PLANO RACIONAL DE FERTILIZANTES

UMA ESTRATÉGIA PARA OS FERTILIZANTES NO BRASIL

MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA, COMÉRCIO E SERVIÇOS

PLANO NACIONAL DE FERTILIZANTES

UMA ESTRATÉGIA PARA OS FERTILIZANTES NO BRASIL

Presidente da República

Luiz Inácio Lula da Silva

Vice-Presidente da República e Ministro do Desenvolvimento, Indústria, Comércio e Serviços

Geraldo José Rodrigues Alckmin

Ministro de Estado Chefe da Casa Civil

Rui Costa

Ministro de Estado da Fazenda

Fernando Haddad

Ministro de Estado da Agricultura e

Pecuária

Carlos Fávaro

Ministro de Estado de Minas e Energia

Alexandre Silveira de Oliveira

Ministro de Estado da Ciência, Tecnologia e Inovação

Luciana Santos

Ministro de Estado do Desenvolvimento Agrário e Agricultura Familiar

Luiz Paulo Teixeira

Ministro de Estado do Meio Ambiente e Mudança do Clima

Marina Silva

Presidente da Empresa Brasileira de Pesquisa Agropecuária

Silvia Massruhá

Presidente da Confederação da Agricultura e Pecuária do Brasil

João Martins da Silva Júnior

Presidente da Confederação Nacional da

Indústria

Antonio Ricardo Avarez Alban

Presidente da Petróleo Brasileiro S.A.

Jean Paul Prates

Ministério da Indústria, Comércio Exterior e Serviços

Secretaria de Desenvolvimento Industrial, Inovação, Comércio e Serviços
Esplanada dos Ministérios, Bloco "J"
Zona Cívico-Administrativa
70053-900
Brasília, DF

Tel.: +55 61 2027-7070

Email: sdic.gabinete@economia.gov.br

Normalização Bibliográfica: Biblioteca do Ministério da Gestão e da Inovação em Serviços Públicos.

Brasil. Ministério da Indústria, Comércio Exterior e Serviços. Secretaria de Desenvolvimento Industrial, Inovação, Comércio e Serviços.

Plano nacional de fertilizantes 2050 : uma estratégia para os fertilizantes no Brasil / Ministério da Indústria, Comércio Exterior e Serviços, Secretaria de Desenvolvimento Industrial, Inovação, Comércio e Serviços. -- Brasília : SDIC/MGI, 2023.

197 p.: il.

Inclui bibliografia: p. 154-156 ISBN 978-65-981379-4-6

1. Fertilizantes – Plano Nacional – 2050. 2. Solo e nutrição de plantas. 3. Agronegócio – Competitividade. 4. Sustentabilidade socioambiental. 5. Produção de fertilizantes. 6. Equilíbrio entre produção nacional x importação. 7. Inovação. 8. Políticas públicas – Fertilizantes. I. Título.

CDU – 631.8(81) CDD – 631.8981

Elaboração do Plano Nacional de Fertilizantes 2050

Elaboração do Plano Nacional de Fertilizantes 2050

Grupo de Trabalho CONFERT

(Resolução CONFERT n. 5 de 31 de julho de 2023)

Membros do GT

Bernardo Silva
Bruno S. A. Caligaris
Carlos Leonardo Teófilo Durans
Cássio A. O. Rodrigues
Cássio M. M. Trovatto
César de Castro
Eduardo Guatimosim
Eduardo Rocha D. Santos
Enir Sebastião Mendes
Fábio Alvares de Oliveira
Fernando Tadeu de Castilho
Gilson Bittencourt
Gustavo Bernardo da Silva
José Carlos Polidoro

Grupo de Trabalho Interministerial

Julia Emanuela Almeida de Souza

(Decreto nº 10.605, de 22 de janeiro de 2021)

Membros do GTI

Joanisval Brito Gonçalves (SAE) Bruno Santos Abreu Caligaris (SAE) Eduardo Henrique Correa da Silva Paranhos Neres (Casa Civil) Giancarlo Bernardi Possamai (Casa Civil) Liane Rucinski (ME) Rogério Fabrício Glass (ME) Antonio Alberto Castanheira de Carvalho (Minfra) José Alexandre Santiago Vieira (Minfra) Mauro Costa Miranda (MAPA) Eduardo Mello Mazzoleni (MAPA) Enir Sebastião Mendes (MME) Daniel Alves Lima (MME)

Liane Rucinski
Maciel Aleomir da Silva
Marcos R. Bertozo
Maria Carolina Correia Marques
Mariana Rodrigues Santos
Miguel Crisostomo Brito Leite
Paulo A. Romano
Paulo César Teixeira
Rodrigo Secioso
Silvana R. Santana
Soraya Carvalho Barrios de Araújo
Thiago de M. Moraes
Tiago Nunes de Freitas Dahdah
Washington Leonardo Guanaes Bonini

Secretaria Executiva (SDIC/MDIC)

Uallace Moreira Lima

Entidades Colaboradoras

Associação dos Misturadores de Adubo do Brasil Federação única dos Petroleiros Instituto Brasileiro de Mineração

Thiago de Mello Moraes (MCTI)
Maguida Fabiana da Silva (MCTI)
Olivaldi Alves Borges Azevedo (MMA)
Antônio Carlos Tinoco Cabral (MMA)
Cel EB Márcio Santos e Silva (GSI)
Cel EB José Placídio Matias dos Santos
(GSI)

Dennys Casellato Hossne (AGU) Raquel Barbosa de Albuquerque (AGU) José Carlos Polidoro (Embrapa) Rafael de Souza Nunes (Embrapa)

Secretaria Executiva (SAE/PR)

Elisa Maria da Silva Neta Joyce Anne Carvalho da Silva Leonel Cerqueira Santos Lorrany Bianca de Herédias Miranda Suripongse Naibert Chimpliganond Tereza Cleise da Silva de Assis

Entidades Colaboradoras

Agência Brasileira de Promoção de Exportações e Investimentos (Apex-Brasil)

Banco Nacional de Desenvolvimento Econômico e Social (BNDES)

Centro de Tecnologia Mineral (CETEM) Centro Universitário de Patos de Minas (UNIPAM)

Companhia de Pesquisa de Recursos Minerais – Serviço Geológico do Brasil (CPRM/SGB)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Empresa Brasileira de Pesquisa e Inovação Industrial (EMBRAPII)

Empresa de Pesquisa Energética (EPE)

Financiadora de Estudos e Projetos (Finep)

Instituto de Pesquisa Econômica Aplicada (Ipea)

Instituto Nacional da Propriedade Industrial (INPI)

Universidade de Brasília (UnB)

Universidade de São Paulo (USP)

Universidade Federal de Lavras (UFLA)

Universidade Federal do Mato Grosso (UFMT)

Universidade Federal do Rio de Janeiro (UFRJ)

Apoio Técnico

Luis Eduardo Pacifici Rangel (MAPA) Pedro Igor Veillard Farias (INPI)

Revisão Gramatical

Marcos Antônio Nakayama (Embrapa)

Normalização

Luciana Sampaio de Araújo (Embrapa)

SUMÁRIO

SUMÁRIOV	Ш
SUMÁRIO EXECUTIVOX	(II
INTRODUÇÃO	13
1. CADEIA DE FERTILIZANTES E NUTRIÇÃO DE PLANTAS	35
1.1. Nitrogênio3	35
Benchmarking Internacional3	35
Diagnóstico3	8
Visão de Futuro4	Ю
1.2. Fósforo	ŀ5
Benchmarking Internacional4	ŀ5
Diagnóstico4	19
Visão de Futuro5	52
1.3. Potássio	55
Benchmarking Internacional5	55
Diagnóstico5	8
Visão de Futuro6	51
1.4. Cadeias Emergentes6	54
Benchmarking Internacional6	54
Diagnóstico6	8
Visão de Futuro	'2
1.5. Ciência, Tecnologia e Inovação9	90
Benchmarking Internacional9	90
Diagnóstico9)3
Visão de Futuro9	98
1.6. Sustentabilidade Ambiental)2
Benchmarking Internacional)2
Diagnóstico)6
Visão de Futuro)9
1.7. Temas Transversais para a Cadeia de Fertilizantes e Nutrição de Plantas11	4
Financiamento11	4
Tributação11	8
Regulação12	21
Infraestrutura e logística	25

	1.8.	Cenários de dependência de importação12	9
2.	DII	RETRIZES, OBJETIVOS ESTRATÉGICOS, METAS E AÇÕES13	3
	2.1. Proje	Diretriz 1 – Modernizaçao, Reativação e Ampliação das Plantas Industriais e dos tos de Fertilizantes Existentes no País	6
	mi 20	eta 1 - Ampliar a capacidade nacional de produção de fertilizantes nitrogenados para 1 hão de tonelada de nitrogênio por ano até 2026; para 2,4 milhões de toneladas até 30; para 2,8 milhões de toneladas até 2040; e alcançar uma capacidade de produção d milhões de toneladas por ano até 2050	e
	nu	eta 3 - Atingir, em termos de capacidade instalada, 1,1 milhão de toneladas/ano em trientes de K2O contido em 2025; 6,3 milhões em 2030; 10,35 milhões em 2040; e 60 milhões em 2050	37
		eta 4 - Aumentar a produção e oferta de fertilizantes orgânicos e organominerais em, o menos, 25% até 2025; 50% até 2030; 200% até 2040; e 500% até 2050	3 7
	pa	eta 5 - Reaproveitar os resíduos sólidos e subprodutos com potencial de uso agrícola ra a produção de fertilizantes e insumos agrícolas em, pelo menos, 10% da produção e 2030; 30% até 2040; e 70% até 205013	88
	rer	eta 6 - Atingir, em termos de capacidade instalada, 5 milhões de toneladas/ano de nineralizadores a partir de produtos e coprodutos até 2025; 7,5 milhões até 2030; 12 hões até 2040; e 16,5 milhões até 2050	88
	pro	eta 7 - Reduzir o consumo de água/energia e aumentar o reúso nos processos de odução de fertilizantes e insumos para nutrição de plantas em pelo menos 10% até 30, 20% até 2040, 30% até 2050	19
		Diretriz 2 – A Melhoria do Ambiente de Negócios no País com Vistas à Atração de timentos para a Cadeia de Produção e Distribuição de Fertilizantes e Insumos para ção de Plantas	39
	Bra	eta 8 – Implementar, até 2025, um programa de fomento à indústria de fertilizantes no asil com o objetivo de garantir cumprimento dos cenários de produção e dependência erna estipulados no PNF	
		eta 9 - Promover ambiente tributário isonômico entre produtos nacionais e importados 202514	
	me Exe	eta 10 - Promover a governança público privada do setor, por meio da realização de pe enos duas reuniões anuais do Plenário do CONFERT e do fortalecimento da Secretaria ecutiva e das Câmaras Técnicas do colegiado com o fornecimento de recursos humanos rçamentários necessários ao seu funcionamento	S
	es _l	eta 11 - Promover a competitividade dos misturadores de adubos e fertilizantes, em pecial pequenos e médios, garantindo o abastecimento de matérias-primas a preços en ndições comerciais transparentes e com políticas compatíveis e acessíveis ao mercado al do agronegócio	
	2.3. Produ	Diretriz 3 – A Promoção de Vantagens Competitivas para o País na Cadeia de ução Mundial de Fertilizantes14	2
	pa	eta 12 - Estimular e difundir boas práticas na produção e uso de fertilizantes e insumos ra nutrição de plantas, nacionais e importados, que minimizem a emissão de GEE em o menos 10% até 2030, 20% até 2040, 30% até 2050	

