

The Promises and Challenges of Algal-Derived Biofuels

IEA Bioenergy Algal Biofuels Workshop Liege, Belgium

October 1, 2009

Al Darzins, Ph.D. Principal Group Manager National Bioenergy Center NREL

al.darzins@nrel.gov

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Outline

Potential of Algal Biofuels

DOE's former Aquatic Species Program: Lessons learned

What's changed since 1996?

Challenges of Algal Biofuels: Myth vs reality

- **Algal Biofuels Workshops and Reports**
- **Algal Biology Considerations**
- IEA Task 39 Algal Biofuels Report: International Efforts Conclusions

Biofuel Challenges: Energy Density

Cellulosic ethanol addresses the gasoline market

• U.S. gasoline usage: 140 billion gallons/year

Does not address need for higher-energy density fuels

- U.S. diesel usage: 44 on-road/20 off-road billion gallons/year
- U.S. jet fuel usage: 25 billion gallons/year

Energy Densities

Ethanol	Gasoline	Biodiesel	Diesel/Jet Fuel
76,330 Btu/gal	116,090 Btu/gal	118,170 Btu/gal	128,545/135,000 Btu/gal

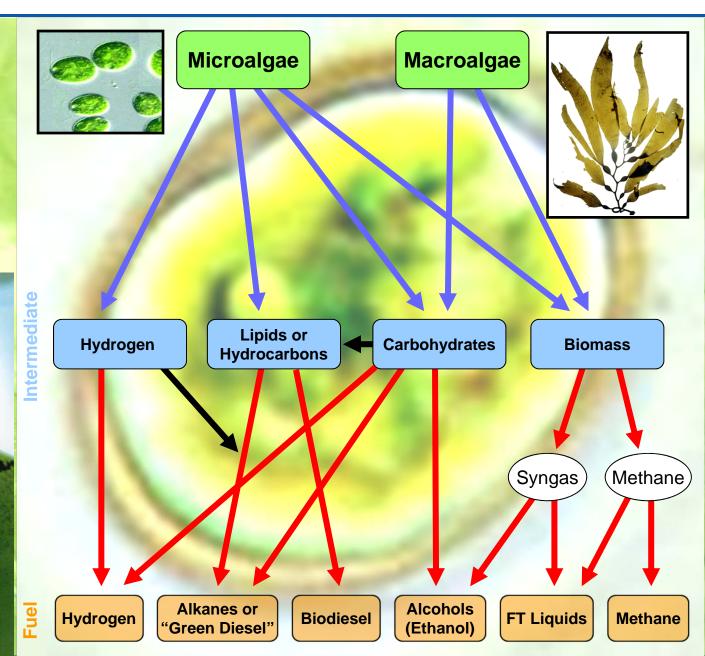
Dilemma: Biodiesel from current oilseed crops cannot come close to meeting U.S. diesel demand (44 billion gal/year)

- Soy oil (2.75 B gal; 2007); replaces ~4% of U.S. demand
- Vegetable oils must compete with food market
- 2.5B gallon capacity, only 700M gallons produced in 2008

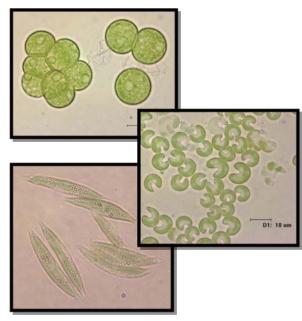
Alternative sources of oils are needed!

Algae: Numerous Bioenergy Routes

Defining a Biofuels Portfolio From Microalgae

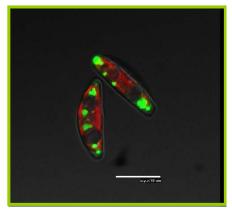

trends

Microalgae: a source of energy

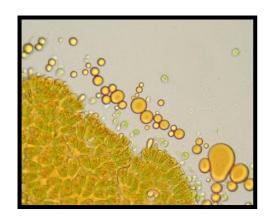

TRENDS

Wastewater bioreactors
 Information from cell culture aroma
 Exploring relationships between biological objects

Create your own virtual journal online with BioModNet Reviews http://wwices.html.tunt Recommend access to your librarian today



Why Fuels from Algal Oil?



