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� Engine efficiency gain from ethanol blends is predicted.
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Identifying a sustainable, practical and low-emission energy supply for modern transportation has
always been a challenge for energy and automotive researchers. While electrification of the vehicle pow-
ertrain is a promising long-term energy supply solution, bio-ethanol is currently playing an important
role as a short- and mid-term solution for the popular spark ignition (SI) engine. The questions of how
to use ethanol more effectively as an octane booster, how much potential engine thermal efficiency gain
can be achieved by using ethanol blends and what their impacts on the vehicle mileage range are have
become highly relevant. In this paper, a critical review and discussion regarding these questions is pro-
vided. Firstly, studies regarding octane rating and octane index of gasoline fuels, and K value (a scaling
factor for calculating octane index) for various SI engines are reviewed. Then, a review of the research
octane number (RON), motor octane number (MON) and octane sensitivity for ethanol blends is reported.
Three established models for predicting RON of ethanol blends are reviewed and compared. In addition, a
simple RON prediction model proposed by the authors of this paper is provided. Parameters such as
octane value and octane-added index (OAI) are proposed to describe the effectiveness of using ethanol
as an octane booster. It is found that there exits an optimised ethanol blend ratio that gives the maximum
octane value; and this optimised blend ratio is insensitive to the octane rating of the base gasoline.
Secondly, the charge cooling effect of ethanol blends and its corresponding equivalent octane number
are discussed and reviewed. Thirdly, engine thermal efficiency improvement due to increased compres-
sion ratios, which results from the octane index gain achieved by using ethanol blends, is reviewed.
Finally, a discussion about the impact of ethanol blends on the vehicle mileage range is presented. The
lower heating value of ethanol is about 33% lower than that of typical gasoline, leading to a reduction
in the mileage range of the vehicle, however, improved engine thermal efficiency achieved by using etha-
nol blends can partially, or even fully, offset the negative impact of the lower calorific value on the mile-
age range.
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Nomenclature

Acronyms and abbreviations
AFR air fuel ratio
AKI anti-knock index
BMEP brake mean effective pressure
CFR cooperative fuels research
CR compression ratio
DI direct injection
DISI direct injection spark ignition
DVPE dry vapour pressure equivalent
EGR exhaust gas recirculation
EOI effective octane index
FFVs flex fuel vehicles
HOV heat of vaporization
IMEP indicated mean effective pressure
KLSA knock limited spark advance
LHV low heating value
LMC linear molar-weighted model
LVC linear volumetric-weighted model
MON motor octane number
NA naturally aspirated
NMC non-linear molar-weighted model
NOI normalized octane improvement
NTC negative temperature coefficient
OAI octane-added index
OEMs original equipment manufacturers
ON octane number
ONCE octane number from cooling effect
ONCEgasoline ONCE of base gasoline
ONCEethanol ONCE of ethanol
OI octane index
OI blend octane index of ethanol blend
PCCE partially captured cooling effect

PFI port fuel injection
PRFs primary reference fuels
RON research octane number
RONblend RON of ethanol blend
RONbase RON of base gasoline
RONethanol RON of ethanol
SI spark ignition
TC turbo-charged
TOV total octane value
TOVa_blend total octane value after blending
TOVb_blend total octane value before blending
VOV volumetric octane value
VVT variable valve timing

Definitions
E0x0 x% volume-based ethanol in the blend; for example, E10

means 10 vol.% ethanol in the blend
K a scaling factor used in the calculation of octane index
Pg measured RON of 50%:50% molar ethanol-gasoline

blend
S octane sensitivity, which equals to the difference be-

tween RON and MON
xmole molar fraction of ethanol in the blend
xvol volumetric fraction of ethanol in the blend
g engine Thermal efficiency

Octane related parameter
EOI chemical effect + sensitivity effect + cooling effect
Chemical effect RON minus PCCE (RON-PCCE)
Octane sensitivity

effect �K ⁄ S
Cooling effect ONCE
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1. Introduction

Sustained research and development has been conducted on
bio-fuels in order to improve the sustainability of energy supplies
and to reduce greenhouse gas emissions. The most widely used
bio-fuel is bio-ethanol. First generation bio-ethanol is made from
arable crops and sugar canes which can be easily converted using
conventional technologies [1]. Second generation biofuels are
made from lignocellulosic biomass or wood-based crops, agricul-
tural residues or waste, which do not compete with human food
consumption. In the following paper, ‘bio-ethanol’ will be simply
referred to as ‘ethanol’.

Ethanol has many favourable physiochemical properties which
make it the preferred gasoline alternative. It can be used in its pure
form in specially designed vehicles, or in blended forms with some
vehicle modifications. Numerous studies have reported the
effectiveness of ethanol blends in improving engine efficiency, in
reducing emissions, such as particulates, carbon monoxide and



Table 1
Fuel properties.

Unit Gasolinea Ethanol Effect of Ethanol

Formula C4-C12 C2H6O No aromatic, olefin and sulphur content, less combustion chamber deposit,
injector deposit and particle formation tendency [14–16,51]

RON 95+ 107 Suppress engine knock [9]
RON 85+ 89
Oxygen content wt.% 0 34.78 Low emissions, low energy density
Stoichiometric AFR 14.5 9 High fuel mass flow, fuel and wall interaction, and cooling effect
Density @ 15 �C kg/m3 720–775 790 High oil dilution [72]
Laminar flame speedb m/s 0.44 0.55 High acceleration response and high engine efficiency
Lower heating value MJ/kg 42 26.9 High fuel consumption [9]
Flash point �C �40 13 Bad cold start
Heat of vaporization @ k = 1 kJ/kg_air 26 103 Bad cold start, good cooling effect
Initial boiling point �C Varies 78 Bad cold start
Reid vapour pressure kPa Varies (48–110) 15.5 Bad cold start
Water solubility % 0 100 Bad cold start, risk of phase separation when ethanol is added into gasoline
Miles reduction relative to gasolinec % 0 33 Potentially high fuel consumption

a Typical gasoline available in the EU market.
b Measurement condition: 1 bar initial pressure, 50�C initial temperature, and 1.1 equivalence ratio.
c Assume that engine thermal efficiencies for gasoline and ethanol are the same.
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unburned hydrocarbons [2–13], and in reducing the fuel injection
system’s deposit formation [14–19]. Some of these benefits are
briefly reviewed below.

Table 1 lists a summary of gasoline and ethanol fuel properties,
along with direct/indirect impacts of ethanol on engine perfor-
mance. The high octane rating of ethanol leads to a reduced engine
knock tendency, thus ethanol can be used in high compression
ratio (CR) SI engines, which results in improved engine thermal
efficiency [20–22]. The high octane sensitivity of ethanol is also
potentially beneficial for suppressing knock in SI engines when
the K values of the engine at certain operating points (typically
high load) are negative [19,23–25].

For ethanol, the measured research octane number (RON) and
motor octane number (MON) in different publications varies.
According to 16 publications from various research institutes and
original equipment manufacturers (OEMs) [14,26–40], the
reported RON and MON of ethanol generally fall in the range of
106–111 and 89–92, respectively. These variations are believed
to be due to uncertainties in the RON and MON measurement
methods and variations in the properties of ethanol itself. In the
standard octane rating test, it is defined that the RON and MON
of n-heptane and iso-octane, the primary reference fuels (PRFs),
are 0 and 100, respectively. This definition makes the measure-
ment of octane ratings higher than 100 difficult, relying on the
extrapolated octane rating calibration curve, or on using high
octane rating reference fuels that contain iso-octane and tetra-
ethyl lead [40]. In addition, ethanol is highly soluble in water
[41], which leads to potential water contamination in ethanol
and therefore measurement errors. Due to the two above men-
tioned reasons, it is believed that different laboratories produced
different measured octane ratings for ethanol. In this paper, for
the purpose of consistency, the RON and MON of ethanol are con-
sidered as 107 and 89, respectively, which are the values recom-
mended in John Heywood’s widely used book [27].