Meta 13 - Garantir a oferta de fertilizantes por meio da diversificação internacionais, além do estímulo à indústria nacional até 2030	
Meta 14 - Ampliar conhecimento geológico e avaliar o potencial de in potássio e fosfato do Brasil por meio de 15 projetos regionais específic estimulem a pesquisa e a exploração mineral até 2030; 30 Projetos Regionais (P e K) até 2050	icos de P e K que egionais (P e K) até
.4. Diretriz 4 – A Ampliação dos Investimentos nas Atividades em PC perfeiçoamento de Produção e Distribuição de Fertilizantes e Insumos lantas do País	para Nutrição de
Meta 15 - Aumentar a oferta de novos produtos oriundos das cadeias menos 20% para 2025, 50% para 2030, 100% para 2040 e 200% até 2	•
Meta 16 - Incrementar a adoção de bioinsumos para a nutrição de pla melhorar a eficiência de uso de nutrientes e aumentar a adaptação d condições edafoclimáticas adversas para, pelo menos, 25% até 2030, até 2050, da área plantada no Brasil	os vegetais a 50% até 2040 e 75%
Meta 17 - Aumentar a contribuição da fixação biológica em pelo men 50% até 2040 e 100% até 2050 em relação a contribuição da FBN na a	agricultura nacional
Meta 18 - Consolidar e ampliar a Rede FertBrasil como uma rede naci em PD&I na área de tecnologia de fertilizantes e insumos para a nutri representação técnica e institucional de relevância e impacto dos ativ gerados até 2025	ção de plantas, com os de inovação
Meta 19 - Capacitar cerca de 30% dos agricultores familiares em man fertilidade do solo e uso de bioinsumos até 2035	•
Meta 20 - Criar o Centro de Excelência em Fertilizantes e Nutrição de de maneira virtual até 2025 e, de maneira física até 2030, com uma s rede com unidades regionais especializadas em temas do PNF	ede interligada em
Meta 21 - Reduzir as perdas no uso de fertilizantes em, pelo menos, 1 até 2030, 70% até 2050	•
Meta 22 - Criação de mecanismos de fomento do mercado estimulan de matérias-primas ("feedstocks") para a produção de fertilizantes nit conectada à cadeia do hidrogênio verde e biometano, considerando de 5% em massa de "amônia verde equivalente" por ano a partir de 2 20% em 2030	trogenados, um plano de adição 2027 e chegando a
Meta 23 - Promover o aumento do fomento, dentro da esfera de atril competências e orçamento do governo federal, estadual e do setor p em PD&I em fertilizantes, insumos para a nutrição de plantas e sustei ambiental, (incluindo processos de melhoria da saúde do solo)	rivado, para projetos ntabilidade
Meta 24 - Promover o desenvolvimento de capital humano brasileiro Agrárias focado na produção em ciência, tecnologia e inovação de fer para a nutrição de plantas, por meio do aumento na produção de tes mestrado e doutorado sobre o tema em 5% ao ano	tilizantes e insumos es e dissertações de

	para	ta 25 - Aumentar o número de patentes brasileiras referentes a fertilizantes e insum a nutrição de plantas em 36% por década para que o Brasil figure entre os cinco país n mais ativos de propriedade intelectual no setor	ses
	2.5. /iabili	Diretriz 5 – A Adequação da Infraestrutura para Integração de Polos Logísticos e a zação de Novos Empreendimentos	150
		ta 26 - Reduzir os custos de transporte em 15% até 2030, 30% até 2040 e 50% até 0, incentivando a multimodalidade e a interiorização logística	150
	fert	ta 27 - Estimular a criação de estruturas centrais de armazenamento e distribuição c ilizantes em regiões estratégicas para diminuir o custo final dos fertilizantes em, pel nos, 3% até 2025, 10% até 2030, 15% até 2040 e 20% até 2050	0
3.	IMP	PLEMENTAÇÃO, EXECUÇÃO E MONITORAMENTO DO PNF	153
BIB	LIOGI	RAFIA CONSULTADA DE ÓRGÃOS E ENTIDADES	156
LIS	TA DE	FIGURAS	159
LIS	TA DE	TABELAS	161
list	a de s	iglas e abreviaTURAS	162
Ane	exo i -	- Glossário	170
Ane	exo II	– Visão da Infraestrutura Prevista	173
ΑN	EXO II	II – Oficinas de Trabalho	181

SUMÁRIO EXECUTIVO

O Brasil é responsável, atualmente, por cerca de 8% do consumo global de fertilizantes, ocupando a quarta posição, atrás apenas da China, Índia e dos Estados Unidos. O principal nutriente aplicado no Brasil é o potássio, com 38%, seguido por fósforo, com 33%, e nitrogênio, com 29% do consumo total de fertilizantes. Soja, milho e cana-de-açúcar respondem por mais de 73% do consumo de fertilizantes no País. Alimentos historicamente destinados ao abastecimento do mercado interno (como feijão e arroz) ainda apresentam grande margem para ganhos de produtividade agrícola, mas são mais suscetíveis à volatilidade dos preços de insumos agrícolas no mercado internacional. Tal ganho de produtividade pode representar mais empregos e renda para a agricultura familiar no futuro, bem como prover segurança alimentar à população brasileira e promover oportunidades para a indústria nacional de fertilizantes.

No entanto, mais de 80% dos fertilizantes utilizados no País são importados, evidenciando um elevado nível de dependência externa em um mercado dominado por poucos fornecedores. Essa dependência deixa a economia brasileira, fortemente apoiada no agronegócio, vulnerável às oscilações do mercado internacional de fertilizantes.

Esse cenário suscetibiliza diretamente o produtor rural brasileiro. A diminuição da dependência externa por meio do aumento da produção nacional, do desenvolvimento de tecnologias apropriadas ao ambiente de produção brasileiro (tropical), da formação de redes de apoio tecnológico ao produtor rural e aos técnicos e de uma política fiscal favorável ao setor darão ao produtor rural brasileiro preços mais estáveis, maior oferta tecnológica de produtos e tecnologias e aumento de produtividade.

Em resposta a esse cenário, instituiu-se o Grupo de Trabalho Interministerial com a finalidade de desenvolver o Plano Nacional de Fertilizantes (GTI-PNF), visando fortalecer políticas de incremento da competitividade da produção e da distribuição de fertilizantes no Brasil de forma sustentável - Decreto nº 10.605, de 22 de janeiro de 2021. O GTI-PNF tem por objetivos ordenar as ações públicas e privadas para: ampliar a produção competitiva de fertilizantes (abrangendo adubos, corretivos condicionadores) no Brasil; diminuir a dependência externa tecnológica e de fornecimento, mitigando os impactos de possíveis crises; e ampliar a competitividade do agronegócio brasileiro no mercado internacional, respeitando as regulamentações ambientais.

O Plano Nacional de Fertilizantes (PNF) servirá, portanto, como referência para o planejamento do setor de fertilizantes nas próximas décadas, promovendo o desenvolvimento do agronegócio nacional e considerando a complexidade do setor.

INTRODUÇÃO

O Brasil é o quarto maior produtor mundial de grãos (arroz, cevada, soja, milho e trigo), atrás apenas de China, Estados Unidos e Índia, sendo responsável por 7,8% da produção total mundial, e o segundo maior exportador de grãos do mundo, com 19%, alcançando US\$ 37 bilhões em 2020 (Embrapa, 2020). A Tabela 1 apresenta a posição do Brasil no ranking mundial de produção e exportação de alguns produtos agropecuários em 2020.

Tabela 1 - Brasil no ranking mundial de produção e exportação em 2020.

Principais Produtos	Produção	Exportação	Representação mundial nas exportações (2020)
Soja	1º	1°	49,9%
Açúcar	1º	1°	30,3%
Café	1º	1°	25,5%
Carne de aves	2°	1°	20,9%
Carne bovina	2°	1°	14,4%
Milho	3°	2°	19,8%
Algodão	4°	2°	12,4%
Silvicultura	4°	2°	8,9%
Carne suína	5°	7°	4,8%
Arroz	9°	8°	2%

Fonte: Aragão e Contini (2020a). Elaboração DPE/SAE-PR.

As exportações do agronegócio, bem como a produção agrícola, vêm aumentando e apresentam um cenário promissor para os próximos dez anos, conforme Projeções do Agronegócio, Brasil 2019/20 a 2029/30 (Brasil, 2020), nas Figuras 1 e 2 a seguir.

Figura 1 - Produtos com aumento de exportação em 2029/2030.

Figura 2 - Projeções de produção no Brasil para os próximos 10 anos.

Fonte: Mapa (2020). Elaboração DPE/SAE-PR.

Segundo dados da Secretaria de Comércio e Relações Internacionais do Ministério da Agricultura, Pecuária e Abastecimento (Mapa), em 2020, o agronegócio brasileiro foi responsável por 48% do total das exportações brasileiras (Nascimento, 2021). No mesmo ano, o número de empregos relacionados ao agronegócio era de 17,3 milhões, 20,1% do total (Barros et al., 2021).

O Produto Interno Bruto (PIB) do agronegócio brasileiro, calculado pelo Centro de Estudos Avançados em Economia Aplicada (Centro de Estudos Avançados em Economia Aplicada, 2021), da Escola Superior de Agricultura Luiz de Queiroz (Esalq/USP), em parceria com a Confederação da Agricultura e Pecuária do Brasil (CNA) e a Fundação de Estudos Agrários Luiz de Queiroz (Fealq), cresceu 5,35% no primeiro trimestre de 2021, equivalente a R\$ 124 bilhões, frente a 2020, tendo no ramo agrícola um crescimento de 7,99% (R\$ 136 bilhões) (Centro de Estudos Avançados em Economia Aplicada, 2021).

De acordo com a ministra de Estado da Agricultura, Pecuária e Abastecimento, Sra. Tereza Cristina (GlobalFert, 2021b), até 2050, estima-se que o crescimento de produção nacional de alimentos terá que ser da ordem de 40% para atender satisfatoriamente a demanda global, considerando um incremento previsto de mais 2 bilhões de pessoas no mundo. Fertilizantes, portanto, são um insumo estratégico na produção agropecuária brasileira.

Um plano nacional de fertilizantes e insumos para a nutrição de plantas deve ter seu foco nos principais elos da cadeia: a indústria e os produtores rurais. A falta de uma política para o setor desde a década de 1980 tornou o País extremamente dependente por importação de produtos e tecnologias, fazendo com que a indústria nacional decrescesse 30%, enquanto que as importações aumentaram 66% nos últimos 20 anos, além dos custos dos fertilizantes na produção alcançassem mais de 40% em culturas como soja, milho e algodão nesse período. As altas importações de fertilizantes no Brasil tiveram como consequência a externalização de mais de 9 bilhões de dólares em 2020, divisas que poderiam estar gerando empregos e renda dentro do País, caso a indústria de fertilizantes não tivesse encolhido nos últimos 20 anos. Para o Brasil atingir as expectativas mundiais e nacionais de produção de alimentos, ainda de forma agroambiental, o País precisa melhorar seu ambiente de negócios, investir em Ciência e

Tecnologia para o ambiente tropical e garantir investimentos na produção nacional, para não sofrer com crises mundiais de oferta e aumento dos preços desses insumos. As medidas devem readequar o equilíbrio entre a produção nacional e a importação ao atender sua crescente demanda por produtos e tecnologias de fertilizantes, tornando-se um País protagonista no mercado mundial de fertilizantes. Dessa forma, o produtor rural brasileiro ganhará competitividade, e o consumidor poderá contar com segurança alimentar e preços dos alimentos ao alcance da renda de todos os brasileiros.

A CADEIA DE FERTILIZANTES E NUTRIÇÃO DE PLANTAS

Fertilizante é definido na legislação brasileira como "substância mineral ou orgânica, natural ou sintética, fornecedora de um ou mais nutrientes de plantas" (Brasil, 2004). Nutrientes essenciais são aqueles imprescindíveis para que uma determinada planta complete seu ciclo de vida, dentre os quais se destacam: macronutrientes primários nitrogênio (N), fósforo (P) e potássio (K), que misturados compõem as fórmulas NPK; macronutrientes secundários como cálcio (Ca), magnésio (Mg) e enxofre (S); micronutrientes boro (B), cloro (Cl), cobre (Cu), ferro (Fe), manganês (Mn), molibdênio (Mo), zinco (Zn), cobalto (Co) e silício (Si), dentre outros.

A cadeia de fertilizantes é complexa, pois interage com o setor de produção de alimentos, de energia, com as indústrias química, de mineração, de óleo e gás, com o comércio exterior, com o segmento de mistura, entre outros, sendo intenso em logística e infraestrutura (Figura 3).