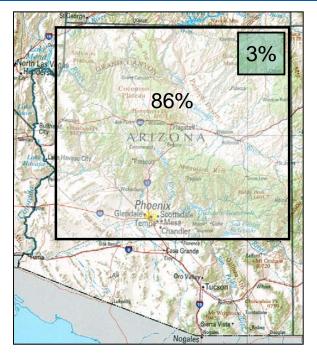
- High-lipid content (up to 50%); rapid growth; more lipids than terrestrial plants -- *10x 100x*
- Can use non-arable land; saline/brackish water
- No competition with food, feed or fiber
- Utilize large waste CO₂ resources (i.e., flue gas)
- Potential to displace significant U.S. petroleum fuel usage requires low-cost infrastructure

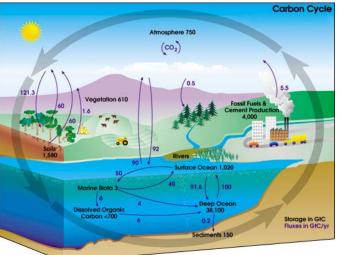
Images courtesy: Lee Elliott, CSM

Fluorescence micrograph showing stained algal oil droplets (green)

Comparing Potential Oil Yields

Сгор	Oil Yield Gallons/acre
Corn	18
Cotton	35
Soybean	48
Mustard seed	61
Sunflower	102
Rapeseed	127
Jatropha	202
Oil palm	635
Algae (20g/m²/day-15%)	1267



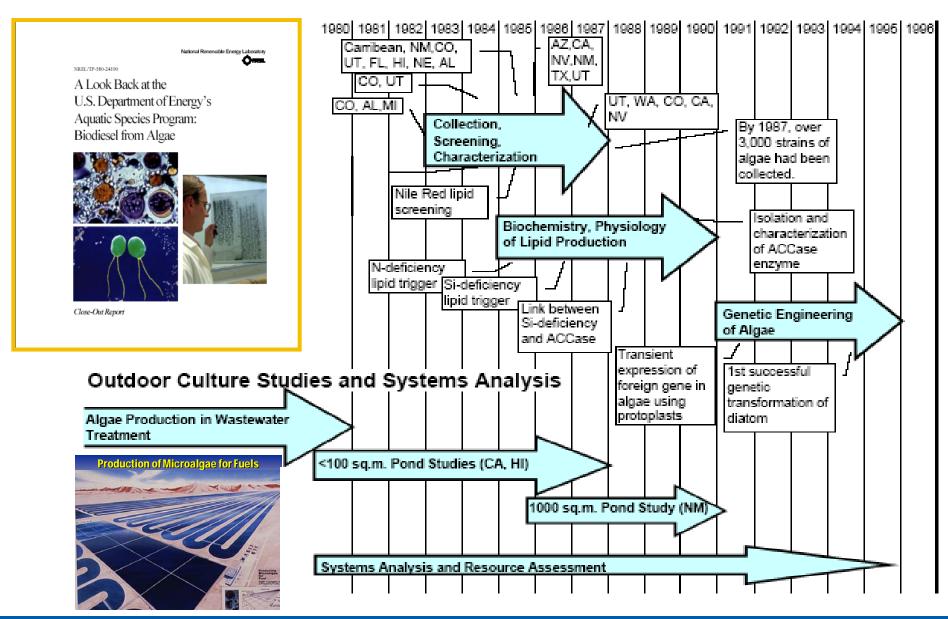

Image courtesy: Q. Hu, ASU

Algae Compared to Ethanol Crops

Biomass	Productivity	Energy (GJ/acre)
		90 MJ/gallon ethanol 128 MJ/gallon oil
Sugar Cane	35 tons/acre	
	700 gal/acre - sugar	62 GJ/acre (sugar to ethanol only)
	1440 gal/acre - bagasse	191 GJ/acre (sugar and bagasse)
Corn	8 tons/acre	
	405 gal/acre - grain	36 GJ/acre (starch to ethanol only)
	420 gal/acre – corn stover	72 GJ/acre (grain and corn stover)
Algae	32 tons/acre	162 GJ/acre (oil only)
0	(20 gm/m²/day @15%)	
	1267 gallons/acre	
	49 tons/acre	243 GJ/acre (oil only)
	(30 gm/m ² /day @15%)	
	1899 gallons/acre	
	49 tons/acre	486 GJ/acre (oil only)
	(30 gm/m²/day @ 30%)	
	3799 gallons/acre	

Resource Requirements

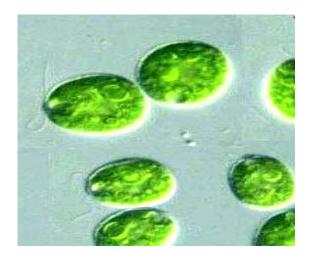
	Soybean	Algae*
gal/year	3 billion	3 billion
gal/acre	48	1267
Total acres	62.5 million**	2.4 million
Water usage	ND	6 trillion gal/yr***
CO ₂ fixed	ND	79 million tons/yr


* algae (open ponds) productivity of 10 g/m²/day with 30% TAG.

