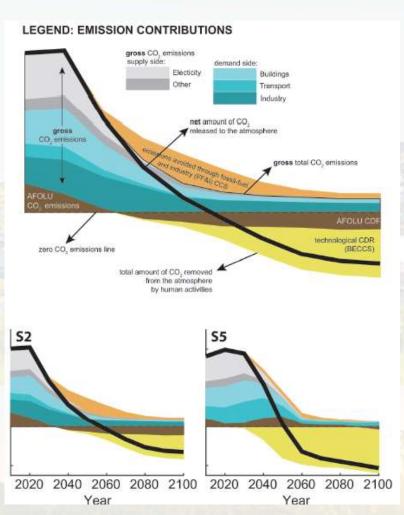
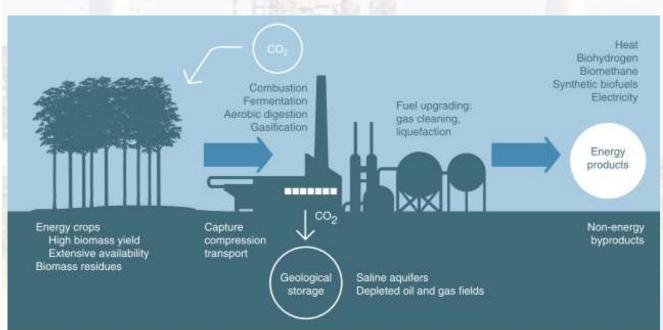
Captura de CO₂ em usinas de cana-de-açúcar e milho

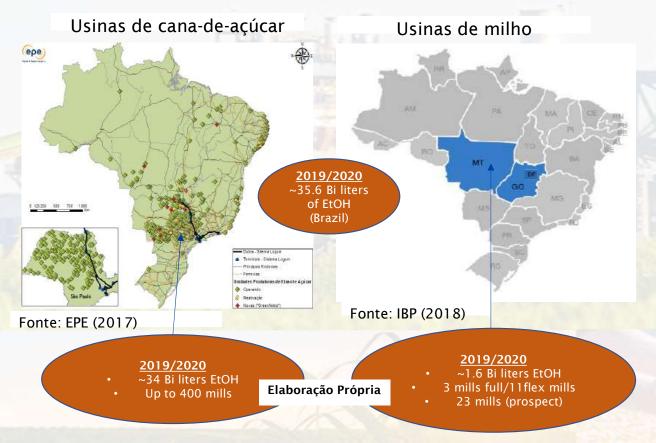
Rosana Galindo | Joaquim Seabra


Planejamento de Sistemas Energéticos
Faculdade de Engenharia Mecânica - UNICAMP


Conceito de BECCS

Fonte: IPCC (2019)

Qual a relevância de BECCS? Estratégia com potencial de negativar as emissões de CO₂ industrial


Bio-CCS scheme

Fonte: Canadell and Shulze (2014)

Potencial das usinas brasileiras

Usinas de produção de etanol no Brasil

- Potencial estimado de captura da fermentação de etanol no Brasil acima de 30MtCO2/ano
- Potencial de captura na cogeração até 3x maior do que na fermentação

Potencial de armazenamento de CO2 no Brasil



Figure 53: Occurrence of ethanol and/or sugar plants and sedimentary basins.

Fonte: Ketzer, J. M. M., et al. (2014).

Bacia do Paraná: Capacidade estimada de armazenamento: 270 MtCO2/ano

Captura de CO2

Determinantes das tecnologias de captura de CO2	Principais tecnologias de captura
 Tipo de aplicação Concentração do CO2 na corrente Propriedades termoquímicas das correntes Condições termodinâmicas do ambiente 	 Pós-combustão Pré-combustão Oxi-combustão Captura direta de fermentação

Captura de CO2

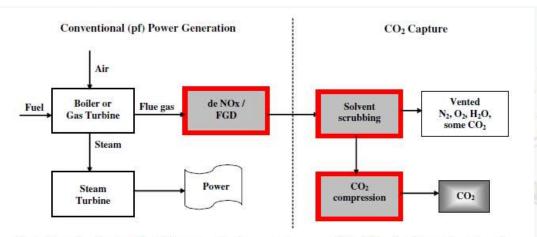


Fig. 1. Illustrative flowsheet for PCC (post-combustion capture) process, with additional unit operations for carbon capture shown bold.

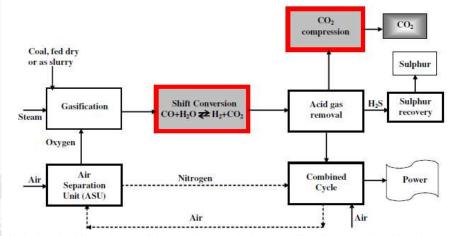
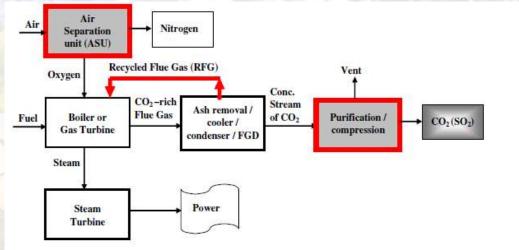



Fig. 2. Illustrative flowsheet for IGCC (pre-combustion capture) process, with additional unit operations for carbon capture shown bold.

3. Illustrative flowsheet for oxy-fuel (Oxyf) process, with additional unit operations for carbon capture shown bold.

Fonte: Wall T.F. (2007).

Captura de CO2

Fontes de emissão de CO2 em usinas de etanol

1) Gases de fermentação alta concentração de CO2 (~96% ww), condições CNTP, fácil separação. Necessita apenas ser desidratado e comprimido. Consumo de energia proveniente de eletricidade para compressores. Média penalidade energética. Custos reduzidos. 2) Gases de emissão da cogeração baixa concentração de CO2 (~20% ww, depende da biomassa), altas temperaturas. O CO2 precisa ser separado por meio de tecnologias adequadas de separação e posteriormente comprimido. Consumo de energia proveniente de demanda térmica dos processos de separação e eletricidade para compressores. Alta penalidade energética. Custos elevados.

Obs: atenção ao teor de pureza/especificações do CO2 comprimido para transporte/injeção para evitar separação de fase e contaminação cruzada.

Transporte de CO2

Modais de transporte de CO2

Longas distâncias:

Dutos independentes, redes de duto integrada, fluvial, marítimo

Curtas distâncias:

dutos, rodoviário, fluvial

Premissas:

Direitos de passagem, unidades de recompressão ao longo da linha, construção de dutos em áreas urbanas, montanhosas, etc

Estimativa de Custos

- Custos nivelados de captura ~ \$45/tCO2 \$250/tCO2
- Custos nivelados de transporte ~ \$5/tCO2 \$10/tCO2
- Custos nivelados de armazenamento ~ \$3/tCO2 \$10/tCO2

Pesquisa em BECCS - UNICAMP

Tese de doutorado: Rosana Galindo Orientador: Prof. Joaquim Seabra

Avaliações técnico-econômicas e ambientais para implementação de sistemas BECCS em plantas de etanol de cana-de-açúcar e milho e respectiva implementação no Renovabio.

Regulamentações

- *LCFS (USA)* benefício conforme o ciclo de vida do biocombustível
- CCS Protocol incentivo plantas novas e retrofit de captura de CO2
- 45Q (USA) incentivo armazenamento

Brasil: Renovabio?

Obrigada

Rosana Galindo - <u>roft.galindo@gmail.com</u> Joaquim Seabra - <u>jseabra@fem.unicamp.br</u>