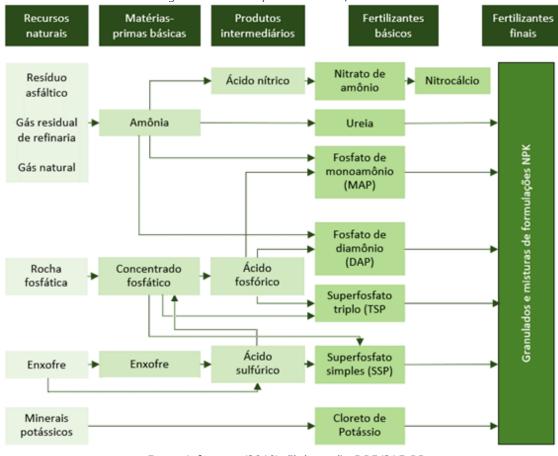


Figura 3 - Cadeia produtiva dos fertilizantes.

Fonte: Informe... (2010). Elaboração DPE/SAE-PR.

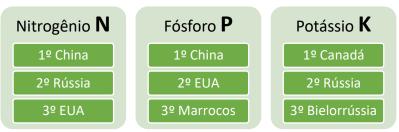
A produção de matérias primas (fertilizantes) e o elo de misturadores de adubos minerais estão diretamente ligados à produção agrícola, sendo indispensáveis a disponibilidade de matérias-primas básicas produzidas a custos economicamente viáveis na distribuição das formulações de fertilizantes aos agricultores e produtores do agronegócio. O desenvolvimento dos fertilizantes minerais possibilitou a industrialização da agricultura, primeiramente na Europa e na América do Norte e, posteriormente, em países em desenvolvimento. A Revolução Verde introduziu práticas agrícolas ocidentais em outras regiões do mundo, o que fez emergir um mercado global bilionário de fertilizantes.

Deve-se ressaltar que, no processo de transferência das práticas e tecnologias de fertilização do solo, de países de clima temperado para países tropicais, verificou-se a incorporação de tecnologias inadequada a solos da região, que são altamente intemperizados, ácidos, de intensa atividade microbiana e ocorrente em regiões de elevada precipitação pluviométrica.

Por causa desta inadequação tecnológica, grandes quantidades de nutrientes aplicados via fertilizantes são perdidas, fazendo com que a eficiência do uso desses insumos na agricultura brasileira esteja ainda muito abaixo do desejável: entre 50 a 70%

para nitrogênio; de 15 a 50% para fósforo; e de 50 a 70% para potássio (FINCK, 1992; RAO, et al. 1992, Cunha, 2014). Por isso, o desenvolvimento e a validação de fontes de fertilizantes utilizando matérias-primas disponíveis no País e daqueles que apresentem alta eficiência em sistemas de produção em ambiente tropical podem representar uma grande contribuição ao setor. Outro impacto positivo do desenvolvimento tecnológico é o incremento da sustentabilidade ambiental que a inovação em fertilizantes pode causar, por exemplo, a mitigação de emissões de gases de efeito estufa (GEE) e outros impactos negativos que o uso de fertilizantes pode causar no ambiente. Tais avanços que ajudarão o País a se consolidar e a se destacar como referência mundial em agronegócio de baixa emissão de carbono, princípios ESG, contribuindo para o Brasil ser a maior potência agroambiental do mundo, cumprindo metas mundiais de redução de GEE e ajudando a melhorar ainda mais a imagem da agricultura brasileira no Brasil e no exterior.

De acordo com previsões do *Department of Economic and Social Affairs Population* da Organização das Nações Unidas (United Nations, 2019), a população mundial deve alcançar cerca de 9,6 bilhões de indivíduos em 2050, tornando imprescindível a utilização de mais terras cultiváveis, e com maior produtividade possível. Daí a importância do uso maciço de fertilizantes, agregado à implementação de novas fontes e tecnologias em nutrição de plantas e agrícolas, para permitir melhores padrões de produtividade por hectare cultivado.


Para enfrentar os desafios da inovação tecnológica no setor, O Brasil conta com uma rede de Ciência e Tecnologia Fertilizantes desde 2009, denominada Rede FertBrasil. Liderada pela Embrapa, reúne a grande parte da competência público-privada que tem em seus pilares o aumento da eficiência agronômica dos fertilizantes; a descoberta de novas fontes de nutrientes na agricultura; e a sustentabilidade ambiental no setor.

O MERCADO GLOBAL DE FERTILIZANTES

A crescente necessidade de expansão das áreas de plantio no mundo implica aumento do consumo de fertilizantes, fazendo-se necessária a criação de novos estímulos para a produção desse insumo agrícola em larga escala global. Segundo a International Fertilizer Association (2020), o mercado global de fertilizantes NPK demandou 190 milhões de toneladas no ano de 2018 (quando consideradas as toneladas de N, P_2O_5 e K_2O).

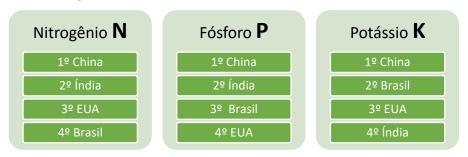
Em 2020, o nitrogênio foi produzido principalmente na China, na Rússia e nos Estados Unidos. Já para os fertilizantes fosfatados, foram China, Estados Unidos e Marrocos, enquanto Canadá, Rússia e Bielorrússia responderam pelos potássicos (Figura 4).

Figura 4 - Maiores produtores de fertilizantes em 2020

Fonte: GlobalFert (2021b). Elaboração DPE/SAE

O mercado de fertilizantes mundial é altamente consolidado. Em 2019, segundo a GlobalFert (2019), as principais empresas produtoras de fertilizantes no mundo foram:

Figura 5 - Principais empresas produtoras de fertilizantes no mundo.



Fonte: GlobalFert (2019).

Segundo dados da Mordor Intelligence (2020), empresa de pesquisa e consultoria de mercado, o mercado de fertilizantes foi avaliado em US\$ 155,80 bilhões em 2019, e estima-se que registre um CAGR (*Compound Annual Growth Rate*), ou taxa de crescimento anual composta, de 2,1%, durante o período 2021-2026.

Em 2020, China, Índia, Estados Unidos e Brasil responderam por mais da metade do consumo global de fertilizantes (58%). A China foi a principal consumidora em nitrogênio, fósforo e potássio, sendo responsável por 24% de todo consumo global.

Figura 6 - Maiores consumidores de fertilizantes em 2020.

Fonte: GlobalFert (2021b). Elaboração DPE/SAE-PR.

A pandemia de Covid-19 afetou os fluxos globais de comércio, dificultando a logística, entrega, exportação e importação de fertilizantes. Essas restrições foram mitigadas por decisões governamentais: em diversos países, as atividades econômicas relacionadas à cadeia de fertilizantes foram consideradas essenciais. Tal evento contribuiu para que os preços em dólar do insumo em 2020 ficassem, em média, 18% menores que no ano anterior (International Fertilizer Association, 2020).

De qualquer forma, a pandemia de Covid-19 demonstrou o risco de se depender fortemente da importação de produtos essenciais para a sustentação de um dos setores mais profícuos da economia nacional. Mais recentemente, esse temor voltou à tona, embora em menor escala, ao se discutir a imposição de sanções econômicas à Bielorrússia, um dos principais fornecedores de fertilizantes potássicos para o Brasil. Por outro lado, a China e, recentemente, a Rússia, limitaram as exportações de fertilizantes em 2021/22, com o objetivo de garantirem o abastecimento local desses insumos e a manutenção de preços ao produtor rural interno para, com isso, proteger as suas economias contra a falta de matéria-prima para produção de fertilizantes, garantindo a segurança alimentar e evitando a elevação dos preços dos alimentos. Essas medidas afetam a safra 2021/22 e ameaçam as safras seguintes de alimentos no Brasil.

Em outra vertente, inovações tecnológicas da indústria devem dar novo impulso ao mercado. Amônia verde, fertilizantes com incorporação de matriz orgânica, reciclagem de nutrientes, novos materiais, insumos de origem biológica, agrominerais, ciência de dados e agricultura de precisão são exemplos de tecnologias que podem impactar substancialmente esta cadeia no horizonte de médio e longo prazo, diminuindo a demanda pelos compostos clássicos de NPK. A pressão por restrições ambientais e regulatórias configuram forças atuantes na dinâmica deste setor.

O MERCADO NACIONAL DE FERTILIZANTES: PANORAMA ATUAL

O Brasil vem presenciando nos últimos anos um forte aumento nas importações de fertilizantes. Estima-se que, em 2022, aproximadamente 85% dos fertilizantes

consumidos no Brasil foram de origem estrangeira, respondendo a produção nacional por cerca de 15% da demanda do País.

Segundo dados da Associação Nacional para Difusão de Adubos (Anda) (2023), em 2022, a importação de fertilizantes totalizou 38,9 milhões de toneladas, volume 11% inferior ao volume registrado no ano de 2021, quando se atingiu o pico de mais de 43,6 milhões de toneladas (ANDA, 2022). A Figura 7 a seguir representa o crescimento das importações ao longo dos anos, partindo de aproximadamente 7,4 milhões de toneladas em 1998 para quase 39 milhões de toneladas em 2022, um crescimento de mais de 500% em pouco mais de duas décadas. No mesmo período, a produção nacional manteve-se na ordem de 7,4 milhões de toneladas, após uma recuperação a partir de 2021, depois de atingir 6,5 milhões de toneladas produzias em 2020, o volume mais baixo registrado no período analisado.

Evolução da Produção Nacional e Importações de Fertilizantes (1996-2022) 45.000.000 90% 40.000.000 80% 70% 35.000.000 60% 30.000.000 25,000,000 50% 20.000.000 30% 15,000,000 20% 10,000,000 5.000.000 10% ■ Produção Nacional Importação Dependência Externa

Figura 7 - Mercado de fertilizantes no Brasil (em volume).

Fonte: Anda (2022). Elaboração: Sinprifert.

Importante salientar que os grandes volumes de importação registrados anualmente no Brasil carecem de infraestrutura logística, portos, estradas adeqaudas para que possam alcançar as regiões produtoras e as fábricas misturadoras de adubos e fertilizantes minerais, espalhadas pelo território nacional. Considerando a importância da distribuição dos fertilizantes, trata-se de uma atividade chave para que os fertilizantes cheguem no tempo certo e na quantidade adequada para o agricultor realizar seu plantio com a tecnologia incorporada nas misturas de fertilizantes. A Figura 7.1 demonstra a capilaridade do elo de mistura no País.

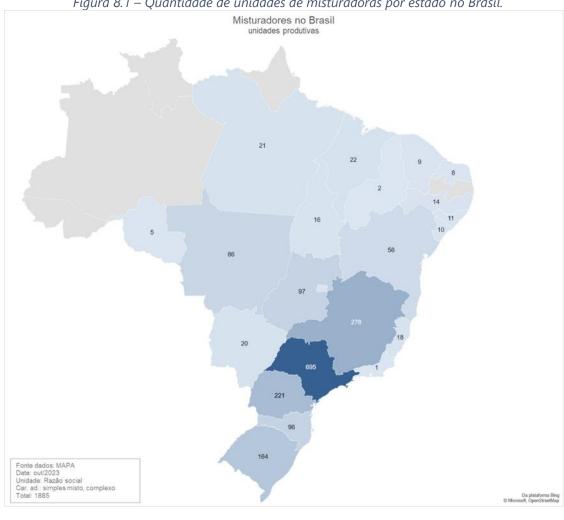


Figura 8.1 – Quantidade de unidades de misturadoras por estado no Brasil.

Fonte: MAPA. Elaboração: SE/CONFERT

De toda forma, a dependência externa por fertilizantes se agrava quando se verifica que o Brasil deverá responder por quase metade da produção mundial de alimentos nos próximos anos, aumentando proporcionalmente a demanda por insumos para nutrição de plantas. Atualmente, o Brasil é o quarto consumidor global de fertilizantes, responsável por cerca de 8% desse volume. Aumentos nos preços desses insumos impactam negativamente nas exportações do agronegócio brasileiro, tornando o produto nacional menos competitivo, uma vez que a maior parte do custo de produção deriva do preço do fertilizante importado.

A queda de competitividade se traduz em menores saldos na balança comercial brasileira e na tendência de gueda no PIB, ambos muito sensíveis ao desempenho das commodities agrícolas. A partir da expectativa de produção para as principais culturas brasileiras consumidoras de fertilizantes e com o auxílio de métodos estatísticos de modelos Statespace, foram elaborados 3 cenários de possível demanda de nutrientes para o Brasil no horizonte de 2030, 2040 e 2050 (Figura 8).