** Total land area: 73 million acres

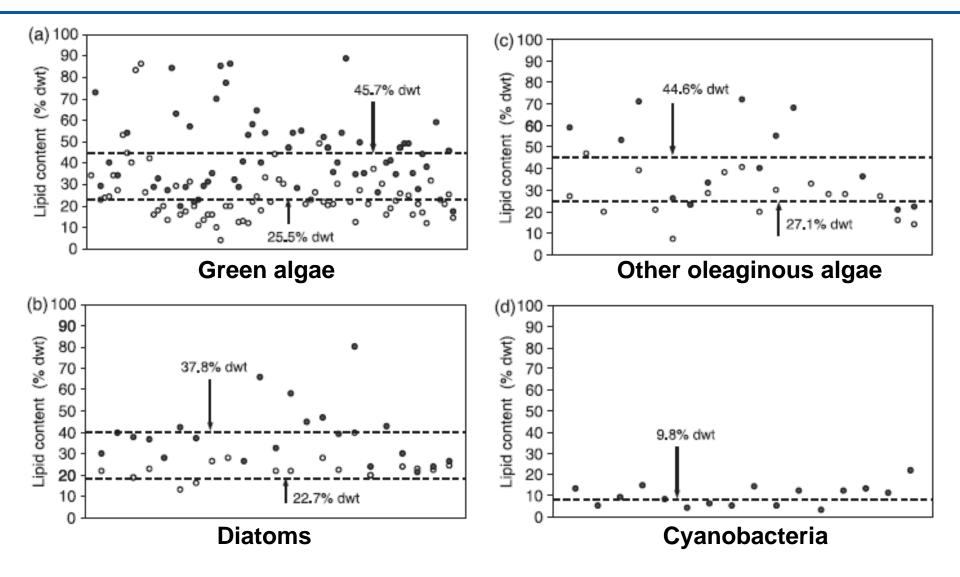
*** 50 trillion gallons used annually for irrigation of crops in the US

- World emits ~ 32 Gt CO₂; ~17 Gt is absorbed;15 Gt remains in atmosphere
- 1 Gt CO₂ can produce ~40 B gallons algal oil
- Average coal power plant (600-700 MW) produces 4M tons CO₂ per year


DOE's Aquatic Species Program

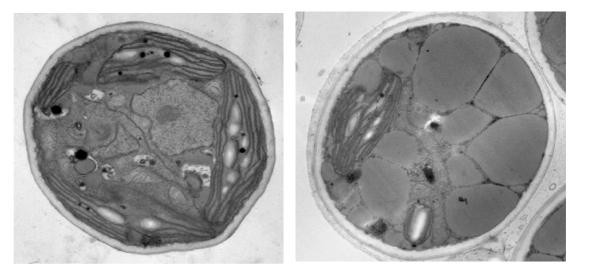


National Renewable Energy Laboratory


Microalgae Collection and Screening: Lessons Learned

- Many microalgae can accumulate neutral lipids
- Diatoms and green algae most promising
- No perfect strain for all climates, water types
- Choosing the right starting strain is critical

Cellular Lipid Content of Algae

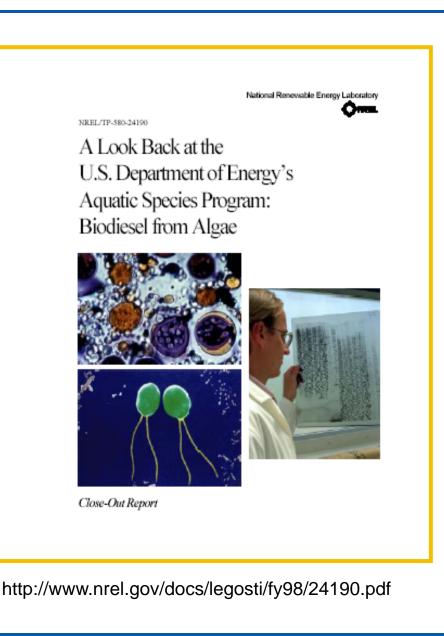

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal 54:621-639.

Physiology, Biochemistry, and Genetic Engineering: Lessons Learned

- Lipid induction with nutrient stress doesn't help productivity
- Key enzymes increase upon induction, but no obvious "lipid trigger"
- We have only begun to scratch the surface
 - Understand lipid pathways & regulation; devise genetic strategies

Process Engineering: Lessons Learned

- Flocculation most promising route for harvesting & dewatering?
- Solvent extraction of oil is feasible; but is it economical?
- Development of harvesting and extraction methods will need a better understanding of cell wall ultra-structure and composition