Apart from the high octane rating, the faster laminar flame
speed of ethanol helps to improve the engine’s combustion process
and reduce knock tendency [42,43]. Its oxygen content helps
reduce hydrocarbon emissions, due to increased completeness of
the main combustion and post oxidation processes [11], however,
it must be noted that its lower heating value (LHV), resulting from
its oxygen content, causes in high volumetric fuel consumption. In
comparison to gasoline, the higher fuel/air ratio required for stoi-
chiometric combustion and the lower LHV of ethanol leads to
higher fuel mass flow and thus longer injection pulse width; as a
consequence, there are higher cylinder wall and piston wetting
tendencies. High ethanol blend ratios potentially lead to cold-
start problems and high gaseous and particulate emissions, due
to ethanol’s relatively high boiling point, high heat of vaporization
(HOV), and low Reid vapour pressure [44–50]. When blended into
gasoline, ethanol dilutes its aromatic and olefin contents, therefore,
ethanol blends potentially reduce particle emissions and deposit
formation [14–16,51,52].

In the European and US gasoline fuel markets, gasoline usually
contains 5–10 vol.% ethanol. Modern gasoline vehicles can be
smoothly powered by these low percentage ethanol blends. Several
studies have been done on engines powered by fuels containing up
to 85 vol.% ethanol (E85) [53–55]. The vehicles that are capable of
using E85 are typically called flexible fuel vehicles (FFVs). How-
ever, current FFVs do not utilize the full potential of high percent-
age ethanol blends because only engine calibration adaptations
such as active ignition management are used; advanced engine
hardware adaptations such as variable compression ratio can only
be used to extract more benefits from ethanol blends once those
technologies become more cost-effective [56,57].

The impacts of ethanol blends on octane rating, engine thermal
efficiency and vehicle mileage range are important questions
which need to be answered. In this paper, a critical review and dis-
cussion regarding the application of ethanol blends in spark igni-
tion (SI) engines is provided. Firstly, studies of the octane rating
for gasoline, as well as studies of the octane index and K value
for SI engines are reviewed. Secondly, the octane rating of ethanol
blends, and three established models for predicting the octane rat-
ing of ethanol blends are reviewed and compared. In addition, a
simple RON prediction model proposed by the authors of this
paper is provided. Thirdly, the charge cooling effect of ethanol
blends and the corresponding equivalent octane number are dis-
cussed. Fourthly, the engine efficiency improvement due to
increased compression ratios (CR), which result from the octane
index gain achieved by using ethanol blends is reviewed. Finally,
several ethanol blend case studies of engine thermal efficiency
gains and vehicle mileage range reduction are discussed for natu-
rally aspirated direct injection spark ignition (DISI) and turbo-
charged downsized DISI engines.
2. Octane rating

This section is comprised of three parts. Firstly, a literature
review of the octane rating measurement history is conducted,
and the newly proposed octane index by Kalghatgi, and the K value
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identification for SI engines are reviewed and discussed. Secondly,
octane ratings of ethanol blends are reviewed, along with three
established octane prediction models and a model proposed by
the authors of this paper. Finally, the optimal ethanol blend ratio
for maximizing the benefit of ethanol as an octane booster is
discussed.

2.1. History of octane rating and K value identification for SI engines

Historically, the anti-knock characteristics of gasoline-type
fuels are described by two parameters, RON and MON, which are
measured in standardized single-cylinder naturally aspirated
(NA) carburettor SI engines, first designed in 1929 [58–60]. These
engines are widely known as cooperative fuels research (CFR)
engines. Table 2 lists the summary of standard RON and MON test
conditions. Details of the RON and MON test procedures are
defined in the ASTM standards D2699-08 and D2700-08, respec-
tively [61,62].

Octane rating is one of the most important parameters for
gasoline-type fuels. OEMs choose the engine CR mostly based on
the gasoline that is most widely available in the market (so called
regular gasoline). In the US, anti-knock index (AKI), which is the
average value of RON and MON, is used to regulate the octane qual-
ity (AKIP 87). In European countries, the EN228 regulation sets the
minimum limits for RON and MON at 95 and 85, respectively [63].
However, after nearly 90 years of development, modern SI engines
tend to operate at relatively low temperatures and high pressure
conditions, resulting from the use of advanced technologies such
as DI, charge intercooling and cooled exhaust gas recirculation
(EGR) [64,65]. Additionally, the physiochemical properties of the
PRFs (iso-octane and n-heptane) used in CFR engines differ from
gasolines available in the market, which consist of thousands of var-
ious hydrocarbons. The most important difference is that the PRFs
have stronger negative temperature coefficients (NTC) than gasoline
[66]. Therefore, due to significant deviations in hardware and the
fuels used, between the CFR and modern engines, the relevance of
RON and MON to modern SI engines needs to be re-assessed.

The significance of RON to modern gasoline engines has been
proven by many investigations [9,67–71], however, the relevance
of MON has been challenged by more and more research data,
especially in the last 10 years [19,23–25]. It was found that for
some engine types and at some operating conditions, a low MON
could be beneficial to reduce engine knock tendency [23,24,72–
74]. To compensate for the possible disagreement between CFR
and modern engines results, the octane index (OI) was proposed
by Kalghatgi [23]:

OI ¼ RON� K� ðRON�MONÞ ¼ RON� K� S ð1Þ
where K is a scaling factor depending solely on the in-cylinder tem-
perature and pressure history experienced by the end-gas prior to
the onset of auto-ignition and S (the difference between RON and
MON) is the octane sensitivity.
Table 2
Standard RON and MON test conditions [61,62].

Parameter Unit RON MON

Inlet air temperature �C 52 38
Inlet mixture temperature �C – 149
Intake air pressure bar Atmospheric
Coolant temperature �C 100 100
Engine speed RPM 600 900
Spark timing �bTDC 13 14–26
Compression ratio – 4–18 4–18
Engine displacement L 0.619 0.619
Stroke/Bore mm 114.3/83.1
Intake valve closing �bTDC 146
Exhaust valve opening �aTDC 140
The engine K value can be determined by either experimental or
modelling data. The experimental method relies on the correlation
of an engine/vehicle performance parameter relating to a fuels’
auto-ignition property with a fuel matrix where RON and MON
are decorrelated. The typical engine/vehicle performance parame-
ters are knock limited spark advance (KLSA) and acceleration time.
Details regarding the experimental method can be found in
[23,24,73,75–77]. For the modelling method, in-cylinder pressure
data is required as an input, which can be used to calculate the
in-cylinder temperature. The crank angle of auto-ignition for a
matrix of PRFs and Toluene/n-Heptane mixtures (gasoline surro-
gate) using the Livengood-Wu integral is calculated, and then the
OI of PRFs and Toluene/n-Heptane fuel mixtures is determined
through the PRF calibration curve. Based on the OI, MON and
RON, the K value can be calculated. In the modelling method, the
reason that toluene is added into n-heptane to produce the gaso-
line surrogate is because the mixture has closer physiochemical
properties (especially ignition delay characteristics) to gasoline
than PRFs. Details about the modelling method can be found in
[64,74].