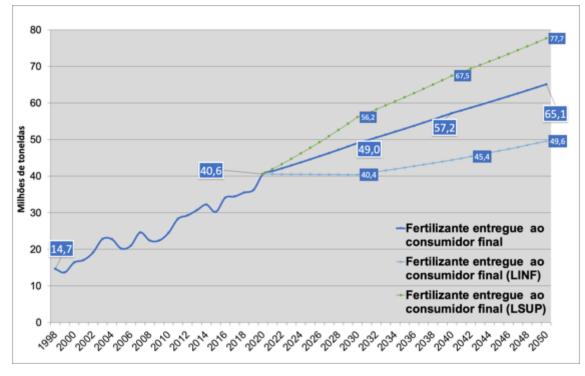


Figura 9 - Possíveis cenários de demanda por fertilizantes no Brasil em 2030, 2040 e 2050.

Elaboração: Mapa, Embrapa e INPI.

O principal nutriente aplicado no Brasil é o potássio, com 38%, seguido por fósforo, com 33%, e nitrogênio, com 29%. Em 2020, soja, milho e cana-de-açúcar responderam por 72% do consumo de fertilizantes no País (Figura 9).

r 72% do consumo de fertilizantes no País (Figura 9).

Figura 10 - Consumo de fertilizantes por cultura em 2020.

Fonte: GlabalFert (2021a).

Segundo a Conab (Boletim..., 2021), os dez países que lideram o ranking de maiores exportadores de fertilizantes para o Brasil são Rússia, China, Canadá, Marrocos, Bielorússia, Catar, Estados Unidos, Alemanha e Holanda.

A importância do Brasil no mercado mundial reside não só em seu volume, mas também no fato de que a sua demanda por fertilizantes se apresenta concentrada no segundo semestre, diferente de outros grandes consumidores, como China e Estados Unidos, que concentram o seu consumo no primeiro semestre.

De acordo com a Heringer (Mercado..., 2021), o consumo nacional depende, principalmente, do preço recebido pelos agricultores (renda), sendo influenciado também pelo preço relativo dos fertilizantes (relação de troca), política agrícola (crédito de custeio, preços mínimos etc.), expectativa de preços futuros e evolução da tecnologia agrícola. A relação de troca favorável permitiu que, em 2020, a importação de fertilizantes fosse 15% superior à média dos últimos 3 anos, totalizando, aproximadamente, 29,4 milhões de toneladas.

A Figura 10 apresenta, em termos monetários, a evolução do peso dos fertilizantes na balança comercial brasileira, por tipo de insumo. Nota-se o aumento expressivo a partir de 2006/2007 que, apesar da queda de demanda de 2009 por conta da crise econômica mundial de 2008, se estabelece em um patamar alto nos anos seguintes.

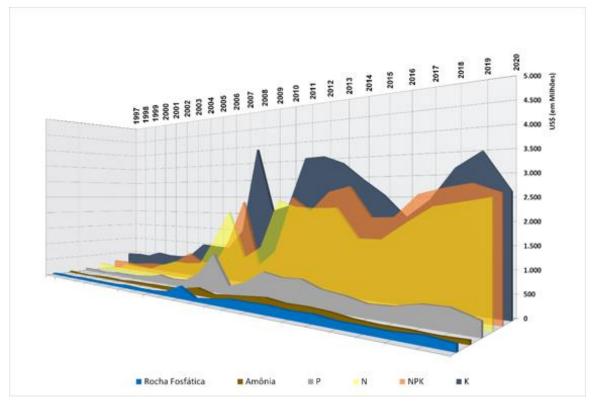


Figura 11 - Importação de fertilizantes nos últimos 23 anos (em US\$).

Fonte: Farias et al. (2021).

No ano de 2021, segundo a Conab (Boletim..., 2021), cresceu a movimentação portuária de fertilizantes nos principais portos do País: Paranaguá, Santos, Rio Grande e São Francisco do Sul, com destaque para a inclusão do porto de Itaqui, sobretudo pela

infraestrutura existente para receber navios de maior porte e atender os estados do Centro-Oeste. No período de janeiro a abril de 2021, os portos de Paranaguá e Santos foram responsáveis por 54% das importações recebidas no Brasil. As questões de infraestrutura são relevantes para a indústria de fertilizantes. A excessiva dependência do modal rodoviário, o alto custo da navegação de cabotagem e a baixa eficiência das operações portuárias são recorrentes queixas do setor. O transporte ferroviário é subutilizado. A utilização da intermodalidade traz vantagens econômicas e ambientais, especialmente para longas distâncias (VURAL et al., 2020). A consolidação de um sistema logístico de distribuição integrado aliado à utilização dos modais de transporte baseados na sua vocação econômica e racionalidade operacional, é capaz de promover a redução dos custos de escoamento e distribuição de mercadorias. Resultando em maior competitividade para o agronegócio brasileiro no cenário internacional.

A PRODUÇÃO NACIONAL DE FERTILIZANTES

O Brasil possui grandes reservas de matérias-primas necessárias à produção de fertilizantes, tais como gás natural, rochas fosfáticas e potássicas e micronutrientes de padrão mundial. Apesar disso, a produção nacional tem sido insuficiente para suprir a demanda interna, ocasionando altas taxas das importações desse insumo e aumentando a vulnerabilidade do País em relação às variações de preços no mercado mundial, de taxas de câmbio, de fretes e de questões logísticas.

As principais empresas formuladoras e distribuidoras de NPK no Brasil, segundo a GlobalFert (2021a), são Mosaic, Yara, Fertipar, Fertilizantes Tocantins (EuroChem Fertilizantes Tocantins) e Heringer (Figura 11). Somado a estes grandes players multinacionais, existem mais de 60 empresas misturadoras com diversas unidades espalhadas pelo território nacional.

28%

Mosaic

Yara

Fertipar

Fertilizantes Tocantins

Cibra

Heringer

Outros

Figura 12 - Market share Brasil 2020.

Market Share Brasil 2020

Fonte: GlobalFert (2021a). Elaboração DPE/SAE-PR.

Conforme dados recentes divulgados pela Anda (2021), em 2020, a produção nacional de fertilizantes intermediários caiu 10,5% em relação ao ano de 2019, totalizando 6.374.264 milhões de toneladas produzidas enquanto o consumo total de fertilizantes foi de 35,6 milhões de toneladas, podendo superar os 40 milhões em 2021.

Tendo em vista a importância estratégica dos fertilizantes para o País, sobretudo frente ao cenário de crise mundial de oferta e preços desses insumos em 2021/22, o País prescinde de uma política setorial de longo prazo, para reduzir a dependência externa e sanar problemas de infraestrutura e de armazenamento, bem como para solucionar as questões tecnológicas, regulatórias, tributárias e ambientais. Além disso, é imprescindível elevar o nível do conhecimento geológico do País para que sejam estimulados os investimentos necessários à pesquisa mineral e descoberta de novas jazidas.

EVOLUÇÃO HISTÓRICA DO SETOR DE FERTILIZANTES NO BRASIL

A indústria de fertilizantes brasileira teve suas primeiras fábricas implantadas nos anos 1940, com o processo de industrialização do País. Até o início da década de 1960, as importações eram essenciais para o atendimento da demanda interna de fertilizantes, pois a produção local era pequena.

Entre 1967 e 1973, com o forte aumento da demanda por fertilizantes devido à política agroexportadora então adotada e ao advento da revolução verde, diversos investimentos na indústria foram feitos para aumentar a produção interna. Em 1971, passou-se a utilizar o gás natural como matéria-prima para a produção de amônia e ureia, o que consolidou a indústria de fertilizantes nitrogenados no País. A partir desse

ano, a demanda por fertilizantes teve considerável aumento, embora limitada pela necessidade de importações adicionais a custos crescentes (Dias; Fernandes, 2006).

Em 1974, foi lançado o I Programa Nacional de Fertilizantes e Calcário Agrícola (1974 a 1980), com objetivo de ampliar e modernizar a indústria nacional de fertilizantes, baseada em capital estatal. Nessa época, ocorreu importante avanço na ocupação do cerrado, iniciada no oeste/noroeste de Minas Gerais. Entre 1980 e 1988, ocorre a consolidação da indústria nacional de fertilizantes, em resposta aos investimentos realizados no período anterior e à implantação do II Plano Nacional de Desenvolvimento (II PND) (Kulaif; Fernandes, 2010).

A redução da dependência externa teve seu ápice no início da década de 1980 e, desde então, ainda que na ausência dos estímulos dos recursos abundantes e baratos do crédito rural subsidiado da década de 1970, ocorreu um crescimento da área agropecuária – e, por conseguinte, do consumo de fertilizantes – sem que tenha havido similar ritmo de incremento da produção nacional, caracterizando uma realidade de aumento da dependência de importações desse insumo estratégico, tornando o País um dos maiores importadores de fertilizantes do mundo (Gonçalves et al., 2008).

Entre o final de 1980 e 1995, ocorreram mudanças nas políticas governamentais em relação aos fertilizantes, com a saída do capital estatal dessa indústria. De 1987 a 1995, vigorou o II Plano Nacional de Fertilizantes que permitiu a concretização de projetos importantes, como a ampliação de produção de rocha fosfática em Araxá/MG, em Tapira/MG e em Jacupiranga/SP (Dias; Fernandes, 2006).

Segundo Dias e Fernandes (2006), os dois Planos Nacionais de Fertilizantes demandaram investimentos da ordem de US\$ 3,5 bilhões, o que permitiu que, no período compreendido entre os anos de 1987 e 2005, a produção nacional de fertilizantes tivesse um incremento de mais de 40% (Embrapa, 2020). Como consequência, houve substituição das importações, geração de renda e emprego e melhoria da eficiência e da produtividade em relação a aspectos agronômicos, tecnológicos e logísticos.

De 1992 a 1994, ocorreu a privatização da indústria brasileira de fertilizantes. No ano de 2010, o Governo Federal chegou a elaborar um novo Plano Nacional de Fertilizantes. Este, porém, não chegou a ser implementado.

O PLANO NACIONAL DE FERTILIZANTES: ANÁLISE ESTRATÉGICA

A despeito da autossuficiência na produção nacional de fertilizantes não ser objetivo da elaboração de um Plano Nacional, não há dúvida de que o estabelecimento de uma estratégia de redução da dependência brasileira de importações é imprescindível. É importante observar também que os principais países produtores de fertilizantes também são os líderes em inovação tecnológica no setor. Dessa forma, para

além do aumento da produção nacional de fertilizantes, é essencial que se fomentem, desenvolvam e disseminem tecnologias para o setor, tanto para o melhor aproveitamento desses insumos, evitando desperdícios e riscos ao meio ambiente, quanto para a geração de soluções mais adequadas para o solo brasileiro.

Há inequívocos aspectos no Plano Nacional de Fertilizantes diretamente relacionados à segurança nacional, tendo em vista os riscos à segurança alimentar decorrentes da expressiva dependência do agronegócio brasileiro em relação ao produto importado. Eventos que acarretem aumento nos preços internacionais dos fertilizantes se refletirão na elevação do custo da cesta básica que, por sua vez, pressionará a inflação de alimentos com reflexos na segurança alimentar.

Além disso, não se pode perder de vista que a revitalização e reestruturação da cadeia de produção nacional de fertilizantes, desde a extração da matéria-prima mineral até a transformação e comercialização do fertilizante ao produtor rural, será um motor de geração de empregos, renda, arrecadação e desenvolvimento regional. Ademais, há oportunidades pujantes em torno de produtos emergentes, como os fertilizantes organominerais e orgânicos, os subprodutos com potencial de uso agrícola, os bioinsumos e biomoléculas, os remineralizadores, nanomateriais, entre outros.

