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Regulation of More Efficient Vehicles

EPA and NHTSA Set Standards to Reduce Greenhouse
Gases and Improve Fuel Economy for Model Years
2017-2025 Cars and Light Trucks — August 2012

» Average industry fleetwide level of 163 grams/mile of
carbon dioxide (CO,) in model year 2025,

e Equivalent to average fleet fuel economy of 54.5 mpg

e Greenhouse gas emission limit will be met mainly by
Increasing vehicle fuel economy

http://epa.gov/otag/climate/documents/420f12051.pdf
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Research Challenges: Fuel Economy Standards

miles per gallon equivalent
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MY1978-2011 figures are NHTSA Corporate Average Fuel Economy (CAFE) standards in miles per gallon. Standards for MY2012-2025 are EPA greenhouse gas emission standards in
miles per gallon equivalent, incorporating air conditioning improvements. Dashed lines denote that standards for MY2017-2025 reflect percentage increases in Notice of Intent.
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Research Challenges: Global Targets
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Figure: Global Comparison of LDV Fuel Economy/GHG Emissions Standards (ICCT;August 2011)

2020 Fuel Efficiency Standards

E.U. 64.8 mpg
Japan 55.1 mpg
China 50.1 mpg
U.S. 49.6 mpg
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Portfolio of Technologies Leading to 54.5 MPG

Turbo-charging, direct fuel
injection, downsized

Degree of electrification
(power electronics & Variable cylinder mgmt Improved aerodynamics Diesel, alternative
energy storage ) fuels, H2, etc.
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Internal Combustion Engine (ICE) Vehicles Have Room for Improvement

Innovation for Our Energy Future
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Approaches to Increasing Engine Efficiency

e Engine downsizing

« Smaller engines operating at low-speed and higher
load are more efficient

e Optimized with 6 to 9 speed transmission

e Turbocharging
* Recovering energy from the engine exhaust
e Required for engine downsizing

e Direct injection

* Fuel evaporates in the combustion cylinder, cooling
the air-fuel mixture

 Also required for engine downsizing

 Increased compression ratio
» Greater thermodynamic efficiency
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Lower Fuel Consumption at Low Speed — High Load

Most knock limited
region — and highest
fuel economy
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Effect of Increasing Compression Ratio
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Compression ratio

*Higher compression ratio yields higher temperature and hence
higher efficiency

*An optimal CR exists (typically in the teens) and depends on other
engine design features (primarily piston bore size)

eCurrent engine CR about 10 or lower

Toyota, Aachen Colloquium October 2010
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Octane Number and Engine Knock

* ON Is a measure of resistance to autoignition caused by high
temperature and pressure

 Autoignition is knock and can damage the engine
* Higher ON is required for higher CR, turbocharged engines

* Measured using methods developed in the 1920:

* Research Octane (RON) — cool and slow
» Best predictor for small modern engines

* Motor Octane (MON) — hot and fast

RON MON AKI ;

Typical US Regular 92 83 87.5 USA: Anti-Knock Index
AKI =[R + M]/2 > 87

Ethanol 109 90 99.5
Isobutanol 105 90 97.5
Iso-octane 100 100 100 EU: RON > 95
n-Pentane 62 62 62 .
Toluene 118 104 111 China: RON > 90
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Blending Ethanol Increases RON
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« Ethanol significantly increases RON
» Especially at lower blend levels in low octane gasoline
* One of the higher ON streams available for gasoline blending

National Renewable Energy Laboratory
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Efficiency Benefits of Increased CR and RON

Effect of CR and RON on Efficiency
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Heat of Vaporization Effect

 For direct injection engines fuel evaporation occurs in the
cylinder — cooling the charge and reducing knock tendency

 Alcohols have significantly higher heat of vaporization (HoV)
* Not captured by ON measurements
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Ethanol has High “Effective” RON

SEPARATION OF CHARGE COOLING AND OCTANE
EFFECTS ON KNOCK LIMIT
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Ethanol to Blend Advanced Fuels

PROJECTED GLOBAL FUEL ETHANOL PRODUCTION
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Sources: 2012 EIA Annual Energy Outlook (U.S.); FAPRI-ISU 2011 World Agricultural Outlook (All other countries)
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Research Recommendations

Focus efforts on newest engine technologies

— Turbocharged DI engine data is limited

» Sequential turbocharging with two stage cooling; cooled EGR at
all loads.

— Range of engine bore size and power
— Efficiency and knock limits
— Define ON and HOV requirements

Developing rational fuel specification
— Meaningful property measurement methods
— Related to combustion performance

— Encompass both chemical knock resistance and charge
cooling

— Distillation curve and driveabillity effects
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Summary and Conclusions

« Ethanol has unique fuel characteristics
— High octane
— High heat of vaporization

« Ethanol has a high Effective RON

* Properly formulated ethanol/hydrocarbon blends
provide fuel characteristics required by advanced
engines

« Advanced engines using advanced fuels provide
greater vehicle efficiency

— Increase in miles per gallon/kilometers per liter
— Considerable reduction in GHG

* Bioethanol enables advanced, high efficiency

engine technologies

National Renewable Energy Laboratory Innovation for Our Energy Future



	Slide Number 1
	Regulation of More Efficient Vehicles
	��
	Slide Number 4
	Slide Number 5
	Internal Combustion Engine (ICE) Vehicles Have Room for Improvement
	Approaches to Increasing Engine Efficiency
	Lower Fuel Consumption at Low Speed – High Load
	Effect of Increasing Compression Ratio
	Octane Number and Engine Knock
	Blending Ethanol Increases RON
	Efficiency Benefits of Increased CR and RON
	Heat of Vaporization Effect
	Ethanol has High “Effective” RON
	Ethanol to Blend Advanced Fuels
	Research Recommendations
	Summary and Conclusions