The OI is such that when the K value is positive, high MON is
beneficial to suppress engine knock, and vice versa [76]. Many
studies have suggested that the K value is not always positive
[19,23–25]. Mittal and Heywood [78] tested fuels with various
combinations of RON and MON in a single-cylinder port fuel injec-
tion (PFI) SI engine with 1 bar intake manifold pressure. The exper-
imental results showed that the K value under the studied
operating condition was negative. Remmert et al. [74] studied
the octane appetite and K value of a 4-cylinder DISI engine. Seven
RON and MON decorrelated fuels were tested at various high load
conditions with different external EGR levels, boost pressures, back
pressures and air/fuel ratios. They found that under high load con-
ditions (approximately 20–30 bar BMEP) the engine’s K value was
in the range of �0.26 to �1.14. Davies et al. [64] investigated the K
value of several engines under high boost and EGR conditions. They
found that the K value was in the range of �0.86 to 0.5. Kalghatgi
[75] reported that the averaged engine K value at full throttle con-
ditions was �0.38 for 37 SI engines ranging from NA to turbo-
charged (TC) and 1.2–2.4 L.

Fig. 1 shows a summary of the engine K value study results. The
engine K value is dependent on engine design and technology,
engine speed, engine load and intake charge pressure. Fig. 1(a)
shows that the K value distributions of historic SI engines, current
NA SI engines and current TC DISI engines were different under
various engine operating conditions; the average K values were
0.2, 0 and �0.3, respectively. As reported in Fig. 1(b), Mittal and
Heywood found that K values of vehicles manufactured between
1951 and 1991 were declining and even became negative, due to
the use of advanced cooling and breathing techniques and the
replacement of carburettors with fuel injectors [71]. The engine K
value consistently increases with engine speed (Fig. 1(c)), and this
trend is consistent with different car model years. As reported in
Fig. 1(d), Kassai et al. [79] found that K values decreased with
the engine intake manifold pressure (or engine load) at both
1200 and 2000 rpm engine speeds; similar results were found in
[66,77,80]. Bourhis et al. [80] studied the K value of a TC 4-
cylinder 1.6 L DISI engine and found that the K value was positive
at part load, and negative at the high engine load. Caroline et al.
[77] conducted an octane sensitivity study on a 2007 Pontiac Sol-
stice. They found that there was a clear negative correlation
between the K value and intake charge pressure.

Due to variations of the engine K value for different engine
design/technologies and engine operating conditions, two K values
of 0 and �0.3 will be considered to represent the average engine K
value for current NA DISI engines and current TC DISI engines,
respectively.
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Overall, this section briefly reviewed the history of octane rat-
ing and K value identification in SI engines. In the next section,
octane rating prediction of ethanol blends will be discussed.

2.2. Octane prediction models for ethanol blends

Due to limited access to CFR engines, measuring the octane rat-
ing is not always possible; therefore, in some studies, no octane
ratings of ethanol blends were given [7,10,81,82]. In this section,
three reported RON and MON prediction models for ethanol blends
[26,40,83,84] are discussed and compared, which are: (1) linear
molar-weighted model (LMC); (2) linear volumetric-weighted
model (LVC); and (3) non-linear molar-weighted model (NMC).
Additionally, the authors of this paper have proposed a new and
simple model which is discussed later in this section.

The LMC model is described as:

RONblend ¼ ð1� xmoleÞ � RONbase þ xmole � RONethanol ð2Þ
The LVC model is described as:

RONblend ¼ ð1� xvolÞ � RONbase þ xvol � RONethanol ð3Þ
where RONblend, RONbase and RONethanol are the RON of ethanol
blend, base gasoline and ethanol, respectively; xvol and xmole are
the volumetric and molar fractions of ethanol in the ethanol-
gasoline blend, respectively. For the prediction of MON, the same
equations can be used.

The NMC model is described as:

RONblend ¼ ð1� xmoleÞ � RONbase þ xmole � RONethanol

þ Pg � xmole � ð1� xmoleÞ � RONethanol � RONbaseð Þ ð4Þ
Compared to the LMC model, the NMC model has an extra non-

linear term. Pg is a scaling factor for the non-linear term, which is
determined for each base gasoline by minimizing the sum of
squared errors of measured and modelled octane ratings of one
or a few ethanol blends. Therefore, the RON/MON of one or a few
ethanol blends needs to be measured in order to estimate Pg.
According to [40], for RON estimation, the Pg values were between
0.45 and 0.48 for the four base gasolines used in the study. For the
prediction of MON, the same equation can be used with Pg values
in the range of 0.94 and 1.21 [40].

In this paper, after analysing a large amount of data from the lit-
erature, a simpler model is proposed with inputs of ethanol volu-
metric content, RON of the ethanol and RON of the base gasoline.
One parameter, normalized octane improvement (NOI), is used as
an intermediate parameter for the RON prediction, and it is defined
as:

NOI ¼ RONblend � RONbase

RONethanol � RONbase
� 100 ð5Þ

Fig. 2(a) shows measured RON versus ethanol content, and
those pieces of data were directly extracted from several publica-
tions [26,31,85,86]. It can be seen that the octane rating of ethanol
blends increases non-linearly with increase of the ethanol volu-
metric content [26,31,40,85–87], and a higher marginal octane
improvement is achieved with low and medium amounts of etha-
nol addition. This is a result of synergistic effect of ethanol interact-
ing with alkanes in suppressing low temperature heat release.
Alkanes have low-temperature oxidation chemistry involving per-
oxy radicals and hydroperoxyalkyl radicals, which plays a crucial
role in their early ignition kinetics and produce the characteristic
negative temperature coefficient region and low temperature heat
release [88]. Ethanol shows a strong suppression of NTC [89]. The
interaction of ethanol with alkanes is the possible reason for the
non-linear octane relationship for ethanol blends.

Additionally, the high charge cooling effect of the ethanol may
have been partially reflected in the measured RON with the CFR
engine. Between ethanol contents of 50 and 75 vol.%, limited
octane improvement was observed by adding extra ethanol into
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Fig. 2. Measured RON and NOI for ethanol blends in various base fuels: (a) measured RON; (b) normalized octane improvement (data extracted from Refs. [26,31,85,86]).

608 C. Wang et al. / Applied Energy 191 (2017) 603–619
the blend. Fig. 2(b) shows the NOI of ethanol blends (0–75 vol.%).
All pieces of data in Fig. 2(b) were converted from the data in
Fig. 2(a) using Eq. (5). In Fig. 2(b), the values of a few NOI data
points exceed 100. This is because the RON of ethanol in the orig-
inal literature was higher than 107, however, in the calculation of
NOI, the RON of ethanol is set as 107 (the value used by the authors
of this paper).

A 2nd order polynomial fitting line for ethanol content ranging
from 0 to 75 vol.% is plotted in Fig. 2(b). The R2 of the fitting line
is 0.9853, therefore, it provides a good estimation. Eq. (6) shows
the mathematic expression of this 2nd order polynomial fitting line.

NOI ¼ �0:01983� x2vol þ 2:8512� xvol ð6Þ
Once the RON of the base gasoline and ethanol, as well as the

volumetric ethanol content are known, it is possible to calculate
the RON of ethanol blends.