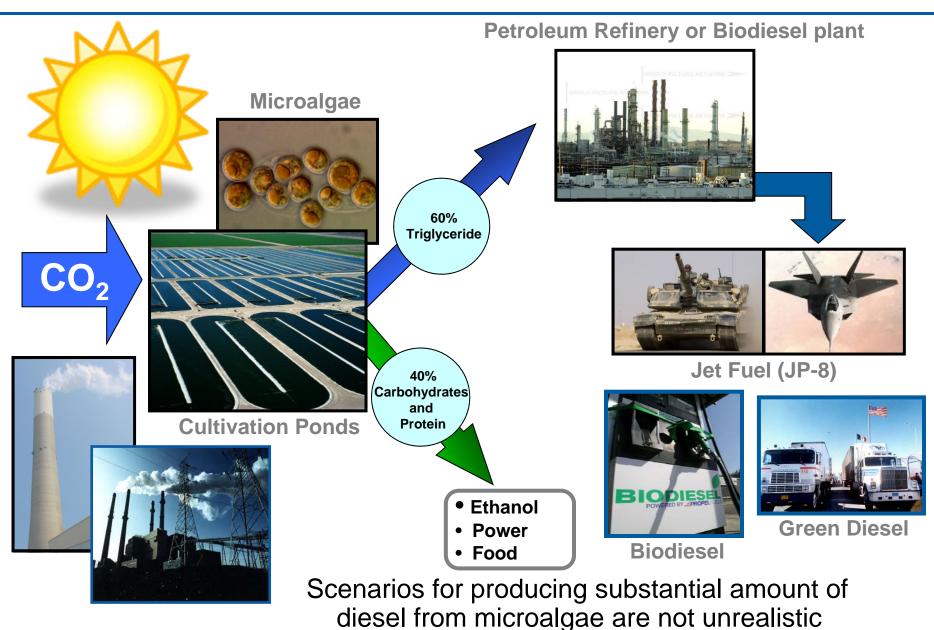


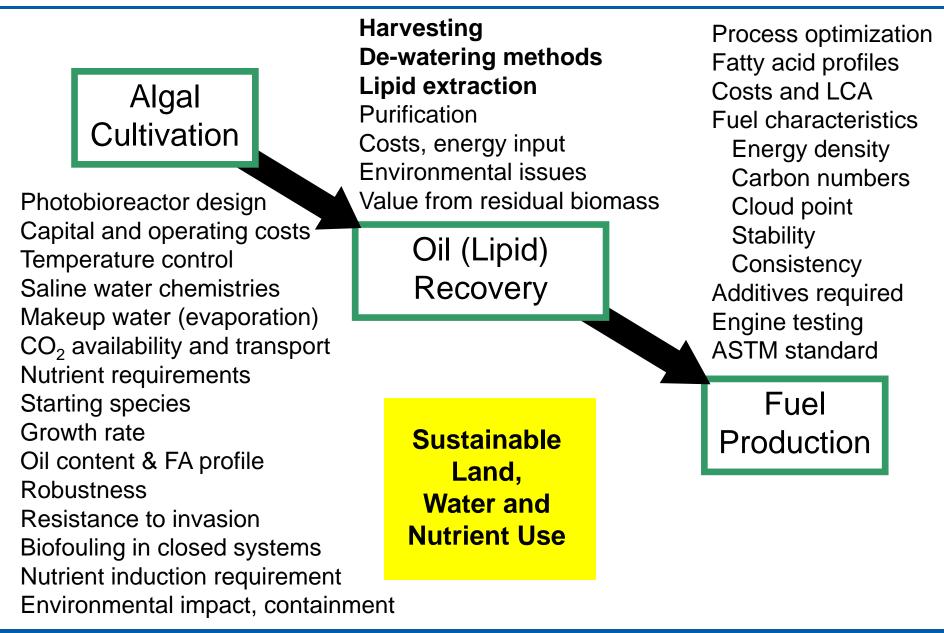
Photos courtesy: Q. Hu, ASU

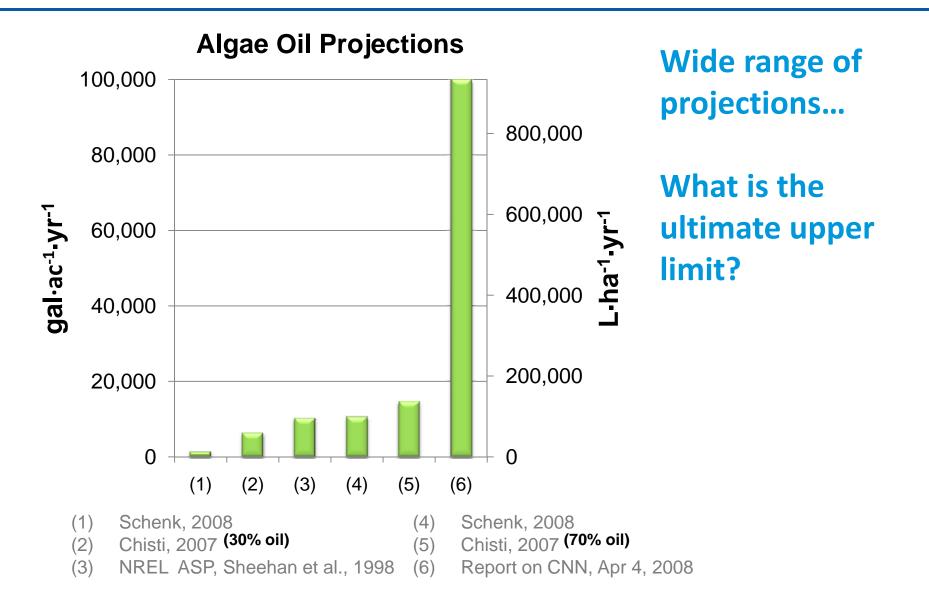
ASP Close-Out Report: Future Directions

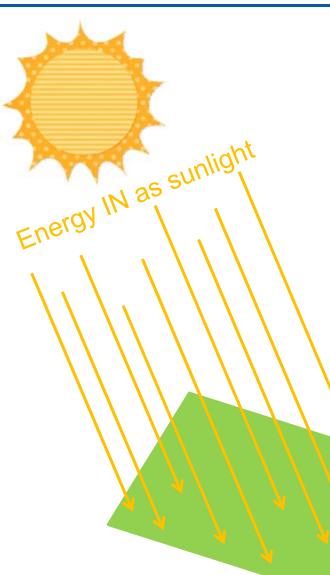
- Less emphasis on field demos; more on basic/applied biology
- Take advantage of plant biotechnology
- Start with what works in the field
- Maximize photosynthetic efficiency
- Set realistic expectations for the technology
- Look for near term technology deployment such as waste water treatment

What's Changed Since 1996?


- Record oil prices; increasing demand
- CO₂ capture and GHG reduction
- Industrial interest (>150 algal companies)
- Interest by oil industry, venture capital, end users, utilities and governments
- Explosion in biotechnology




Microalgal fuels have a huge potential....