Assim, com o intuito de ordenar as ações públicas e privadas para ampliar a produção competitiva de fertilizantes (abrangendo adubos, corretivos e condicionadores) no Brasil, diminuir a dependência externa tecnológica e de fornecimento, mitigando possíveis crises, e ampliar a competitividade do agronegócio brasileiro no mercado internacional, respeitando as regulamentações ambientais, o presente Plano Nacional de Fertilizantes apresenta os seguintes objetivos estratégicos:

- I. estimular a pesquisa, a exploração e a transformação mineral;
- II. contribuir para a construção de um ambiente de negócios estável e duradouro no País e para a atração de investimentos na exploração, na transformação, no desenvolvimento e na distribuição de fertilizantes;
- III. contribuir na planificação para o investimento e a otimização de infraestrutura e logística, com vistas a atrair investimentos para a distribuição de fertilizantes no País;
- IV. monitorar e avaliar o cenário tributário dos fertilizantes e promover ações destinadas ao tratamento equânime de produtos nacionais e importados;
- V. desenvolver um modelo eficiente de governança para a consecução dos seus objetivos estratégicos e das suas metas;
- VI. estimular um ambiente constante de negociação institucional entre as unidades federativas e os países com os quais o Brasil tenha relações comerciais que envolvam fertilizantes;

- VII. estimular a capacitação de recursos humanos para atuar nas áreas de pesquisa, desenvolvimento, mineração, produção, transformação e em outras relacionadas à nutrição de plantas;
- VIII. estimular a adoção de boas práticas de produção de fertilizantes e na exploração sustentável do ecossistema;
 - IX. estimular a divulgação ampla dos conceitos científicos do PNF 2022-2050, a fim de promover a oferta sustentável e competitiva de fertilizantes e insumos para nutrição de plantas;
 - X. desenvolver modelos de adesão da indústria de insumos para nutrição de plantas às estratégias de sustentabilidade ambiental e social;
- XI. estimular o ambiente de inovação para produtos e tecnologias, com vistas ao desenvolvimento de novas fontes de insumos para nutrição de plantas, de maneira competitiva e sustentável; e
- XII. avaliar os cenários internacionais de exploração mineral, de oferta de matériaprima e de fertilizantes acabados, com vistas à integração da produção brasileira no mercado global.

O Plano, portanto, apresenta a visão desejável da indústria de fertilizantes no Brasil para os próximos 28 anos e apresenta os objetivos estratégicos derivados dessa visão. Além disso, o Plano estabelece metas e propõe as ações necessárias para atingir esses objetivos. Vale ressaltar que essas metas e ações podem ser reformuladas ao longo do período de execução de acordo com as aspirações sociais brasileiras, o ambiente econômico interno e externo e as expectativas do setor.

METODOLOGIA PARA CONSTRUÇÃO DO PLANO NACIONAL DE FERTILIZANTES 2022-2050

A metodologia para a elaboração do PNF 2050 envolveu duas etapas, uma preparatória e outra decisória, de um processo rico em aprendizagem, tanto em termos de acesso a diagnósticos produzidos, como pelo conteúdo dos debates e da troca de experiências durante a realização de reuniões temáticas. Na etapa preparatória, os trabalhos foram divididos em seis linhas de ação, as quais contaram com a participação de especialistas e representantes de outros órgãos e entidades, públicas e privadas, para subsidiar a formulação pelo GTI do Plano Nacional de Fertilizantes. Já a etapa decisória foi reservada aos representantes de cada órgão-membro, conforme estabelece o § 2º do art. 4º do Decreto que o instituiu.

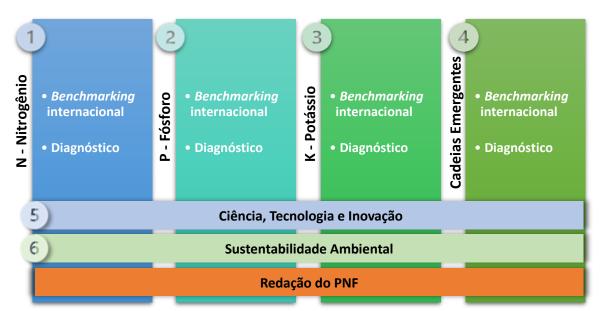


Figura 13 - Metodologia de elaboração do PNF

As fases de *Benchmarking* Internacional e Diagnóstico das seis linhas de ação, bases para a elaboração do PNF, foram resultado de processo participativo baseado em diversas reuniões e oficinas temáticas, com contribuição de mais de 160 pessoas e 60 instituições e de estudos coordenados pela SAE.

No processo de elaboração do *Benchmarking* Internacional, foi selecionada uma perspectiva integrada do setor de fertilizantes no mercado global buscando tendências, melhores práticas e ambiente de negócios globalizado no qual a indústria brasileira de fertilizantes se insere. Nessa fase, obtiveram-se, resumidamente, os seguintes resultados:

N -

N - Nitrogênio

- •Mapeamento de produção, consumo, exportação e importação de nitrogenados: o Brasil é *price taker* em nitrogenados, apesar do alto valor de Gás Natural reinjetado nas plataformas de petróleo.
- •Oferta e demanda globais e regionais na indústria: predomínio da oferta de N sobre demanda no curto prazo.
- •Mapeamento das principais políticas públicas adotadas recentemente em torno da indústria de fertilizantes nitrogenados: China, EUA, Índia, Rússia.
- •Mapeamento do custo de matéria-prima nos países: vantagens comparativas em acesso à gás natural, China e carvão, Índia e LGN.
- •Mapeamento dos empreendimentos recentes em nitrogenados: destaque em China, Índia, Rússia, Argélia, Irã e Nigéria nos últimos anos.
- •Mapeamento dos maiores *players* e concentração de mercado: mais fragmentado que P e K, maior chance de fusões e aquisições.
- •Mapeamento tecnológico de produção de amônia e de fertilizantes nitrogenados: green ammonia no longo prazo, produtos com aumento de eficiência e redução de emissões, fertilizantes líquidos, outros.
- **Desafio:** Diferença de preço entre matéria-prima (gás natural) e produtos (fertilizantes nitrogenados) tem papel preponderante na atratividade da indústria, mas pode ser compensada pela proximidade ao mercado consumidor verificado no Brasil.
- •Oportunidades: Novo Mercado de Gás Natural no Brasil e tecnologias consideradas promissoras à agricultura tropical brasileira, menor desperdício de molécula, diferenciação de produtos.

2 P - Fósforo

- •Mapeamento de produção, consumo, exportação, importação de fosfatados:
- Países e empresas detentores das maiores reservas minerais dominam o mercado internacional - China, Marrocos, EUA e Rússia concentram 73% da produção mundial;
- •OCP Group, Mosaic, Phosagro e Ma´aden produzem em torno de 74 milhões de toneladas de rocha fosfática, com capacidade ociosa estimada entre 50 e 60.
- •Mapeamento das principais políticas públicas adotadas recentemente em torno da indústria de fertilizantes fosfatados: destaque para OCP (investimentos para triplicar processamento entre 2008 e 2027).
- •Mapeamento dos empreendimentos recentes em fosfatados: Ma´aden, OCP e Phosagro.
- •Mapeamento dos maiores *players* e concentração de mercado: indústria mais consolidada que N, menos que K.
- •Mapeamento tecnológico de processos e produtos para a cadeia de fosfatados: Mosaic, Yara, Scotts Miracle, Annuvia e Outros - Tecnologia convencional consolidada, processos térmicos, fontes secundárias de fosfato (resíduos animais, lodo de esgoto, turfa), reguladores de liberação ou solubilidade.
- •Desafios: Processamento do fosfato nacional de baixo teor nacional; Incorporação de matriz orgânica (P&D, CT&I); Gerenciamento de resíduos e subprodutos;
- **Oportunidades:** Proximidade do mercado consumidor brasileiro e grandes *players* já presentes no Brasil e tecnologia endógena.

K - Potássio

- •Mapeamento de produção, consumo, exportação, importação de potássicos:
- Países e empresas detentores das maiores reservas minerais dominam o mercado internacional - Canadá (20% das reservas e 40% do mercado de exportações); Bielorrússia (13% das reservas e 21% do mercado); Rússia (34% das reservas e 20% do mercado).
- Quatro empresas (Nutrien, Mosaic, Uralkali e Belaruskali), que em conjunto produzem em torno de 36 milhões de toneladas por ano (60% do mercado mundial + Alemanha com 12%); Capacidade ociosa; aliança estratégica entre maiores *players* para compartilhar infraestrutura.
- •Mapeamento das principais políticas públicas adotadas recentemente em torno da indústria de fertilizantes potássicos: Canadá, Rússia, Belarus.
- •Mapeamento dos empreendimentos recentes em potássicos: Poucos projetos *greenfield*, como o Petrikov em Belarus.
- •Mapeamento tecnológico de processos e produtos para a cadeia de potássicos: K+S, York Potash, ICL, Yara, Anglo, Mosaic Tecnologia de exploração e beneficiamento convencional consolidada, com destaque potássicos associados a fertilizantes orgânicos.
- Desafios: Desenvolvimento das reservas brasileiras, capazes de abastecer mais de 40% do mercado brasileiro.
- Oportunidade: Proximidade do mercado consumidor brasileiro e grandes *players* já presentes no Brasil.

4 Cadeias Emergentes

- •Organominerais e Fertilizantes Orgânicos: China, Alemanha, Austrália, Rússia, Mercado Europeu, Japão são maiores originários de propriedade intelectual; Aditivos, Misturas com fertilizantes minerais; Adição de fertilizantes orgânicos (Geral); Preparação de fertilizantes a partir de etapa biológica ou bioquímica; Condicionadores de solos; Dejetos animais ou humanos; Turfa/carvão/semelhantes; Fertilizantes caracterizados pela forma; Fertilizantes contendo elementos traço; Inovação em química, Agricultura, Microbiologia e Biotecnologia.
- •Subprodutos com potencial de uso agrícola: Economia Circular; Resíduo *versus* Subproduto; Agricultura de baixo carbono; ACV; Elementos potencialmente tóxicos; Desafios regulamentares.
- •Bioinsumos, Biomoléculas e Bioprocessos: Biofertilizers (inoculantes no Brasil); Base microrganismos; Bactérias fixadoras de nitrogênio; Microrganismos mobilizadores de nutrientes, dentre outros; Biostimulants (biofertilizante ou estimulante no Brasil) a base principal não é de microrganismos e sim produtos (ex: extratos de algas, ácidos húmicos, ácidos fúlvicos etc.; Condicionadores biológicos de solo (base de macrorganismos ou produtos de atividade como bacilos, fungos e metabólitos específicos).
- •Nanotecnologia e automatização de sistemas de recomendação e aplicação de fertilizantes: Nanofertilizantes e nanoaditivos; nanofiltros e nanosensores; materiais avançados; controle de liberação de nutrientes; agricultura de precisão; sensores inteligentes; otimização de aplicação de fertilizantes (menos dependência de moléculas de fertilizantes).
- •Remineralizadores: Fontes alternativas regionais; macronutrientes e micronutrientes; Brasil *player*.

5 6 Ciência, Tecnologia e Inovação e Sustentabilidade Ambiental

- •Materiais críticos; **Economia Circular**; *Clean Technologies*; **ESG**; Potencial de redução nas emissões de CO₂ da agricultura brasileira via fertilização; Análise de Fluxo de Materiais.
- •Principais tendências mundiais em CTI na cadeia de Fertilizantes e Nutrição de Plantas.
- •Fertilizantes mais eficientes (Macronutrientes Secundários, Liberação controlada, Biotecnologia, Nanotecnologia, Organominerais), Sustentabilidade (Reciclagem de nutrientes, Redução de GEE, Captura de Carbono, Redução de emissão de óxido nitroso, Otimização de uso de água e energia, Amônia Verde, Agricultura de precisão, Plataformas tecnológicas);
- •Mapeamento de *players* promotores da CT&I: IFA, Fertilizers Europe, Yara, IFDC, FAI, Rede SUSFERT, BIC, REFLOW, COMPO EXPERT, FTRC, FFTC, RITTMO, Agricultural Research Center, Rothamsted, Wageningen University and Research, Betatech, Sea2land, Haifa, EPIC.