RONblend ¼ NOI� ðRONethanol � RONbaseÞ
100

þ RONbase ð7Þ

A summary of three reported models and the model proposed
by authors of this paper for RON prediction of ethanol blends is
presented in Fig. 3(a), along with the measured octane rating. It
is proposed that the accuracy ranking of these models is: authors’
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Fig. 3. Models for octane rating prediction: (a) RON;
model � NMC > LMC > LVC. The authors’ model is simpler than, but
as accurate as the NMC model because: (1) the NMC relies on esti-
mation of Pg by measuring the RON of at least one ethanol blends,
whilst the authors’ model does not, and (2) the authors’ model
does not need the molar calculation, which can be problematic in
itself, as the molecular formula of the gasoline is not exactly
known.

Both the LMC and LVC models gave conservative estimations of
the octane rating of ethanol blends, and the underestimation was
up to 2.5 and 6 units of RON for the LMC and LVC models, respec-
tively. The reason that LMC model gives a higher estimation of
octane rating is because the molecular fraction of vaporized etha-
nol blends is made equal to their molar fraction in the model. The
molecular weight of ethanol (46 g/mole) is much less than that of
typical hydrocarbons in gasoline (95–115 g/mole), therefore, the
mole fraction of ethanol in a blend is higher than its liquid volume
fraction [83], thus, the LMC model is inaccurate in this sense. The
NMC model gives a good prediction of octane rating of ethanol
blends by adding an extra non-linear term for correcting the
underestimation in the LMC model. The error of the NMC was less
than 0.3, which is as good as the authors’ model. In Fig. 3, only one
gasoline base fuel with RON and MON of 88 and 82 was used. A
more widely distributed octane rating for gasoline base fuels was
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also tested, and the authors’ model and the NMC model showed a
good agreement (less then 0.5 deviation from measured values)
with experimental octane ratings measured in CFR engines. A sum-
mary of three reported models for MON prediction of ethanol
blends is presented in Fig. 3(b), along with the measured octane
rating. The accuracy ranking of these models is: NMC > LMC > LVC.

A similar literature review regarding MON and octane sensitiv-
ity is conducted and presented in and Fig. 4. It can be seen that
MON is also not linear; higher MON improvement is observed with
low ethanol content. Octane sensitivity, however, is almost linear
to ethanol content. The OI of ethanol blends can be expressed as:

OIblend ¼ NOI� RONethanol � RONbaseð Þ
100

þ RONbase þ K� Sblend ð8Þ

where OIblend and Sblend are the OI and the octane sensitivity of
ethanol blend, respectively. The Sblend can be linearly estimated
by the sensitivities of base gasoline and ethanol.

2.3. Optimal ethanol blend ratio

Ethanol can be used as an octane booster, as demonstrated in
the above sections. Even though adding more ethanol into gasoline
always leads to higher octane rating, the marginal octane improve-
ment decreases as the ethanol content is increased. Therefore,
there exists an optimal ethanol blend ratio that maximizes etha-
nol’s octane boost effect without reducing the lower heating value
of the blend unnecessarily. The question of what the optimal etha-
nol blending ratio, is in terms of maximizing the overall octane rat-
ing, is highly relevant in the application of ethanol blends in SI
engines. The following discussion in this section focuses on finding
the answer to this question.

To assess octane value changes after blending, several parame-
ters are defined. Volumetric octane value (VOV) is defined as a
parameter that has a value equal to the RON of a fuel but in a unit
of #/L. Total octane value (TOV) is defined as VOVmultiplied by the
fuel volume. Total octane value before blending (TOVb_blend), and
the total octane value after blending (TOVa_blend) can be calculated
from Eqs. (9) and (10), assuming that there is 1 L ethanol available
for blending.

TOVb blend ¼ RONethanol þ 100
xvol

� 1
� �

� RONbase ð9Þ

TOVa blend ¼ RONblend � 100
xvol

ð10Þ
The octane-added index (OAI) is defined as a normalized octane
value improvement after ethanol blending. This parameter is used
to quantitatively describing the effectiveness of using ethanol as an
octane booster.

OAI ¼ TOVa blend � TOVb blend

TOVb blend
ð11Þ

Fig. 5 shows the OAI of ethanol blends in various base gasolines.
The data in Fig. 5(a) was calculated using some of the measured
data presented in Fig. 2(a). The data in Fig. 5(b) were calculated
from Eqs. (7) and (11). For every base gasoline there exists an opti-
mised blend ratio for maximizing the OAI. This is because the
octane improvement of adding ethanol into gasoline is not linear
to the ethanol content. As reported in Fig. 2, low percentage etha-
nol blends lead to more significant improvements than the med-
ium and high percentage ethanol blends. It can be seen from
Fig. 5 that the optimised ethanol content is approximately 40 vol.
%; the RON of the base fuel showed a limited impact on this opti-
mised blend ratio.

Another method to calculate the optimal ethanol ratio for
boosting the octane rating of gasoline is to calculate the RON dif-
ference between the measured points and the RON estimated from
linear regression [90]. Data from Rankovic et al. [90] suggested that
40 vol.% of ethanol addition into base gasoline gave the maximum
RON difference, which matches with the results in Fig. 5.
3. Cooling effect and the effect of octane index for ethanol
blends

There are two parts in this section. First, the fuel’s cooling effect
in DISI engines is reviewed and quantified. Second, the partially
captured cooling effect (PCCE) from the standard RON test in the
CFR engine is discussed, along with the effective octane index
(EOI), which accounts for the original OI and cooling effect.
3.1. Quantification of cooling effect for ethanol blends

In DISI engines, apart from the fuel’s octane rating, the charge
cooling effect of the fuel is another important contributor in sup-
pressing knock. The charge cooling effect is related to the fuel’s
heat of vaporization. When fuel is injected directly into the cylin-
der, the fuel spray/droplet is vaporized by the heat from the warm
in-cylinder gases, during which in-cylinder gas temperature drops.
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Fig. 6. Heat of vaporization for ethanol blends: (a) heat of vaporization; (b) normalized heat of vaporization (data extracted from Refs. [26,31,86]).
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Fig. 6 presents the heat of vaporization (HOV) of ethanol blends.
The data from Fig. 6(a) was extracted from the literature and if nec-
essary, the data converted into kJ/kg_air at the stoichiometric air
fuel ratio (AFR). The HOVs of ethanol and conventional gasoline
are approximately 103 and 26 kJ per kilogram of air at stoichiomet-
ric AFR, respectively. Therefore, compared to gasoline, ethanol has
a cooling effect approximately 3 times more significant.

The data from Fig. 6(b) are normalized data from Fig. 6(a),
obtained by dividing the HOVs of the ethanol blends by the HOV
of the base gasoline. A 2nd order polynomial fitting line for all data
was plotted in Fig. 6(b), which has an R2 value of 0.9935. Eq. (12)
shows the mathematical expression of this 2nd order polynomial
fitting line:

Normalized HOV ¼ 0:000135� x2vol þ 0:0189� xvol þ 1 ð12Þ
In this paper, an assumption is made that the HOV of the fuel

has a linear relationship to the cooling effect in direct injection
engines. This assumption is supported by the data reported in
Ref. [91], where the RON and cooling effect were quantitatively
separated. More detailed verification of this assumption will be
presented in the second part of this section.
In order to quantitatively describe the cooling effect, a parame-
ter, octane number from the cooling effect (ONCE), is defined. The
abbreviations of ONCEgasoline and ONCEethanol stand for the cooling
effect of gasoline and ethanol, respectively.

