Quality Infrastructure for Digital Transformation 2023-10-02, Hugo Gasca, CENAM Source: UNIDO. https://www.unido.org/sites/default/files/files/files/2018-08/UNIDO_QI_CASE_FINAL_ONLINE_2.pdf # Digital Transformation Adapted from: Mark Kuster @ 2021 NCSLI Workshop & Symposium ## Digitalisation in measurement Source: P. Krause, FirstSensor GmbH, BMBF-Expertengespräch, 28.08.2014 # M4DT & DT4M https://www.metalmecanica.com www.nist.gov Jimb.Stanford.edu https://www.bestreviewguide.in/metrology #### **Background** 2019 Strategic Bolivia ### **Background** https://www.cenam.mx/m4dt-sim **IADB** Project #### **M4DT a Global Movement** #### DCC Vision (2017) #### Calibration Source: Adaptation from Guasch et al., Quality Systems and Standards for a Competitive Edge, The World Bank, 2007 by Frank Hartig, PTB, 2017. ## SIM Integrated Vision on DT (2022) Digital Certificates for Metrological Servicies #### Levels of Digitalization #### machine-to-machine communication https://www.din.de/resource/blob/8 01106/0251eb1280a9a97e53285d42 d3bf1fea/whitepaper-idis-endata.pdf 5 degrees of digitalization for Smart Standards (ISO/IEC) Digital document Digital representation Machinereadable document Structured document format Software processing with high manual workload Machinereadable and -executable content Content completely (semantically) discovered Semantic search and selective access on content level Earmarked information delivery across several documents #### Machineinterpretable content Information models describing and explaining the content and the relationships between items of information Self-learning analysis together with automatic validation and optimization Value-adding services possible e.g. conformity check, question answering, predictive content supply Fully integrated digital value chain is possible #### Machinecontrollable content The content of a standard is be amended automatically and adopted by automated decision-making processes. Digital standards are based on a system of artificial general intelligence with cognitive capabilities. Digital standards adapt constantly to the current state of the art of technical and regulatory framework conditions. #### SMART programme timeline Shared by David Nix on 2023-09-22 @ Working Meeting - CIPM Forum for Metrology and Digitalization #### IEC/ISO SMART Pilots landscape IEC and ISO partnering with members are initiating pilots to test addressing market needs with SMART standards as well as assessing potential data complexities. | Pilots
Sector | Pilot 1
Quality | Pilot 2
Sustainabilit
y | Pilot 3
Cybersecur
ity | Pilot 4
Content types
(DBs+Vocab) | Pilot 5
SG12 (SIM,
API) | Pilot 6
Electric
Utilities | Pilot 7
Automotive | Pilot 8
PEMs
devices | Pilot 9
Construction | Pilot 10
SMART
authoring | |----------------------|---|--|--|--|---------------------------------|---|---|--|--|--| | Pilot
Objectives | Testing Standards Complexity and Variability in the transformation to a SMART standard. | | | Testing foundations for SMART:
Technology; Vocabulary, Terminology, &
Topics | | Testing Member and End-user Requirements; Roles & Responsibilities | | | | | | Member(s) | Multiple
(SSC,SCC,
SIS, NEN,
UNI) | Multiple
(SSC, SIS,
ABNT, UNI) | Multiple
(SSC, SIS,
NEN, ABNT) | Multiple
(SN, SIS, NEN,
ABNT) | Multiple
+BIPM | NEK | DKE | BSI | AFNOR | DIN | | L-Led
S-Supported | ISO (L)
IEC (S) | ISO (L)
IEC (S) | ISO (L)
IEC (S) | ISO (L)
IEC (S) | IEC (L)
ISO (S) | IEC (L)
ISO (S) | IEC (L)
ISO (S) | IEC (L)
ISO (S) | ISO (L)
IEC (S) | ISO (L)
IEC (S) | | Standard(s) | ISO9000
ISO9001
ISO9002
ISO9004
ISO29001 | ISO14001
ISO37101
ISO50001
ISO20121
IWA 42 | ISO/IEC27002
ISO/IEC27011
ISO/IEC27019 | ISO3166
Guide 73
Guide 2 | Multiple / All
+ISO/IEC80000 | P1:
IEC61968-4,13, IEC61970-
600-2,452, 456
P2:
IEC61970-
302,453,501,552,IEC61970-
600-1 | P1:
IEC62196, IEC62660 | P1:
IEC 60601-1,2-24
ISO13485, 14791
P2:
IEC62304, 62366 | ISO23386
ISO23387
ISO12006-3
ISO16739-1 | ISO25119-1
ISO25119-2
ISO25119-3
ISO25119-4 | | IEC/ISO
Use Case | UC259; UC250; UC217; UC226; UC252;
UC253; UC219 | | | UC249; UC222 | Multiple / All | UC218; UC217,226; UC26
2; UC229; | UC262; UC217,226; U
C222; UC218; UC229;
221 | Modularity and Granularity | UC247;
UC249; UC252;
UC254; UC262;
UC218; UC222 | UC222,
UC217,226 | Shared by David Nix on 2023-09-22 @ Working Meeting - CIPM Forum for Metrology and Digitalization # The Measurement Economy Measurement Consumer Metadata Data **Taxonomy** Modeling **Principles** Accreditation Instrument Certificate Specs Scope Measuring Accreditation Manufacturer Body Entity Source: NCSLI MII & Automation Committee. ## **Advancements in the Region** - Automation of Massive Calibrations - Continuous Monitoring of Smart-Meters - Integrated Plataforms Customer Oriented - Cybersecurity and Authentication of Information - Artificial Vision in Laboratories (OCR +) - New Metrological Services with digital component Digital Twins