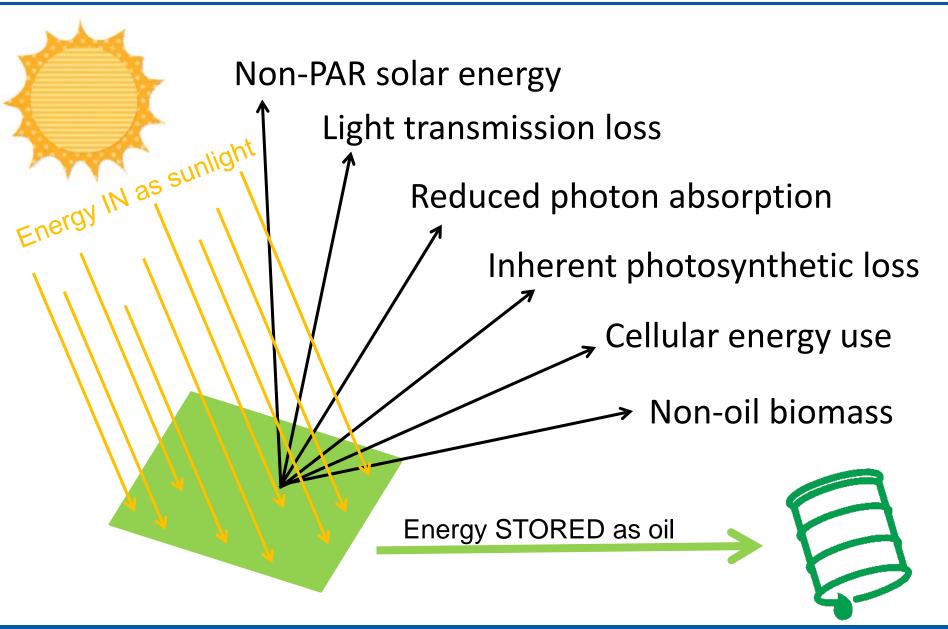

... but significant challenges still exist

Myth vs Reality

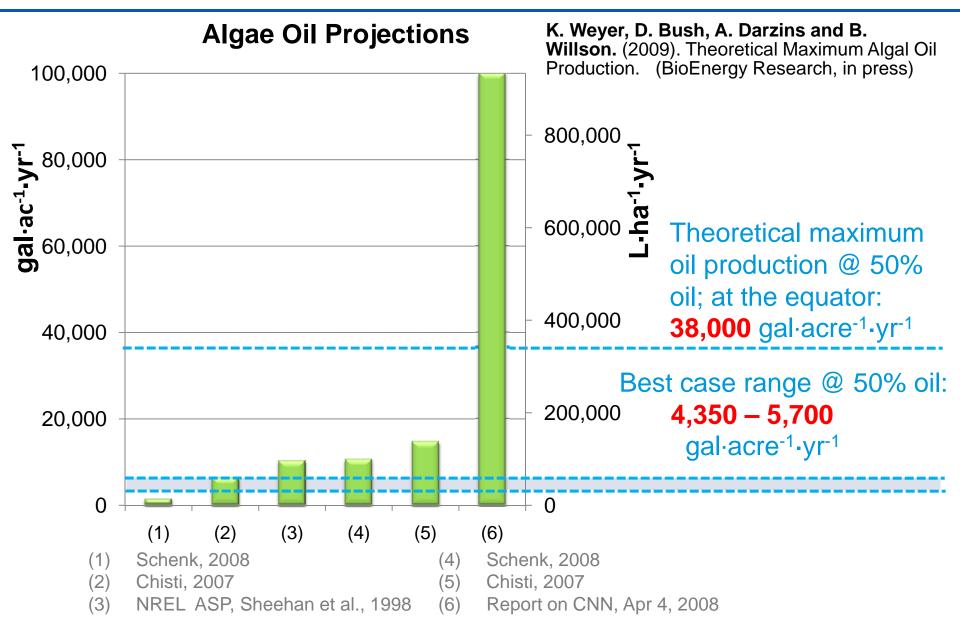
Need to Obey Laws of Thermodynamics

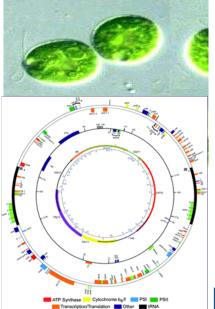
1st law: conservation of energy

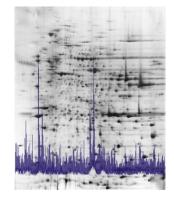
$$E_{in} - E_{out} = E_{stored}$$

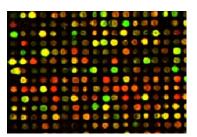

2nd law: 100% efficiency is not possible

 $E_{in} > E_{stored}$


Energy STORED as oil




Inefficiences galore.....



Industry needs to well grounded....

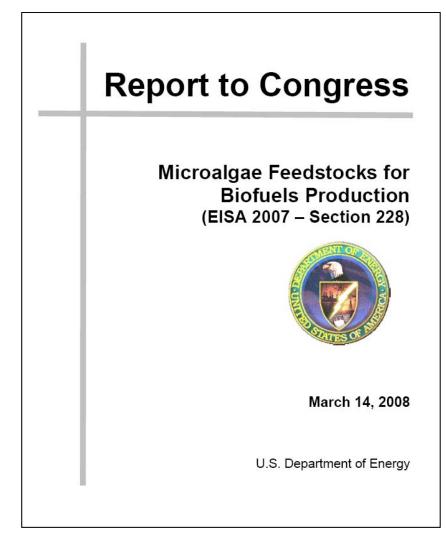
Recent Algal Biofuels Reports and Roadmapping Activities

Pyruva (Suga

,00 ,00

Congressional Algae Report

2007 Energy Independence and Security Act (EISA)


- Increase availability of renewable energy that decreases GHG emissions
- Increases Renewable Fuel Standard (RFS) to 36 B gallons by 2022.
- (Section 228) Requires Energy Secretary to present to Congress a report on the feasibility of <u>microalgae</u> as a feedstock for biofuels production

Congressional Algae Report

Microalgae Feedstocks for Biofuels Production

Report Outline