Já o processo de elaboração do diagnóstico, para contribuir com a metodologia escolhida, foi dividido em duas etapas. A primeira consistiu em 12 reuniões com 60 atores externos cujo objetivo foi captar percepções do ambiente de negócios acerca dos principais riscos, oportunidades e barreiras existentes no setor de fertilizantes e afins, em relação a recursos naturais (matérias-primas); questões econômicas e tributárias, infraestrutura, linhas de financiamento, marco regulatório, inovação e outros. Essas reuniões foram divididas da seguinte forma:

Representantes de Produtores Rurais – APROSOJA, ASBRAM, CNA, SRB, OCB e Presidente da Câmara Temática de Insumos Agropecuários;

Representantes das Indústrias Produtoras de Fertilizantes – ABAG, AMA Brasil, ANDAV, ANDA e SINPRIFERT;

Indústrias Produtoras de Fertilizantes Transversais de NPK - MOSAIC, Yara, Grupo Scheffler e ACRON;

Indústrias Produtoras de Fertilizantes Nitrogenados – ABIQUIM, SABIC, UNIGEL e Petrobras;

Indústrias Produtoras de Fertilizantes Fosfatados – Arko Fertilizantes, Galvani Indústria, Comércio e Serviços, IBRAM e SLC Agrícola;

Indústrias Produtoras de Fertilizantes Potássicos - Associação de Empresas de Pesquisa Mineral (ABPM), Mineração Curimbaba, Potássio do Brasil e Verde AgriTech;

Atores Transversais de CE, CTI e SA – ABISOLO, ABRACAL, ANPII, Câmera Temática de Agricultura Sustentável e Irrigação, Campo Fertilidade do Solo e Nutrição Vegetal, Rede FertBrasil e Hinove Agrociência;

Atores Transversais de CE, CTI e SA – Advanced Potash Technologies, Kimberlit Agrociências, Vale S/A, Mineração Morro Verde e FERTIPAR;

Cadeias Emergentes - Grupo Associado de Agricultura Sustentável, INPAS, AGROCP, Associação Brasileira de Carvão Mineral, Croplife Brazil e Rizobacter do Brasil;

CTI - INCT, Comigo, NPCT, Agroprecisa, Fundação ABC, Timac Agro e Rede FertBrasil;

Sustentabilidade Ambiental - Agricultura Orgânica - Câmara Setorial da Cadeia Produtiva da Agricultura Orgânica; AMBIPAR; CONAMA; Cooperalfa; Florestas Plantadas; Haifa Group; RenovaBio e Universidade de Brasília (UnB); e

Atores Estatais – três ex-ministros do Ministério da Agricultura, um ex-prefeito de Uberaba-MG e representantes dos Governos de Sergipe e do Rio de Janeiro;

No intuito de captar de forma mais contundente os riscos e oportunidades do setor de fertilizantes, foi enviado aos atores externos convidados um formulário para que fosse preenchido e enviado previamente à reunião.

Para contribuir com a segunda etapa do Diagnóstico, que diz respeito à construção de um documento contendo uma análise do setor nacional de fertilizantes mapeando demandas, oportunidades, desafios e obstáculos, os *inputs* recebidos pelos atores externos foram categorizados e divididos da seguinte forma:

Categorização dos inputs recebidos pelos atores externos

Infraestrutura
Financiamento
Questões institucionais
Acesso à matéria prima - Nitrogenados
Acesso à matéria prima - Potássicos
Ambiente de Negócios
Sustentabilidade Ambiental
Ciência, Tecnologia e Inovação

Figura 14 - Categorização dos inputs recebidos pelos atores externos.

De posse dos documentos elaborados nas etapas anteriores e para embasar a construção do Plano, foram construídas Visões de Futuro para cada linha de ação com cortes para os anos de 2030/2040/2050, com objetivo de disponibilizar referências para a discussão da estratégia *lato sensu* do PNF.

Os documentos de *Benchmarking* Internacional, de Diagnóstico e de Visão de Futuro, elaborados pelas seis linhas de ação, serviram de base para o Plano e constam, em formato de resumo, no Capítulo 1. Importante registrar que a produção desses documentos, em 90 dias, movimentou cerca de 290 pessoas, de 91 órgãos/entidades/empresas, em 68 reuniões de trabalho.

A partir das Visões de Futuro, foram realizadas 17 oficinas, e os inputs recebidos foram avaliados e classificados em cinco objetivos estratégicos, constantes no Capítulo 2, que se desdobraram em metas e ações que, em acordo com as diretrizes norteadoras de todo o processo de construção do Plano Nacional de Fertilizantes, contribuirão para o setor de fertilizantes e nutrição de plantas. Para a execução das oficinas, foram utilizados os conceitos de análise prospectiva (Grumbach et al., 2020).

Importante destacar que, ao longo de toda a sua existência, o GTI-PNF foi convidado a participar de inúmeras reuniões extras. Nessas oportunidades, os representantes do GTI puderam esclarecer tendências e perspectivas do PNF, ao mesmo tempo em que colheram sugestões e percepções. Exemplos dessas reuniões extras foram audiência pública no Senado Federal e reunião de esclarecimento à Secretaria de Controle Externo de Agricultura e Meio Ambiente do Tribunal de Contas da União (TCU).

Todas essas informações e experiências se somam ao esforço coletivo, coordenado pela Diretoria de Projetos Estratégicos da Secretaria Especial de Assuntos Estratégicos da Presidência da República (DPE/SAE-PR), para produzir um Plano Nacional para o setor de fertilizantes que contribua com o desenvolvimento sustentável do Brasil, em suas dimensões econômica, social e ambiental.

1. CADEIA DE FERTILIZANTES E NUTRIÇÃO DE PLANTAS

1.1.NITROGÊNIO

Benchmarking Internacional

A cadeia de produção de fertilizantes nitrogenados inclui diversas etapas que têm interação com outras cadeias produtivas, além de estar relacionada a insumos que compartilham sua importância entre os setores energético e não energético. Tomando a produção de ureia como exemplo, e considerando-se sua forma tradicional de produção, podemos observar que existem pontos de contato com a cadeia do gás natural, do hidrogênio e da amônia, assim como outros setores produtivos que dependem dos mesmos insumos e intermediários. Na Figura 14, são apresentados alguns exemplos de integração com outras cadeias produtivas.

Metano (CH₄) Hidrogênio (H₂) Amônia (NH₃) Ureia (CH₄N₂O) Fertilizantes Fertilizantes Insumo Insumo energético energético Ciclos de Uso cosmético Gas-to-Liquids Óleos e gorduras refrigeração Uso médico hidrogenadas Gas-to-Chemicals Combustíveis Plásticos Hidrotratamento Metanol aeroespaciais Indústria têxtil Biocombustíveis Polímeros Formaldeído Aditivos para Alimentos Explosivos Polímeros combustíveis

Figura 15 - Cadeia produtiva da ureia e possível integração setorial.

Fonte: Empresa de Pesquisa Energética (2019).

Sendo assim, o mercado de fertilizantes nitrogenados influencia e é influenciado por outros mercados com potencial para competir por insumos e ocasionar em variações nos preços de intermediários, entre outros efeitos. Por outro lado, a integração setorial apresenta grande potencial para diversificar a demanda por cada um dos produtos e permitir ganhos de escopo e escala. As demandas dos diversos setores podem se complementar para otimizar o fluxo de caixa e a utilização de capacidade de tais plantas, principalmente quando possuem um processo produtivo capaz de ser adaptado mediante os condicionantes de mercado. As instalações industriais da cadeia da ureia podem considerar, por exemplo, a produção de insumos para atendimento a mais de um mercado, além de serem observadas oportunidades no sentido de serem instalados módulos produtivos adicionais para realizar operações unitárias que aprimorem os produtos e forneçam diversos compostos ao mercado a partir de um mesmo módulo central que já produza hidrogênio, amônia ou ureia.

No que toca especificamente à produção de ureia, pode ser observado que sua produção se dá principalmente no Leste e Sul Asiático, incluindo China, Rússia e Índia como principais países produtores. A produção mundial de ureia aumentou cerca de 20% nos últimos 10 anos, com manutenção do perfil de produção global que esteve desde 2009 até 2019 centralizado na Ásia. No que tange à produção de amônia, pode ser observado que sua produção também se dá principalmente no Leste e Sul Asiático, porém existe adicionalmente uma contribuição importante da América do Norte, Leste Europeu e Ásia Central nas quantidades produzidas.

Os países com maior potencial de importação de ureia são Estados Unidos, Índia e Brasil, que possuem parque industrial instalado. Todavia, o consumo destes também é elevado. Entre os principais exportadores de ureia, destacam-se China, Rússia, Omã, Catar, Emirados Árabes, Irã e Egito. A China exporta ureia em grande quantidade para a Índia, seu principal parceiro comercial. A Rússia tem o direcionamento do setor de nitrogenados para atender ao mercado externo e possui alta produção de petróleo e gás natural. O Irã, Emirados Árabes, Catar e Omã são grandes produtores de petróleo, possuindo abundância de matéria-prima. Ainda, a região do oeste Asiático (Oriente Médio) apresenta baixo consumo de fertilizantes mundial de produção de amônia, seguida de Índia, Rússia e Estados Unidos.

Os fluxos comerciais internos de amônia e ureia nos países asiáticos incluem vultosas quantias de fertilizantes, com grande influência nos mercados globais no sentido de também haver quantidades que podem ser disponibilizadas para outros continentes. Os mercados asiáticos e do Leste Europeu possuem grande influência sobre os mercados europeus e do Norte da África, dados os fluxos comerciais observados entre as Regiões. Para a América do Norte e América do Sul, destacam-se importantes fluxos de importação de amônia a partir de Trinidad e Tobago, que também apresenta importante produção de gás natural e exportação de GNL. Observando-se os saldos de nitrogênio na forma de amônia e ureia (oferta subtraída da demanda) por Região do

mundo, observa-se que o Oeste da Ásia é o maior exportador de ureia, enquanto a América Latina e o Sul da Ásia são os maiores importadores mundiais do insumo. No caso da Amônia, o Leste Europeu, a Ásia Central e a América Latina são os maiores exportadores, com o Oeste Europeu e o Sul da Ásia sendo os maiores importadores.

Os principais países produtores de amônia no mundo são a China, Rússia, Índia e Estados Unidos. Em seguida observam-se a Indonésia, Trinidad e Tobago, Canadá, Arábia Saudita, Paquistão e Irã, compondo o grupo de 10 maiores produtores mundiais. A indústria de fertilizantes nitrogenados é pouco concentrada mundialmente, com exceção de China que tem capacidade dividida entre grande número de empresas.

Quando comparados os custos médios para a produção de ureia, destacam-se Rússia (US\$ 58/t), Estados Unidos (US\$ 79/t), Canadá (US\$ 54/t), Egito (US\$ 83/t), Catar (US\$ 104/t), Irã (US\$ 85/t), Argélia (US\$ 75/t) e Nigéria (US\$ 48/t) com alta competitividade. Enquanto isso, Índia (US\$ 249/t), China (US\$ 158/t) e Brasil (US\$ 280/t) possuem custos de produção mais altos. O custo do acesso a matéria-prima tem papel relevante nestas composições de preço.

As maiores empresas no setor são Pupuk Indonésia, Qatar Fertilizer Co (QAFCO), Yara, CF Industries, Nutrien, e Indian Farmers Fertiliser Cooperative (IFFCO). Os principais players de mercado atuam em geral por meio de plantas integradas de produção de Amônia e Ureia, principal insumo para a composição de fertilizantes nitrogenados. A indústria é bastante verticalizada a jusante, com grandes produtores de Ureia fornecendo diretamente a produtores agrícolas os mais diversos tipos de fertilizantes para a nutrição de suas lavouras, incluindo misturas de NPK, caso, por exemplo, da Yara e da Nutrien. Há também grandes produtores de Amônia e Ureia pertencentes a grupos produtores de gás ou carvão, atuando, portanto, de forma integrada. No entanto, pode-se dizer que essa não é a regra e o que prevalece no mercado são contratos de fornecimento da matéria-prima. Foram encontrados projetos de expansão da capacidade instalada em Argélia, China, Egito, Índia, Indonésia, Irã, Nigéria Rússia e EUA.

Por conta de preocupações ambientais relacionadas ao uso excessivo de fertilizantes, o planejamento econômico da China, consubstanciado no 13 ° e 14° Planos Quinquenais, estabeleceu objetivos de redução de consumo de fertilizantes, através do uso de produtos com mais tecnologia adicionada. Até 2019, 83% das províncias chinesas haviam logrado, por três anos consecutivos, o objetivo de crescimento zero na aplicação dessas substâncias. Houve um enorme crescimento no lançamento de produtos no mercado, assim como no depósito de patentes relacionados a fertilizantes nitrogenados. É esperado que, nos próximos anos, o segmento de fertilizantes especiais ocupe 30% do *market share* no País e que tais produtos, quando comparados aos tradicionais, aumentem a produtividade agrícola em 15%. Cerca de 75% da produção chinesa de nitrogenados é oriunda de carvão mineral.