Based on an study of the CR distribution of engines sold in the
North American market in 2013 [92], it was found that DI engines
have approximately 1 unit higher CR than PFI engines. The investi-
gated engine models include 85 NA PFI engines (averaged
CR = 10.4), 34 NA DI engines (averaged CR = 11.7), 16 boosted PFI
engines (averaged CR = 9.2) and 32 boosted DI engines (averaged
CR = 9.8). The increase of CR in DI engines is mainly due to the
charge cooling effect. Therefore, ONCEgasoline leads to a 1 unit
increase of CR. For gasoline engines, every 4 units increase of
octane number (ON) allow a 1 unit increase of CR, which will be
explained in detail in a later section. Therefore, it is assumed that
ONCEgasoline is equal to 4 units of ON. Compared to base gasoline,
the additional cooling effect from the ethanol blends equals to:

DONCE ¼ ONCEblend � ONCEgasoline

¼ ð0:000135� x2vol þ 0:0189� xvol þ 1� 1Þ � 4

¼ 0:00054� x2vol þ 0:0756� xvol ð13Þ
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There is some data available for describing the ONCE of ethanol
blends in the literature. Fig. 7 shows the cooling effect of ethanol
blends published in [28,31]. The red line on the figure is plotted
by using data calculated from Eq. (13). It can be seen that, com-
pared to the literature data, the red line derived from HOVs gives
conservative estimations of the cooling effect of ethanol blends.
For example, the underestimation for E40 is approximately 2.5
units of octane. It was consequently decided that in this study,
the literature data would be used to estimate the DONCE between
ethanol blends and base gasoline, which is expressed as follow:

DONCE ¼ ONCEblend � ONCEbase ¼ 0:1543� xvol ð14Þ
3.2. Partially captured cooling effect in standard RON Test, and
Effective OI

The cooling effect of ethanol blends is partially captured in the
standard RON test. In the standard RON test in the CFR engine, the
intake air is heated up to 52 �C (see Table 2). The temperature of
the air and fuel mixture entering the engine varies, depending on
the HOV of the fuel. Before the fuel enters the cylinder, it evapo-
rates and mixes with the air by absorbing heat from the intake
air, engine components and intake value. Gasoline can be
vaporized prior to entry into the CFR engine [91]. However, for
blends with a high ethanol content, the fuel is only partially vapor-
ized and there exists a near-saturated and potentially two-phase
air/fuel mixture during the induction process [91].

Foong et al. [91] designed a so-called ‘modified RON’ test by
modifying the intake system in the CFR engine for the study of
the effect of charge cooling on the RON measurement. In the mod-
ified intake system, the temperature of the air-fuel mixture enter-
ing the engine was maintained at 36 �C, which is the intake air-fuel
mixture temperature that is measured during the standard RON
test when only primary reference fuels (PRFs) are used. At this
temperature, the air-fuel mixture was not saturated when entering
the CFR engine, even for the air-ethanol mixture. They modelled
the thermodynamics of the air-fuel mixture preparation in this
modified RON test; and they concluded that ethanol blends were
fully vaporized prior to compression and that the temperature dur-
ing the compression stroke was similar to those in primary refer-
ence fuels. Thus, the modified RON tests only captured the auto-
ignition chemistry effect from ethanol blends. By comparing the
RON results from standard and modified tests, the partial cooling
effect captured by the standard RON test in the CFR engine was
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Fig. 7. ONCE improvement in ethanol blends (data extracted from Refs. [28,31]).
quantified. Fig. 8 shows the results from standard and modified
RON tests, along with the RON deviation from these two tests.

From Fig. 8, it can be seen that for ethanol content less than
20 vol.%, the rate of RON deviation versus ethanol content was
much lower than that for ethanol content higher than 40 vol.%.
This is because as ethanol addition exceeded approximately
20 vol.%, the ethanol vapour was fully saturated; adding more
ethanol into the blends led to the cooling effect from the extra
ethanol addition being fully captured in the RON test. The RON dif-
ference between the standard and modified tests had a strong lin-
ear relationship to the ethanol content, from 40 vol.% to 100 vol.%.
Since the HOV of ethanol blends is almost linear to ethanol content,
it is safe to assume that the cooling effect is linear to HOV in DISI
engines, an assumption made in the first part of this section.

Based on Fig. 8 [91], the partially captured cooling effect (PCCE)
in the standard RON test can be quantified as:
PCCE ¼ 0:00028� x2
vol þ 0:0200� xvol ð15Þ

In DI engines, the EOI of ethanol blends, which accounts for the
original OI and cooling effect, is defined as:
EOI ¼ OIþ ðONCE� PCCEÞ
¼ ðRON� K� SÞ þ ðONCE� PCCEÞ
¼ ðRON � PCCEÞ � K� Sþ ONCE ð16Þ
In this paper, it is defined that ‘‘RON–PCCE”’ represents the

chemical effect on the anti-knock property of fuel, ‘‘�K � S” repre-
sents the octane sensitivity effect, and ONCE, as defined earlier,
represents the cooling effect.

Therefore, EOI = chemical effect + octane sensitivity effect
+ cooling effect.

The difference in EOI between base gasoline fuel and ethanol
blends in DISI engines is given by:
DEOI ¼ RONblend � RONbase � PCCE� K� DSþ DONCE ð17Þ
Overall, this section analysed the HOV and cooling effect of

ethanol blends, along with the PCCE during the standard RON test.
Finally, the EOI of ethanol blends was discussed. The purpose of
this section is to determine the EOI improvement of ethanol blends
in comparison with base gasoline, for the purpose of estimating
potential CR increase of using ethanol blends, which will be pre-
sented in the next section.
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Table 3
Summary of RON and CR study.

RON/CR RON CR Reference

2,5 RON91-E10/RON96-E20sp 10:1/11,9:1 Ford and AVL [85]
2,4 RON95/RON 107-E100 10:1/15:1 Aachen University [94]
3 RON91-E10/RON99-E30sp 10:1/13:1 Oak Ridge National Lab [93]
3 RON89-E0/RON97-E30sp NA Ford [28]
3,3 RON91-E10/RON101-E30sp 10:1/13:1 Ford and AVL [85]
3,5 RON89-E0/RON92,6-E10sp NA Ford [28]
3,5 RON89-E0/RON95,8-E20sp NA Ford [28]
3,5 RON95/RON102 10.2:1/12.2:1 BP [95]
3,5 RON95/RON102-E20sp 10:1/12,2:1 Aachen University [94]
3,6 AKI87-E0/RON101-E30sp 9,2:1/12:1 Oak Ridge National Lab [93]
5 RON88/RON108-E75 10:1/14:1 AVL, BP and Ford [31]
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4. Compression ratio and engine thermal efficiency

Many studies have focused on the application of ethanol blends
in the SI engine with an adapted CR [28,31,85,93–95]. The two key
questions are: (1) how much ON improvement is required to be
able to increase one unit of CR and (2) how much engine thermal
efficiency can be gained by increasing one unit of CR. This section
discusses the answers to these two questions by comprehensively
reviewing the relevant literature. The final answers to these two
questions are empirical, since the combustion characteristics in
the two engines with the base CR (base fuel) and the high CR (high
octane fuel) should remain the same. However, this is challenging,
or even impossible to achieve within the entire engine operating
map. Therefore, the data published by OEMs are highly valuable,
since they mostly choose the CR of the passenger vehicles based
on the main-grade gasoline available in the market. Different mar-
kets for example US and EU, have different gasoline fuel standards,
which forces OEMs to conduct a lot of research on CR adaptation
and relevant engine calibration. Additionally, the large number of
cases reviewed in this study increases the credibility of empirical
answers.
4.1. Compression ratio

Table 3 summarises the CR improvements enabled by the use of
high octane rated fuels. Fig. 9 shows the bar chart and statistical
analysis of data listed in Table 3 and other references mentioned
in Ref. [92]. In Fig. 9, reference codes were given in the x axis;
and their corresponding reference numbers are provided in the
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caption. The statistical analysis shows that approximately every
3.9 units of ON enables a 1 unit increase of CR.