- Executive Summary
- Introduction
- Historical Review of Technical Progress
- Microalgae Oil Production: Biology and Physiology
- Microalgae Oil to Biofuels
- Current Activities/Funding Support for Algae Biofuels
- Resource and Technoeconomic
 Assessment
- Conclusions and Recommendations

National Renewable Energy Laboratory and Air Force Office of Scientific Research Joint Workshop On Algal Oil for Jet Fuel Production February 19-21, 2008 Arlington, VA

http://www.nrel.gov/biomass/algal_oil_workshop.html

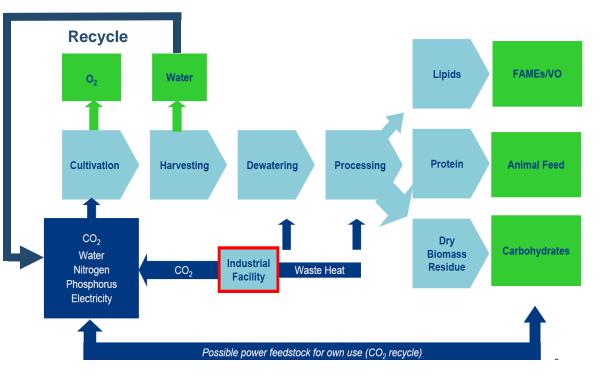
Algal Strain Research Recommendations

- Publically available strain database and resource center
- Isolation of novel strains vs culture collection strains
- Model organism(s): multiple model organisms
- Ramp up sequencing of algal genome
- Establish consortium of researchers to annotate genomes and perform extensive comparative analysis
- Lipid metabolism/carbon partitioning pathways in algae are largely uncharacterized
- Systems biology approaches to aid in identifying metabolic fluxes and regulatory networks
- Development of genetic tool kits