Nos EUA, o setor de fertilizantes nitrogenados encontra-se estruturado e consolidado há décadas e se beneficia da diversidade e da competitividade da indústria petroquímica e da oferta de gás natural, combustível intensivamente empregado no processo produtivo. Os EUA são o quarto maior produtor mundial de fertilizantes nitrogenados. A maior parte da produção está concentrada nas proximidades de reservas de gás natural, principalmente nos estados da Louisiana, Oklahoma e Texas. Apesar de grande produtor, os EUA ainda são o segundo maior importador de ureia e amônia do mundo (as tarifas aduaneiras de importação desses insumos é zero). A amônia é produzida por 16 empresas em 35 plantas industriais nos EUA. Um longo período de preços baixos do gás natural permitiu, nos últimos anos, a expansão da produção doméstica e a redução relativa das importações, com destaque para o advento do shale gas na última década. A produção de fertilizantes nos EUA, principalmente com base nitrogenada, está sujeita a diversos regulamentos federais e estaduais. Em 2007, o "Department of Homeland Security" (DHS) implementou o "Chemical Facility Anti-Terrorism Standards" (CFATS), que considera o nitrato de amônia elemento químico de interesse, sujeito a controle do órgão.

A Índia possui um histórico de subsídios para promover o consumo de fertilizantes desde os anos 1970, regulando a venda, preço e qualidade dos fertilizantes. Em vista dos crescentes déficits orçamentários, foram operadas mudanças para grande parte dos fertilizantes no início dos anos 1990, mas a ureia continuou a ser subsidiada. Desde 2015, dentro da política de "*Make in India*", o governo iniciou novo programa de produção de ureia, que exacerbou o uso de gás natural (muitas vezes, sob a forma de GNL) e aumentou consideravelmente os gastos governamentais para apoiar a produção de fertilizantes. Boa parte é suprida via importação. A expansão do consumo de fertilizantes nos últimos 17 anos teve um papel preponderante sobre o aumento da produtividade agrícola que foi verificado neste mesmo período. Analistas sugerem haver necessidade urgente de o setor mudar seu foco para a promoção de um espectro equilibrado, observando os micronutrientes como enxofre, zinco, boro, ferro, manganês e cobre, que estão diminuindo no solo indiano a uma taxa alarmante.

Já no caso da Rússia, um Plano publicado em 2018 prevê apoio do governo – como financiamento estatal e acesso a fontes de matéria-prima a preços competitivos – a projetos de investimento no setor, ao desenvolvimento de infraestrutura logística, ao aumento da exportação e ao incremento do consumo doméstico. Prevê, ainda, maior eficiência na estrutura tributária do setor, para reduzir os custos ao longo da cadeia produtiva.

Diagnóstico

Em 2020 foram produzidas 224.000 toneladas de fertilizantes básicos nitrogenados no Brasil (em termos de nitrogênio contido), valor capaz de suprir 4,3 % da demanda no mesmo ano - em 2010 o valor era de 20,7% e em 2000, de 38,7 %. Caso

operasse toda sua capacidade instalada em 2020, direcionando-a para a produção de fertilizantes básicos nitrogenados, a indústria brasileira seria capaz de suprir 17,6% da demanda anual. Estima-se que em 2050 a demanda em toneladas de fertilizantes nitrogenados (N contido) pode dobrar.

No Brasil, o setor de fertilizantes nitrogenados tem como foco predominante o uso de gás natural como matéria-prima, permitindo a produção de amônia e/ou ureia. Atualmente existem no Brasil quatro unidades de fertilizantes nitrogenados:

- Unigel Agro BA (antiga FAFEN-BA), atualmente arrendada para a Proquigel com produção de amônia e ureia;
- Unigel Agro SE (antiga FAFEN-SE), atualmente arrendada para a Proquigel com produção de amônia, ureia e sulfato de amônio;
- Yara Brasil (antiga Vale, em Piaçaguera), em operação com produção de amônia e nitrato de amônio; e
- Araucária Nitrogenados S.A. (antiga FAFEN-PR), atualmente hibernada, administrada por subsidiária da Petrobras e encontra-se em processo de arrendamento (já passou por negociações junto ao Acron Group) - produzia amônia e ureia a partir de resíduo asfáltico.

Existem ainda três projetos de FAFENs que foram anunciados ou tiveram sua construção iniciada em anos anteriores, porém não se encontram concluídos ou em construção: (1) Projeto da UFN III, em Três Lagoas/MS, teve seu processo de construção iniciado, porém atualmente se encontra em processo de venda, já tendo passado por negociações junto ao Acron Group; (2) Projeto da UFN IV, em Linhares/ES, retirado do portfólio da Petrobras em 2013; Projeto da UFN V, em Uberaba/MG, retirado em 2016 do portfólio da Petrobras.

Enquanto a FAFEN-BA e a FAFEN-SE recebem gás natural a partir da malha de transporte da TAG passando pelas respectivas companhias distribuidoras locais (CDLs) de gás natural, a FAFEN-PR recebia a matéria-prima diretamente da Refinaria Presidente Getúlio Vargas – REPAR. Os volumes de gás natural consumidos incluem uma parcela utilizada como matéria-prima para a produção de hidrogênio, e outra utilizada como combustível para a operação da planta e suas unidades.

A infraestrutura de escoamento, processamento e transporte de gás natural, hoje, se encontra localizada principalmente ao longo do litoral, com exceção do GASBOL que passa pelo interior do Mato Grosso do Sul e São Paulo. Novos projetos de gasodutos de transporte têm sido estudados, e estes mesmos trechos poderiam vir a ser atendidos por GNC em pequena escala ou GNL. Assim, existem diversas opções para o fornecimento de gás natural a novas FAFENs, próximas ou distantes da malha de gasodutos transporte existente, devendo cada caso ser estudado detalhadamente para avaliar as parcelas de

custo envolvidas na entrega de gás natural aos empreendimentos e os preços máximos para competitividade do fertilizante produzido pelas plantas.

A competitividade dos fertilizantes depende fortemente dos custos de investimento em plantas produtoras, dos custos de operação das instalações, dos custos de matérias-primas e dos preços de venda dos produtos finais. Enquanto em países como os EUA o Índice Henry Hub esteve abaixo do valor de US\$ 2/MMBtu em 2020, no Brasil o valor praticado do gás natural para o setor industrial muitas vezes ultrapassou US\$ 12/MMBtu em alguns estados. Neste sentido, o preço do gás natural tem sido observado não só nos estudos de caso elaborados sobre o assunto, mas também nas entrevistas com agentes do setor, como um fator primordial para a viabilidade da produção nacional de amônia e ureia.

Espera-se que a entrada de novos agentes no setor de gás natural, além da maior competição e liquidez nos novos contratos, possa aprimorar a competitividade do gás natural como matéria-prima para a indústria de nitrogenados. Adicionalmente, o cadastramento dos agentes produtores de fertilizantes nitrogenados como consumidores livres no âmbito do Novo Mercado de Gás poderá permitir a negociação de seus próprios contratos de fornecimento de molécula, além do pagamento de tarifas de uso do sistema de distribuição (TUSD) específicas para este segmento e faixa de consumo.

No ano de 2020, o Brasil consumiu cerca de 40,5 milhões de toneladas de fertilizantes NPK e aproximadamente 5,3 milhões de toneladas correspondem ao nitrogênio contido. O consumo de nitrogenados ocorreu nas Regiões Centro-Oeste (32%), Sudeste (31%), Sul (25%) e Norte/Nordeste (12%). Em termos da demanda prevista para fertilizantes nitrogenados no Brasil em 2050, considerando a capacidade existente para produção de ureia no País, há espaço para até 5 novas FAFENs de grande porte, em um cenário onde a demanda interna seja completamente atendida pela produção nacional em 2030. Uma destas novas plantas pode vir a ser a UFN III, que já teve sua construção iniciada, enquanto as 4 adicionais poderiam tratar de projetos anunciados ou novos projetos. As projeções podem ser fortemente influenciadas pela evolução das expectativas quanto a (i) demanda de fertilizantes para a produção de alimentos, tanto para consumo interno quanto para exportação – seja por expansão da área plantada ou por ganho de produtividade agrícola; (ii) demanda de fertilizantes para o setor sucroenergético, que pode variar de acordo com o cenário econômico e com as perspectivas de descarbonização; (iii) demanda de ureia para outros setores industriais.

Visão de Futuro

O Nitrogênio (N) utilizado como a matéria-prima básica para a produção de fertilizantes nitrogenados, como amônia e ureia, encontra-se prontamente disponível no ar. Por outro lado, o hidrogênio a ser utilizado na produção dos fertilizantes deve ser

produzido, empregando-se para tal fontes diversas tais como gás natural, nafta, carvão, resíduos asfálticos. No Brasil, assim como na maioria dos países, a principal fonte de hidrogênio é o gás natural, cujo preço no País é elevado em comparação ao restante do mundo. Isto posto, pode-se considerar que a evolução da indústria do gás natural ao longo do tempo terá considerável influência na produção de fertilizantes nitrogenados no Brasil, principalmente por conta de questões relacionadas aos preços deste energético e da infraestrutura para fornecimento do combustível.

Em 2019, foi lançado o Programa Novo Mercado de Gás, programa do Governo Federal que visa à formação de um mercado de gás natural aberto, dinâmico e competitivo, promovendo condições para a redução do seu preço e, com isso, contribuir para o desenvolvimento econômico do País. Este programa visa a formação de um mercado de gás natural concorrencial no País, de forma que o preço do gás natural seja determinado pelas forças de oferta e demanda, ou seja, pelas condições do mercado.

O novo Marco Legal, recentemente aprovado, permitirá que haja um mercado com pluralidade de agentes, maior concorrência e mais investimentos. Com a estruturação de um mercado atacadista de gás natural abrangendo todo o sistema de transporte de gás natural e com a eliminação de barreiras para a participação de vários agentes do lado da oferta e da demanda, o preço refletirá a concorrência no que tange à molécula, ao passo que os custos da movimentação, tanto no transporte como na distribuição, estarão sujeitos à exigência de maior transparência.

Embora os efeitos do Programa Novo Mercado de Gás e o novo equilíbrio de preço do gás natural no Brasil ainda estejam sendo definidos, é relevante notar que o preço do gás nos países é bastante influenciado por questões internas (características geológicas, custos e volumes de produção e de demanda etc.), de modo que não é razoável esperar que o preço no Brasil atinja patamares observados em países que apresentam grande produção de fertilizantes nitrogenados, como é o caso dos EUA (pós fenômeno do *shale gas*) e de países com grande produção de gás de baixo custo, como no Oriente Médio e na Rússia.

Adicionalmente, espera-se que os avanços trazidos pelo novo Marco Legal e pelo Programa Novo Mercado de Gás resultem em ampliação da infraestrutura de gás natural brasileira, tanto em questão de oferta (através de novas unidades de processamento de gás natural ou terminais de GNL) quanto em relação a gasodutos, visto o ambiente de negócios mais favorável para entrada de novos agentes. Essas ampliações poderão permitir uma instalação otimizada das unidades de produção de fertilizantes, mais próxima aos locais de consumo, devido à existência de uma maior cobertura de dutos e ofertas de gás natural ao longo do País.

Neste sentido, a Figura 15 mostra os resultados das análises logísticas de Empresa de Pesquisa Energética (2020) quanto à implantação de novas FAFENs, evidenciando três novas localidades que otimizariam o abastecimento de fertilizantes nitrogenados para

os centroides das lavouras (Cuiabá/MT, Uberaba/MG e Passo Fundo/RS). Pode-se perceber, pela figura, a necessidade de ampliação das infraestruturas de gás natural para abastecimento de dois dos clusters destacados, demonstrando o potencial que os aprimoramentos a serem obtidos com o novo Marco Legal e o Programa Novo Mercado de Gás podem trazer para a indústria de fertilizantes nitrogenados.

720 km 235 km 240 km 230 km 250 km 270 km 27

Figura 16 - Resultados das análises logísticas e distância até os centros estaduais das lavouras.

Fonte: Empresa de Pesquisa Energética (2020).