Splitter et al. [93] from Oak Ridge National Lab experimentally
investigated spark-ignited combustion with E0 (RON 90 and MON
84) and E30 (RON 100 and MON 89). A single-cylinder research
engine was used with a low and a high CR of 9.20:1 and 11.85:1,
respectively. All fuels were operated at full-load conditions with
k = 1, using 0% or 15% external cooled EGR. Using E30 with the CR
of 11.85:1 led to the same onset knock load as E0 with the CR of
9.20:1, representing 3.8 ON/CR. In Ref. [92], the authors from Ford
and General Motors suggested that 3 units of ON was necessary
for a 1 unit increase of CR. Heywood et al. [43] from MIT suggested
that 4–5 units of ON was required for a 1 unit increase of CR.

The estimation in the literature varies, depending on engine
technology, geometry, and operating conditions. As mentioned in
the beginning of this section, it is hard to assume that the knocking
behaviour in all configurations presented in the literature is the
same, however, by summarising a wide arrange of literature, espe-
cially the data published by engine/vehicle OEMs, and by compar-
ing the estimation made by other research institutes, the risk of
underestimating or overestimating the unit of ON required to
increase one unit of CR can be reduced.

Considering the literature data in Fig. 9, and the suggestion
from Refs. [43,92], in this study, an empirical assumption, 4 ON/
CR, is suggested for the prediction of CR improvement resulting
from the use of high octane rated fuels.

4.2. Engine thermal efficiency improvement from increased CR and
flame speed

This section covers the estimation of engine thermal efficiency
gain by using ethanol blends due to the increase of CR and flame
speed. Engine thermal efficiency depends on various factors: such
as engine design, combustion chamber design, engine operating
conditions (load and speed) and the fuel being used. However,
when the engine operating parameters and engine design (apart
from CR) are the same, the most influential factors on thermal effi-
ciency are the CR and fuel property. In this study, the use of splash-
blended ethanol blends enables a higher CR. In addition, ethanol
has a higher flame speed, therefore, ethanol blends benefit from
a faster burning rate. Faster burning is beneficial for SI engines
because more fuel is burned during the most optimum part of
the engine cycle. Thus, both high CR and a faster burning rate con-
tribute to a higher engine thermal efficiency.

Eq. (18) shows the calculation of engine thermal efficiency,
where the lower calorific value is used for the fuel energy input
calculation.

Engine theraml efficiency¼Work exerted on the piston per cycle
Fuel energy input per cycle

ð18Þ
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In this paper, the intention is not to comment on the specific
engine thermal efficiency at certain operating conditions. The
intention is to show empirical estimations of engine thermal effi-
ciencies across the entire engine map using various ethanol blends.

Fig. 10(a) presents the relative thermal efficiency gain at various
CRs. Fig. 10(b) shows the thermal efficiency gain rate per CR calcu-
lated from the data presented in Fig. 10(a). In both Fig. 10
(a) and (b), the reference codes are given in the legend or x axis,
and their corresponding reference numbers are provided in the
caption. For the reference code ‘L’, the thermal efficiency gain
was calculated based on the theoretical ideal Otto cycle using the
equation: g = 1–1/(CRc-1). c = Cp/Cv, where Cp and Cv are the speci-
fic heat of gas at constant pressure and volume, respectively. In
Fig. 10, only data with a CR in the range of 8:1–14:1, was chosen
to be presented. This is based on the CR distribution of engines cur-
rently on the market. In modern gasoline engines, OEMs generally
choose a CR in the range of 8:1–13:1. There are barely any gasoline
engines with a CR higher than 13, with Mazda claiming that their
SKYACTIV gasoline engine has the world’s highest CR (14:1) in the
marketplace of mass production gasoline engines. Normally, for
CRs above 12:1, the Atkinson or Miller cycle is used with variable
valve timing or a twin-cam mechanism.

When a linear best fitting line is plotted for any cases presented
in Fig. 10(a), the fitting line has an R2 of at least 0.9600. Therefore,
even though it is true that engine thermal efficiency gain reduces
with CR due to the increase in surface/volume ratio and other fac-
tors, within the CR range of 8:1–14:1 it is reasonable to assume
that engine thermal efficiency improvement is linear to CR.

In Fig. 10(b), a statistical analysis of all data points is given. It
shows that an average thermal efficiency gain per 1 unit of CR is
0.018 (1.8%). Paul Miles from the Combustion Research Facility in
Sandia National Laboratories suggested that 1.6–2.0% is a good
estimation for engine thermal efficiency gain per unit increase of
CR [43]. The estimation of 1.8% falls in between 1.6% and 2%; there-
fore, the assumption of 1.8% thermal efficiency gain per CR is used
in this study.

Apart from the fuel’s octane rating and the CR, there are a few
other factors that are important in regards to their effect on engine
thermal efficiency, such as flame speed and engine downsizing.
Flame speed is an important parameter for gasoline fuels. Engine
knocking occurs when the end gas in the combustion chamber is
auto-ignited before the flame ignites it, therefore, higher flame
speed help to reduce the engine’s knocking tendency and thus they
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 Base CR=10.0;  Ref. = B
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 Base CR=9.0;  Ref. = L
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Fig. 10. Thermal efficiency at various compression ratios: (a) thermal efficiency gain rel
[104]; C = [105]; D = [105]; E = [85]; F = [85]; G = [106]; H = [107]; I = [108]; J = [109]; K
increase the engine’s thermal efficiency by allowing more
advanced ignition timings. It is also well known that gasoline fuels
with high flame speeds are more favourable for a lean burn com-
bustion mode; and they are more tolerable to a higher EGR rate,
and more fuel is burned during the most optimum part of the
engine cycle.

According to the data published in Ref. [42], increasing laminar
flame speed from 0.42 to 0.47 m/s enables a 1.47% gain of engine
thermal efficiency. Typical laminar flame speeds for gasoline and
ethanol at atmospheric pressure and temperature are 0.44 and
0.55 m/s, respectively [43]. Assuming that the laminar flame speed
increases linearly with the ethanol content, which is also the case
in Ref. [42], every 10 vol.% ethanol increase in fuel blend leads to a
0.32% increase in thermal efficiency. In Ref. [43], it is suggested
that a 1% increase in thermal efficiency is achievable when the
flame speed is increased from 0.43 to 0.46 m/s. In other words,
every 10% ethanol increase in fuel blends leads to a 0.37% improve-
ment in engine thermal efficiency due to the flame speed. In this
paper, a conservative value (0.20%) will be used for the estimation
of the increase of engine thermal efficiency for every 10 vol.%
increase of ethanol content in blends.

Engine downsizing is a technology that increases engine ther-
mal efficiency by forcing an engine to operate at more efficient
high load regimes, instead of operating at low load regimes where
pumping losses significantly reduce engine thermal efficiencies. In
Ref. [92], it is suggested that the thermal efficiency increase multi-
plier from additional engine downsizing for TC DI engines is 1.1.