Algal Biofuels Technology Roadmap Workshop

Sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Office of the Biomass Program

- Venue: Univ. of Maryland Dec. 9-10, 2008
- **Participants**: ~200 scientists, engineers and other experts in various disciplines
- Goal: Define activities needed to resolve barriers associated with commercial scale algal biofuel production
- Workshop: plenary presentations and breakout sessions covering technical, industrial, resource, and regulatory aspects of algal biofuel production
- Information: http://www.orau.gov/algae2008/
- Progress: First draft of Roadmap complete; comments solicited through RFI process; editing in progress; completed roadmap scheduled to be released Fall 2009 <a href="http://www.http://www/htttp://www.http://www.http://wwww.http://www.http://www.http:/


http://www1.eere.energy.gov/biomass/pdfs/algalbiofuels.pdf

Algal Biofuels Technology Roadmap Workshop

Sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Office of the Biomass Program

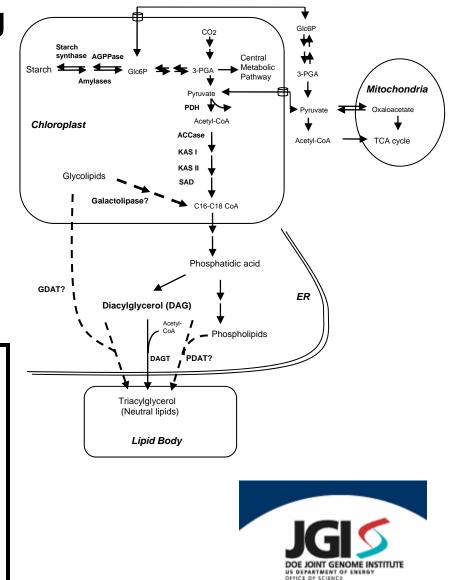
December 9-10, 2008 University of Maryland, Inn and Conference Center

Fundamental and applied research needed to resolve uncertainties associated with commercial-scale algal biofuel production:

Roadmap Chapters

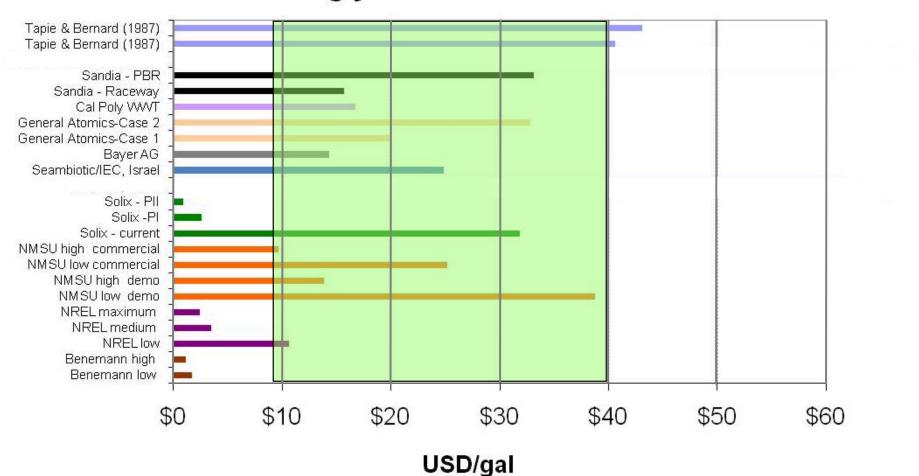
OTHER DESIGNATION.

- Algal Biology
- Cultivation
- Harvest/dewatering
- Extraction/fractionation
- Conversion to fuels
- Co-products
- Distribution and Utilization
- Resources and Siting
- Stds, Regulation & Policy
- Systems and TE analysis
- Public-Private Partnerships



Feedstock: Algal Biology

- Strain isolation and screening
- Cell biology and physiology
- Genetic toolbox
- Systems biology



Technoeconomic Modeling

- Determine current state of technology
- Identify critical path elements that offer best opportunities for cost reduction
- Identify research areas most in need of support
- Measure progress towards goals
- Provide sanity check for independent modeling efforts
- Identify external factors that will impact cost
- Provide plan for entry of algal biofuels into renewable fuel portfolio

Standardized Cost Comparison

Triglyceride Production Cost

IEA Bioenergy Task 39 Algal Biofuels Technology Report

Algal Biofuels Draft Report Outline

Executive Summary

1. Introduction

- 1.1 Background
- 1.2 The World's Energy Challenges
- 1.3 Algae: Definitions, Basic Biological Concepts
- 1.4 Non-fuel Applications and geographic distribution of algal cultivation
- 1.5 The Algae-to Biofuels Opportunity
- 1.6 Benefits of Algal Oil Production
- 1.7 Comparison to Terrestrial Crops

