Aplicação II: Gestão de consumo com Tarifa A4 - Verde

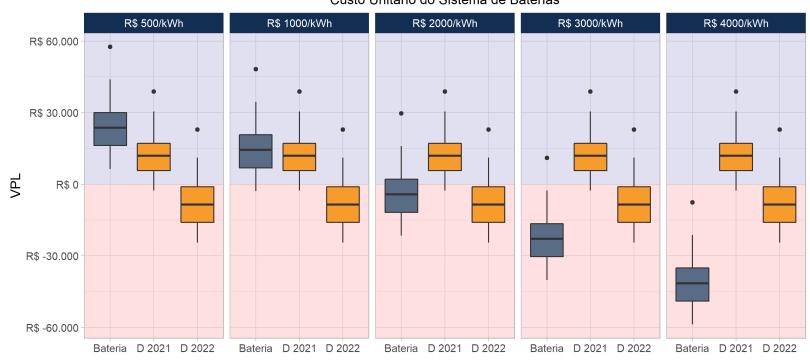
VPL do investimento em baterias para gestão do consumo com Tarifa A4 Verde de acordo com o preço final da bateria e fatores de carga na ponta. Análise para diferentes distribuidoras.

Custo Unitário da Bateria

Entendendo o Fator de Carga na Ponta (FCp)

Esse fator anual é a relação do consumo médio um consumidor no horário de ponta (MWméd) pela sua demanda máxima no mesmo período (MW).

Um baixo FCp indica que a bateria ficaria ociosa na maior parte do tempo, diminuindo a atratividade do investimento.


Resultados mostram que para consumidores com alto FCp, já pode ser viável a instalação de baterias em algumas distribuidoras com o preço atual.

Analisando exclusivamente a opção de baterias para o atendimento do horário de ponta, enxerga-se viabilidade econômica no horizonte decenal para consumidores com alto fator de carga na ponta.

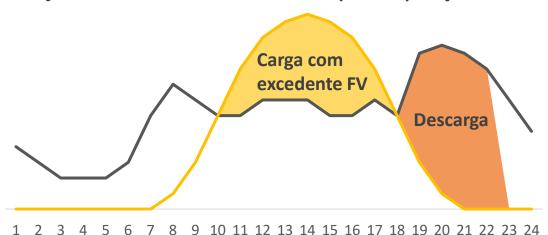
PDE 2032 | Aplicação II comparada com geração a diesel

VPL do investimento em baterias *versus* geração a diesel (preços de 2021 e 2022) para gestão do consumo com Tarifa A4 Verde de acordo com o preço final da bateria. Análise para diferentes distribuidoras.

Custo Unitário do Sistema de Baterias

- combustíveis aumento do dos preço verificado no último ano reduziu competitividade da geração a diesel para evitar a tarifa de ponta.
- Com um custo de baterias próximo de R\$ 2.000/kWh, há uma equivalência entre a solução a diesel e baterias;
- Adicionalmente, outros fatores, como aspectos elétricos, redução do ruído, logística de obtenção do diesel e questões ambientais podem estimular a troca do diesel baterias.

Considera Fator de Carga na Ponta = 0,6


A solução a diesel perdeu competitividade no último ano e deixou mais próxima a viabilidade das baterias em determinados locais.

PDE 2032 | Aplicação III: Aumento do autoconsumo da micro GD

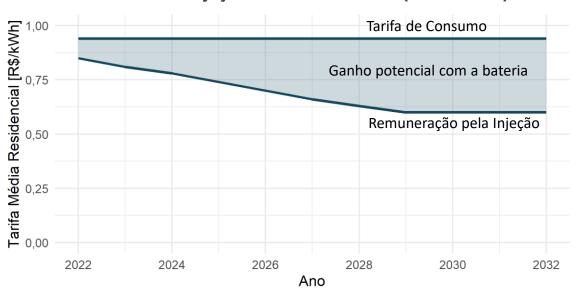
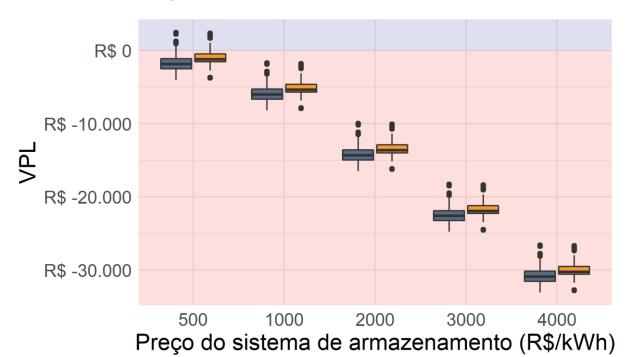

- A Lei nº 14.300 trouxe uma mudança no Sistema de Compensação de Energia Elétrica que deve diminuir o valor da geração distribuída injetada na rede;
- Dessa forma, as baterias podem ser utilizadas para evitar a injeção na rede, armazenando o excedente da geração para consumo posterior;
- No entanto, a diferença entre a tarifa de consumo e a remuneração pela injeção na rede continua sendo baixa (ver gráfico ao lado). Logo, há pouco ganho potencial com o uso da bateria.