5. Case studies for ethanol blends in SI engines

In this section, case studies for ethanol blends in SI engines are
presented. The selected SI engines for these case studies include
NA DISI engines, and TC DISI engines, representing current and
future technologies. K values, 0 and�0.3, will be considered to rep-
resent the average engine K value for NA DISI engines and TC DISI
engines, respectively. The justification of selecting these K values is
provided in the earlier section.

Two base fuels are selected for these case studies. The first base
fuel has a RON and S of 92 and 10 (AKI = 87), respectively, and a
LHV of 41 MJ/kg, representing the main-grade gasoline available
in the US market. The justification is based on a fuel survey con-
ducted for the US main-grade gasolines in 2013 [96]; about 459
winter and summer samples from 30 major metropolitan areas
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= [110]; L = ideal Otto cycle).
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were surveyed. The summary of this survey is presented in Fig. 11.
The second base fuel has a RON and MON of 84 and 74 (AKI = 80),
respectively, and a LHV of 41 MJ/kg. The blend of 10 vol.% ethanol
into the second base fuel leads to E10 that has a RON and S of 90
and 10.8 (AKI = 87), respectively, also representing the main-
grade gasoline available in the US market.

Fig. 12 summaries the octane related parameters for ethanol
blends in the range of E0–E70. As mentioned earlier, EOI = chemi-
cal effect + octane sensitivity effect + cooling effect, in which the
chemical effect is equal to RON minus PCCE (RON-PCCE), the
octane sensitivity effect is equal to �K ⁄ S, and the cooling effect
is equal to ONCE. From Fig. 12, it is clear that the ranking of these
factors is: chemical effect > cooling effect > octane sensitivity
effect. As the ethanol content is increased, the increased rate of
the cooling effect is higher than that of the chemical effect. For
E70, the difference between the chemical effect and cooling effect
is less than only two units. Since the K value for TC DISI engines is
set as �0.3, and the octane sensitivity difference is only 5.6 for E70,
the octane sensitivity effect for E70 is only 1.7 units higher than
that of the base gasoline.

Fig. 13(a) shows the engine thermal efficiency gain and LHV
reduction for ethanol blends in the range of E0–E70. The reduction
of LHV is linear to the ethanol content, whilst the marginal thermal
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efficiency gain decreases with ethanol content. The vehicle’s mile-
age range could be reduced due to the use of low energy density
ethanol blends. However, the reduced LHV can be partially or even
completely offset by improved engine thermal efficiency. For the
NA DISI engine, the engine thermal efficiency gain is always less
than the LHV reduction, whilst for the TC DISI engine, the thermal
efficiency gain outweighs the LHV reduction for ethanol blends up
to E14. Due to the extra octane sensitivity effect, there is more
engine thermal efficiency gains for TC DISI than NA DISI.

In this paper, the vehicle mileage range reduction is simply cal-
culated by subtracting the absolute value of LHV reduction by the
engine thermal efficiency gain (|DLHV|-Dg). The results are pre-
sented in Fig. 13(b). Overall, Fig. 13(b) demonstrates the possibility
of using high ethanol blends without significantly deteriorating the
9,09%

6,77%

23,49%3,65%

56,99%
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Fig. 15. Breakdown of Engine thermal efficiency gain for TC DISI engines: (a) E10; (b) E2
K = �0.3 for the TC DISI engine).
vehicle mileage range. If a maximum of 2% mileage reduction is
considered as acceptable, the maximum ethanol content allowed
is approximately 30 vol.% and 43 vol.% for NA DISI and TC DISI
engines, respectively. If a maximum of 5% mileage reduction is
considered as acceptable, the maximum ethanol content allowed
is approximately 52 vol.% and 63 vol.% for NA DISI and TC DISI
engines, respectively. The LHV of base gasoline is assumed to be
41 MJ/kg, which is within the normal range of gasoline fuels. If
the LHV of base gasoline is higher than 41 MJ/kg, the reduction
of LHV for ethanol blends presented in Fig. 13(a) would be under-
estimated, and vice versa.

Fig. 14 shows the breakdown of engine thermal efficiency gain
under various ethanol blends for NA DISI and TC DISI engines. The
contributors to the improved engine thermal efficiency are the
(d) E50

(b) E20
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24,86%3,87%

55,03%

9,09%

8,67%

30,1%

4,68%

47,46%
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Table 4
Summary of results of the case study for ethanol blends in NA DISI engines using a base fuel with RON of 84 and S of 10.

Ethanol content DONCE DRON - PCCE DEOI g gain from improved CR g gain from flame speed Total g gain LHV reduction LHV reduction - g
Vol.% % % % % %

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.15 0.63 0.78 0.35 0.02 0.37 0.29 �0.08
3 0.46 1.86 2.32 1.05 0.06 1.11 0.87 �0.24
4 0.62 2.46 3.08 1.39 0.08 1.47 1.16 �0.31
5 0.77 3.05 3.83 1.72 0.10 1.82 1.45 �0.37
6 0.93 3.64 4.56 2.05 0.12 2.17 1.74 �0.43
7 1.08 4.21 5.29 2.38 0.14 2.52 2.03 �0.49
8 1.23 4.77 6.00 2.70 0.16 2.86 2.32 �0.54
9 1.39 5.32 6.71 3.02 0.18 3.20 2.61 �0.59
10 1.54 5.87 7.41 3.33 0.20 3.53 2.90 �0.63
15 2.31 8.43 10.75 4.84 0.30 5.14 4.35 �0.79
20 3.09 10.76 13.85 6.23 0.40 6.63 5.80 �0.83
25 3.86 12.84 16.70 7.51 0.50 8.01 7.25 �0.77
30 4.63 14.68 19.31 8.69 0.60 9.29 8.70 �0.59
35 5.40 16.28 21.68 9.75 0.70 10.45 10.15 �0.31
40 6.17 17.63 23.80 10.71 0.80 11.51 11.60 0.09
45 6.94 18.74 25.68 11.56 0.90 12.46 13.05 0.59
50 7.72 19.61 27.32 12.29 1.00 13.29 14.50 1.20
52 8.02 19.89 27.91 12.56 1.04 13.60 15.08 1.48
60 9.26 20.61 29.87 13.44 1.20 14.64 17.40 2.76
70 10.80 20.64 31.44 14.15 1.40 15.55 20.30 4.75
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fuel’s chemical effect, cooling effect and its octane sensitivity
effect, as well as its improved laminar flame speed and the engine
downsizing it enables. For the TC DISI engine, the contribution
ranking is: chemical effect > cooling effect > downsizing effect � -
flame speed effect > octane sensitivity effect. The contribution of
the chemical effect to the engine thermal efficiency gain reduces
with ethanol content. For the NA DISI engine, only the chemical
effect, cooling effect and flame speed effect contribute to the gains
of engine thermal efficiency. The absolute magnitudes of their con-
tributions are the same as those for the TC DISI engines.