2. Historical Review of Technical Progress

- 2.1 Early work
- 2.2 DOE's Aquatic Species Program
- 2.3 Other International Efforts
- 2.4 Research from 1996 to present
- 2.5 Current activities and Funding Support for Algal Biofuels Research

3. Microalgae Oil Production

- 3.1 Algal Biology and Physiology
 - 3.1.1 Introduction
 - 3.1.2 Technology Status
 - 3.1.2.1 Photosynthesis and CO2 fixation
 - 3.1.2.2 Lipid biosynthetic pathways
 - 3.1.2.3 Lipid analysis
 - 3.1.2.4 Genomics
 - 3.1.2.5 Genetic manipulation
 - 3.1.2.6 Culture Collections
 - 3.1.3 Technology Challenges

3.2 Cultivation

- 3.2.2 Current Industrial Microalgae Cultivation Technologies
- 3.2.3 Algal Photobioreactor Designs
- 3.2.4 Technology Challenges
- 3.3 Harvesting and dewatering
 - 3.3.1 Introduction
 - 3.3.2 Technology Status: Processing technologies
 - 3.3.3 Technology Challenges
- 3.4 Extraction and Fractionation of Microalgae
 - 3.4.1 Introduction
 - 3.4.2 Technology Status
 - 3.4.3 Technology Challenges
- 3.5 Conversion of microalgal oils to fuels
 - 3.5.1 Introduction
 - 3.5.2Technology Status

4. Co-products

- 4.1 Introduction
- 4.2 Commercial products
- 4.3 Potential Co-products from an Algal Biofuels Production Facility

5. Resources and siting

- 5.1 Introduction
- 5.2 Resource assessment
- 5.3 Siting

6. Systems and Technoeconomic Analysis

- 6.1 Introduction
- 6.2 Systems analysis
- 6.3 Techno-economic analysis

International Algal Biofuels Efforts

- Australia, SARDI and CSIRO in S. Australia and M. Borowitzka in W. Australia
- **Belgium**, Sbae Industries (Diaforce)
- Brazil, Petrobras starting project in Northeast of Brazil
- Canada, National Research Council and Natural Resources Canada
- China, Oil companies; Wuhan and Qingdao
- Germany, RWE and E.ON projects
- India, Resource assessment in progress
- Israel, Seambiotic

- Italy, Eni project at Gela refinery; building about half an hectare of ponds
- The Netherlands, University and industrial efforts
- New Zealand, ChristChurch, NIWA and Solray; AquaFlow
- UK, The Carbon Trust ABC (algae biofuels challenge) program

Conclusions

- After 13 yrs, DOE ramping up support for algal biofuel RD&D
- International efforts are also drawing considerable attention
- Infrastructure does not exist for an algal biofuels industry
- Workshops and roadmaps provide foundation for support
- Technoeconomic modeling and Life-Cycle Assessments provides insight into critical path to commercialization
 - Biological productivity key to reduce costs regardless of process
 - Public economic models indicate overall technological uncertainties
 - Sustainability, sustainability, sustainability....
- RD&D support needed for all elements of value chain
 - Basic science to process engineering
 - Bench scale to demo facility
 - Fully integrated to ensure commercial relevance

Conclusions (continued)

- Risk
 - Relevant policies and regulations not crafted with algal biofuels in mind
 - Regulatory landscape confusing and contradictory
- Uncertainty
 - Standards exist for algal products but not for production processes
 - Financial incentives to level playing field and advance industry as a whole
 - Policies promoting algal biofuels can also incentivize
 - Food and feed production
 - o Water remediation
 - $_{\rm O}$ Job creation
 - o Education
 - o International competitiveness
- IEA Bioenergy Task 39 Algal Biofuels Report
 - opportunity to bring together the international algal biofuels efforts

Acknowledgments

Mike Pacheco Eric Jarvis Phil Pienkos Yat-Chen Chou Eric Knoshaug David Crocker Ryan Sestric Rich Bain Matt Ringer Nick Nagle Mike Cleary Andy Aden Maria Ghirardi Mike Seibert Jianping Yu Pin-Ching Maness Ed Wolfrum Lieve Laurens Jim Duffield Anelia Milbrandt Bob Wallace Helena Chum

Qiang Hu (ASU) Milt Sommerfeld (ASU) Bryan Willson (CSU/Solix) Kristina Weyer (Solix) Dan Bush (CSU) Walt Kozumbo (AFOSR) Ami Ben-Amotz (Seambiotic) Grant Heffelfinger (Sandia) Ron Pate (Sandia) Matt Posewitz (CSM) Lee Elliott (CSM) John Benemann Wade Amos John Jechura

Financial Support

- NREL
- Chevron
- AFOSR
- C2B2
- DOE-EERE
- IEA Bioenergy Task 39

Algal biofuels research at NREL: http://www.nrel.gov/biomass/proj_microalgae.html


A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

Wind