Ilustração do funcionamento das baterias para a aplicação III

Em termos de operação, as variações da geração e do consumo fazem com que seja difícil otimizar o uso da bateria. Em alguns momentos, há muita geração e pouco consumo, carregando a bateria completamente e tendo que exportar para a rede parte da geração. Caso seja aumentada a capacidade da bateria, aumenta-se o custo do sistema, e em muitos momentos a capacidade é subutilizada. Por esse motivo, o dimensionamento não é trivial.

Tarifas de consumo e injeção com Lei nº 14.300 (Residencial)



Notas: (1) a partir de 2029, considera o Cenário de Referência para MMGD, ou seja, sem a compensação da TUSD Distribuição; (2) Considera tarifa real constante.

PDE 2031 | Aplicação III: Aumento do autoconsumo da micro GD

VPL do investimento em baterias para o aumento do autoconsumo da micro GD. Análise para diferentes distribuidoras.

Comercial E Residencial

Os resultados da simulação mostram que dadas as regras previstas na Lei nº 14.300, não há viabilidade econômica no investimento em baterias para fins de aumento do autoconsumo fotovoltaico.

O efeito da Lei nº 14.300 na atratividade das baterias

- Conforme antecipado no slide anterior, a Lei nº 14.300 prevê um pequeno e gradual desconto sobre a energia injetada na rede. Com isso, há pouco ganho para ser capturado com a instalação de uma bateria.
- Esse cenário pode se alterar a partir de 2029, quando a energia injetada na rede passará a ser valorada a partir de um cálculo de seus custos e benefícios. Quanto menor a remuneração pela energia injetada da GD, maior a viabilidade das baterias.

Não se vê viabilidade econômica para o investimento em baterias no horizonte decenal para a aplicação de aumento do autoconsumo da micro GD

PDE 2032 | Baterias ADM: Metodologia e Referências

METODOLOGIA

- Simulações horárias para um ano de operação, utilizando o software System Advisor Model (SAM);
- Dados horários de carga foram fornecidos, através de um acordo, pela empresa Sun Mobi. Após tratamento dos dados, foram utilizados dados de 15 consumidores BT residenciais e comerciais;
- Foi utilizado um fator de ajuste para que todos os consumidores totalizem um consumo anual de 10.000 kWh;
- Para a aplicação II, o consumo no horário de ponta foi alterado de forma a simular diferentes fatores de carga nesse período, com demanda máxima de 5 kW;
- Simulações com baterias de Lithium Ion (LFP), com mínimo State of Charge (SOC) de 10% e máximo de 100%. Eficiência do ciclo de 89%. Vida útil de 10 anos. OPEX de 0,5% do CAPEX ao ano. Degradação linear, atingindo 60% da capacidade com 4.000 ciclos e DoD = 90%.
- Taxa de desconto real de 6% a.a.;
- Tarifas de eletricidade de dezembro de 2021;
- Para a aplicação III, foi simulada a geração fotovoltaica horária com dados de cidades representativas de 35 distribuidoras. Dados de irradiação e temperatura da base de reanálise MERRA-2;
- Geração diesel simulada com CAPEX de R\$ 1.000/kW, OPEX de R\$ 25/MWh, preço do diesel por estado em junho de 2022 e consumo específico de 329 litros/MWh. Fator de emissões igual a 0,77 tCO2/MWh.

- Foram testadas diferentes configurações de potência e capacidade de armazenamento para cada aplicação. Os gráficos mostram a configuração que teve o melhor resultado médio:
 - Aplicação I: 2 kW/8 kWh;
 - Aplicação II: 5 kW/18 kWh (equivalente a 300 kW/1080 kWh);
 - Aplicação III: 4 kW/8 kWh.

REFERÊNCIAS

- BloombergNEF, 2021. Battery Pack Prices Fall to an Average of \$132/kWh, But Rising Commodity Prices Start to Bite. Noivember 30, 2021.
- EPE, 2015. Estimativa da Capacidade Instalada de Geração Distribuída no SIN: Aplicações no Horário de Ponta. Fevereiro de 2015.
- Figgener, J. et al., 2021. The development of stationary battery storage systems in Germany – status 2020. Journal of Energy Storage, v. 33, 2021.
- Greener e Newcharge, 2021. Estudo Estratégico Mercado de Armazenamento. Aplicações, Tecnologias e Análises Financeiras.
- Schmidt et al., 2019. Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule, Volume 3, Issue 1, 16, Pages 81-100.

www.epe.gov.br

Coordenação Executiva

Thiago Vasconcellos Barral Ferreira Giovani Vitória Machado

Coordenação Técnica

Arnaldo dos Santos Junior Carla da Costa Lopes Achão Gustavo Naciff de Andrade Luciano Basto Oliveira

Equipe Técnica

Gabriel Konzen
Thiago Toneli Chagas

FPI

EPE - Empresa de Pesquisa Energética

Praça Pio X, 54 20091-040 Centro - Rio de Janeiro