Fig. 15 shows a more detailed breakdown of engine thermal
efficiency gains for TC DISI engines when using E10, E20, E30 and
E50 as fuels. The majority of the thermal efficiency gains are
achieved due to chemical effect. For E10, the contribution of the
chemical effect is 57%, and it reduced to 48% for E50. The
dominance of the chemical effect reduces with increased ethanol
Table 5
Summary of results of the case study for ethanol blends in TC DISI engines using a base f

Ethanol
content

DONCE DRON -
PCCE

Octane
sensitivity effect

DEOI g gain from
improved CR

Vol.% %

0 0.00 0.00 0.00 0.00 0.00
1 0.15 0.63 0.02 0.81 0.36
3 0.46 1.86 0.07 2.40 1.08
4 0.62 2.46 0.10 3.18 1.43
5 0.77 3.05 0.12 3.95 1.78
6 0.93 3.64 0.14 4.71 2.12
7 1.08 4.21 0.17 5.46 2.46
8 1.23 4.77 0.19 6.20 2.79
9 1.39 5.32 0.22 6.93 3.12
10 1.54 5.87 0.24 7.65 3.44
13.5 2.08 7.69 0.32 10.10 4.54
15 2.31 8.43 0.36 11.11 5.00
20 3.09 10.76 0.48 14.33 6.45
25 3.86 12.84 0.60 17.30 7.78
30 4.63 14.68 0.72 20.03 9.01
35 5.40 16.28 0.84 22.52 10.13
40 6.17 17.63 0.96 24.76 11.14
45 6.94 18.74 1.08 26.76 12.04
50 7.72 19.61 1.20 28.52 12.83
60 9.26 20.61 1.44 31.31 14.09
63 9.72 20.72 1.51 31.96 14.38
70 10.80 20.64 1.68 33.12 14.91
content, due to the non-linear improvement of the octane rating
with ethanol content. The contribution of the cooling effect
increased from 23% for E10 to 30% for E50. Since the downsizing
multiplication factor for TC DISI engines is set at 1.1, the contribu-
tion of engine downsizing is fixed at 9.1%. The contribution of
flame speed increases from 6.8% for E10 to 8.7% for E50. The con-
tribution of octane sensitivity increases from 3.7% for E10 to 4.7%
for E50.

The summary of results for these case studies for using a base
fuel with a RON and S of 84 and 10 (AKI = 80), respectively, and
LHV of 41 MJ/kg, are presented in Tables 4 and 5 for NA DISI and
TC DISI engines, respectively. The blend of 10 vol.% ethanol into
the second base fuel leads to a E10 that has a RON and S of 90
and 10.8 (AKI = 87), respectively, also representing the main-
grade E10 available in the US market. The results presented in
Tables 4 and 5 show a similar trend with the results presented in
uel with RON of 84 and S of 10.

g gain from
downsizing

g gain from
flame speed

Total g
gain

LHV
reduction

LHV
reduction -
g

% % % % %

0.00 0.00 0.00 0.00 0.00
0.04 0.02 0.42 0.29 �0.13
0.11 0.06 1.25 0.87 �0.38
0.15 0.08 1.66 1.16 �0.50
0.19 0.10 2.06 1.45 �0.61
0.22 0.12 2.46 1.74 �0.72
0.26 0.14 2.85 2.03 �0.82
0.29 0.16 3.24 2.32 �0.92
0.33 0.18 3.63 2.61 �1.02
0.36 0.20 4.01 2.90 �1.11
0.48 0.27 5.29 3.91 �1.38
0.53 0.30 5.83 4.35 �1.48
0.68 0.40 7.53 5.80 �1.73
0.83 0.50 9.11 7.25 �1.86
0.96 0.60 10.57 8.70 �1.88
1.08 0.70 11.92 10.15 �1.77
1.19 0.80 13.14 11.60 �1.54
1.29 0.90 14.24 13.05 �1.19
1.38 1.00 15.22 14.50 �0.72
1.53 1.20 16.82 17.40 0.58
1.56 1.26 17.20 18.27 1.06
1.63 1.40 17.94 20.30 2.36
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Figs. 12–15 where a base fuel with an AKI of 87 is used. Compared
to the ethanol blends with a base fuel that has an AKI of 87, the
ethanol blends with a base fuel that has an AKI of 80 showed a
greater potential of engine thermal efficiency gains due to more
improvement in the octane rating. For example, in a NA DISI
engine, the breakeven ethanol content for a matched vehicle mile-
age range with the AKI80 base fuel is 40 vol.%, whilst when the AKI
87 base fuel is used, there is not an ethanol content that allows a
breakeven vehicle mileage range. In a TC DISI engine, the breake-
ven ethanol content for a matched vehicle mileage range with
the AKI80 base fuel is 55 vol.%, whilst it is 14 vol.% for the AKI87
base fuel.
6. Conclusions

In this study, a critical review and discussion regarding the
application of ethanol blends in spark ignition engines is provided.
The focuses of this study are on the octane rating, cooling effect,
compression ratio increase, potential engine efficiency improve-
ment and possible vehicle mileage range reduction. The following
are the main conclusions:

1. The history of octane rating definition and measurement in CFR
engines are reviewed. It has been proven that RON is a good
indication of fuel’s anti-knock characteristics, but MON showed
a poor correlation. The octane index is proposed in the litera-
ture as a better indicator for characterizing the octane appetite
of modern SI engines.

2. Three reported RON and MON prediction models for ethanol
blends are discussed and compared, including linear molar-
weighted model (LMC), linear volumetric-weighted model
(LVC) and non-linear molar-weighted model (NMC). Addition-
ally, the authors of this paper proposed a new and simple
model. It is proposed that the accuracy ranking of these models
is: authors’ model � NMC > LMC > LVC.

3. The octane-added index (OAI) was proposed to describe the
effectiveness of using ethanol as an octane booster. There exists
an optimised ethanol-blend ratio (40 vol.% ethanol in blends)
that gives the maximum octane value. This optimised blend
ratio is insensitive to the octane rating of the base gasoline.

4. The cooling effect of ethanol is quantitatively described as an
equivalent octane number. The partially captured cooling effect
during the standard RON test is also reviewed and quantified. It
is proven that the cooling effect is a significant factor for sup-
pressing engine knocking.

5. A prediction tool for engine thermal efficiency gain for ethanol
blends was proposed. When adapted compression ratio and
turbo-charging are used, the vehicle mileage reduction caused
by the low energy density of ethanol can be partially or even
fully offset by improved efficiency. When ethanol is blended
with a base fuel that has a RON and MON of 92 and 82
(AKI = 87), respectively, and a LHV of 41 MJ/kg, if a maximum
of 5% mileage reduction is considered as acceptable, the maxi-
mum ethanol content allowed is approximately 52 vol.% and
63 vol.% for NA DISI and TC DISI engines, respectively.

6. The contributors to the improved engine thermal efficiency are
the fuel’s chemical effect, cooling effect and its octane sensitiv-
ity effect, as well as its improved laminar flame speed and the
engine downsizing it enables. The contribution ranking is:
chemical effect > cooling effect > downsizing effect � flame
speed effect > octane sensitivity effect.

Limitation of this review: In this paper, many assumptions
based on literature data are made. For example, the selection of
required octane improvement for enabling one unit increase of
CR is empirical. Ideally, the combustion characteristics of the two
engines with the base CR (base fuel) and the high CR (high octane
fuel) should be kept the same. However, this is challenging, or even
impossible, to achieve across the entire engine operating map. The
K values, 0 and �0.3, are considered to represent the average
engine K value for NA DISI engines and TC DISI engines, respec-
tively. In reality, K values vary across the entire engine operating
map. All of the above assumptions may lead to errors of the final
estimation of engine thermal efficiency gains and vehicle mileage
range reductions. Nevertheless, this paper presents a methodology
of analysing the impact of ethanol blends on modern SI engines in
terms of potential engine thermal efficiency gains and vehicle
mileage range reduction. More experimental data is welcomed to
verify/improve the assumptions/conclusions made in this paper.
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