Deve-se destacar também o potencial de ampliação da oferta de gás no Brasil ao longo do horizonte até 2050 cujos volumes poderiam atingir valores entre 340 e 450 milhões de m³/dia, através de gás convencional, recursos não convencionais e importações. Nesse horizonte analisado, tanto os recursos convencionais como os não convencionais podem vir a desempenhar um papel relevante como novas ofertas de gás próximas aos pontos ótimos apontados na Figura 16. A localização desses potenciais pode ser visualizada na Figura 16a, devendo-se atentar para a localização dos recursos não convencionais na Figura 16b: gás de folhelho, gás em formação fechada, hidratos de metano e metano de carvão.

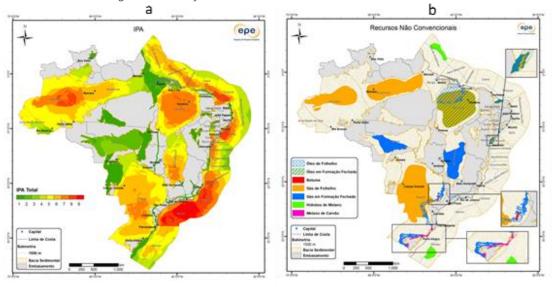


Figura 17 - Players de recursos não convencionais no Brasil

Fonte: Empresa de Pesquisa Energética (2019).

Também foi estudada a competitividade de plantas de ureia no Brasil, analisando-se os preços do gás natural que tornariam tais empreendimentos viáveis. Realizou-se um exercício de sensibilidade sobre os preços de longo prazo da ureia e também variando-se a taxa de desconto utilizada. Na Tabela 2, são apresentados os resultados obtidos em relação ao preço máximo do gás natural que viabilizaria tais empreendimentos.

Tabela 2 - Preços máximos do gás natural (em US\$/MMBtu) para diferentes combinações de preço da ureia e taxa de desconto.

Taxa de	Variação no preço da ureia				
desconto	600	500	400	300	200
8%	22,4	17,4	12,3	7,2	2,1
9%	21,6	16,5	11,4	6,3	1,3
10%	20,7	15,6	10,5	5,4	0,4
11%	19,7	14,6	9,6	4,5	-
12%	18,7	13,6	8,6	3,5	-

Fonte: Empresa de Pesquisa Energética (2019).

A partir dos resultados apresentados, pode-se perceber que o preço da ureia influencia fortemente os preços máximos de gás natural para que a planta seja viável; ou, por outro lado, o preço do gás natural influencia de forma importante os preços aos quais a ureia deve ser vendida para promover a viabilidade do empreendimento. Assim, conforme mencionado, os resultados do Programa Novo Mercado de Gás e o Novo

Marco Legal do Gás terão impacto relevante nos preços futuros de gás natural e, por consequinte, no dos fertilizantes nitrogenados.

Percebe-se ainda que a viabilidade do empreendimento depende fortemente das condições nas quais irá ocorrer a competição entre a ureia produzida pelo empreendimento e a ureia disponível no mercado: em regiões portuárias, onde seu preço seria próximo ao preço FOB, ou no interior do País, onde seu preço seria próximo ao valor de compra pelos consumidores. Desse modo, plantas localizadas próximas a portos importadores de fertilizantes deveriam ser viáveis com preços menores de gás natural, enquanto, para plantas localizadas próximas aos centros consumidores e às lavouras, o preço de gás natural poderia ser maior.

Convém novamente destacar que os aprimoramentos decorrentes do Novo Marco Legal e do Programa Novo Mercado de Gás (maior competição entre agentes com possibilidade de redução dos custos do gás natural e ampliação de infraestrutura) poderiam permitir que, no futuro, novas plantas de fertilizantes pudessem se instalar em locais próximos aos centros consumidores, valendo-se das diferenças destacadas nos preços dos fertilizantes e do gás natural. Na Figura 17, são apresentados os preços de gás que viabilizariam os empreendimentos, destacando-se cada uma das duas situações.

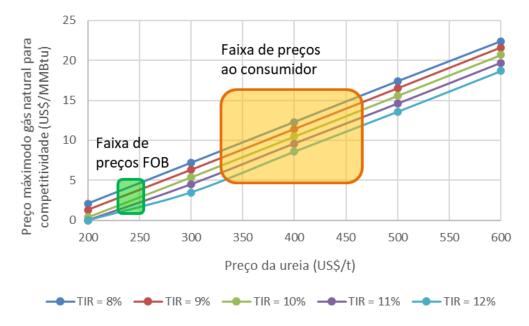


Figura 18 - Preço do gás natural para viabilidade de plantas de ureia.

Fonte: Empresa de Pesquisa Energética (2019).

A Figura 18 apresenta projeção de demanda de N contido nos fertilizantes.

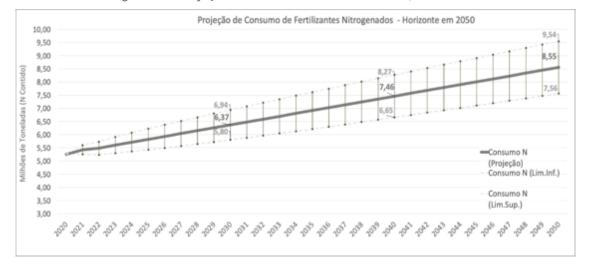


Figura 19 - Projeção de demanda de N contido nos fertilizantes.

Fonte: Elaboração MAPA, EMBRAPA e INPI.

Outra questão que pode ter conexão com a expansão das FAFENs no futuro são as estratégias que venham a ser estabelecidas para a produção de hidrogênio, conforme está sendo estudado no Programa Nacional do Hidrogênio (estabelecido pela Resolução CNPE nº 6/2021). Diversas formas de produção de hidrogênio – a partir de gás natural, biometano, hidrólise de água, com ou sem captura e armazenamento de carbono – podem prover matéria-prima para as FAFENs, o que reduziria seu custo devido à remoção do módulo de reforma a vapor, podendo também reduzir o preço dos fertilizantes produzidos e a pegada de carbono destes.

Destaca-se a fixação biológica de nitrogênio e a necessidade de expandir os benefícios dessas tecnologias para outras culturas, além da soja. Certamente, esse é o caminho para o setor contribuir para o aumento do aporte de N e aumento da eficiência de outros nutrientes como o P. No curto espaço de tempo, até cinco anos, acredita-se que será observado um aumento acentuado de oferta de novos produtos, embora baseados no já atualmente disponível no mercado, ou seja, não se esperam novidades importantes. Por outro lado, num médio prazo, de 5 a 10 anos, acredita-se que novos produtos baseados em consórcios microbianos mais complexos comecem a chegar ao mercado.

1.2.FÓSFORO

Benchmarking Internacional

Os fertilizantes fosfatados têm como matéria-prima básica a rocha fosfática, com uma participação do enxofre e da amônia dentro de sua cadeia produtiva. Dessa forma, é necessário conhecer os segmentos a montante (*upstream*) da cadeia do fosfato, devido à transversalidade com as cadeias do enxofre e do nitrogênio.

Existe uma dificuldade em reunir os dados de recursos e reservas mundiais numa base única, tendo em vista que ainda não existe uma unificação na forma de reportar os dados por diferentes países. Historicamente, entre 1994 e 2000, as reservas mundiais contabilizadas eram dominadas por China, Marrocos, Estados Unidos e África do Sul. O primeiro pequeno salto ocorreu entre 2000 e 2001, quando passaram a ser agregadas reservas na Austrália e Canadá. Entretanto, o salto mais significativo na evolução das reservas mundiais se dá com agregação de novos dados do Marrocos em 2009, resultando num aumento de 5,7 bilhões de t para 50,0 bilhões de t. A essa evolução também foram agregadas as reservas de outros países no norte da África e Oriente Médio. Para o ano base 2020, são reportadas reservas mundiais de fosfato da ordem de 71 bilhões de toneladas. Os principais países detentores dessas reservas são Marrocos e Saara Ocidental (71%), seguidos por China, Egito, Argélia e Síria. Os depósitos de origem sedimentar são a principal fonte, seguidos por tipologias ígneas e tipo ilha ou guano. Ainda, os recursos mundiais são de mais de 300 bilhões de toneladas.

A maior parte destas mineralizações está inserida hoje em áreas continentais. Entretanto, novos recursos de fosfato estão sendo identificados, dimensionados e viabilizados economicamente nos oceanos, geralmente associados a plataformas continentais e *seamounts*. Depósitos significativos de fosfato magmático (normalmente com teores em P₂O₅ mais baixos, 4% a 16%) são encontrados na Rússia (que detém os maiores teores de fosfato associado a rochas magmáticas), no Brasil, Canadá, Finlândia e África do Sul. Esses depósitos apresentam interações físicas e mineralógicas mais complexas devido aos processos magmáticos, o que traz uma maior dificuldade no processo de lavra e beneficiamento.

Com relação à produção mundial, constatou-se um crescimento exponencial de 1945 até 1991, seguido de uma queda no período de 1991 até 2001 e uma expressiva expansão de 2001 a 2020, com aumento de cerca de 63% nos últimos 10 anos, chegando a atingir 265 milhões de t em 2017, e, a seguir, queda de 15%, para 223 milhões de t em 2020. Os quatro maiores produtores de rocha fosfática são a China (80-144 milhões de t/ano), Marrocos (36 milhões de t/ano), EUA (21-23 milhões de t/ano) e Rússia (11-13 milhões de t/ano). Em conjunto, esses países respondem por cerca de 73% da produção mundial. Países como Brasil, Jordânia, Vietnã, Arábia Saudita, Egito, Peru, África do Sul, Finlândia, Austrália, Israel e Senegal produzem entre 1 e 10 milhões de t/ano. A China praticamente dobrou sua produção em 8 anos (de 2009 a 2017), passando de 60 milhões de t/ano para 144 milhões de t/ano.

De 2010 a 2019, a capacidade ociosa global teve uma queda de 88 para 55 milhões de t. As exportações mundiais de rocha fosfática em 2019 foram da ordem de 29 milhões de t, 4% menor que em 2018, dominada pelos países do norte da África. Nos últimos anos, as exportações têm representado entre 14% e 15% da produção mundial. Alguns importantes produtores como China e EUA não são grandes exportadores. O foco maior da produção é o abastecimento de seus mercados domésticos. A produção de

ácido fosfórico é liderada por três países com maior capacidade de produção, China, Marrocos e EUA, que juntos representam 60% da capacidade mundial (ano base 2019). A capacidade global de produção de fertilizantes fosfatados é estimada em 46,1 milhões de t em 2020 (DAP-28,9 milhões de t > MAP-13,1 milhões de t > TSP-4,1 milhões de t), também dominada por China, Marrocos e EUA.

Novos investimentos indicam aumento da capacidade produtiva de produtos intermediários e fertilizantes, mais significativamente, no Marrocos e Rússia. A tendência mundial é que empresas fabricantes de produtos intermediários e fertilizantes fosfatados, que investiram alto em rotas de processo, passem a importar a rocha fosfática para alimentar suas usinas. Os custos de aquisição de amônia e do enxofre também exercem uma forte influência nos custos de produção de fertilizantes.

Em relação ao enxofre, a produção mundial estimada em 2020 foi de 78 milhões de t, com China, EUA, Canadá e Iraque sendo os principais produtores. Entretanto, a produção chinesa é voltada para o consumo doméstico, visto que a China também é um grande importador do enxofre. Em 2019, por volta de 70% a 76% da produção mundial global de enxofre foi resultante do processamento de combustíveis fósseis, frente a aproximadamente 14% a 23% recuperados a partir de sulfetos e minerais sulfetados. Os principais fornecedores de enxofre ao Brasil, em 2019, foram Rússia, Cazaquistão e Estados Unidos, e, de ácido sulfúrico, Espanha, Bélgica e México. O Marrocos também é um importante importador de enxofre para sua produção de fertilizantes.

A expectativa de analistas industriais é que haja um aumento da produção mundial para 261 milhões de toneladas em 2024. As principais empresas produtoras de fosfato no mundo são: Mosaic Co. (EUA, Brasil), S.A. OCP (Marrocos/Saara Ocidental), Nutrien Ltd. (Canada), EuroChem (Suíça), Innophos Holdings Inc. (EUA), ICL (Israel), Jordan Phosphate Mines Co. PLC (Jordânia), PhosAgro (Russia), e Ma'aden-Saudi Arabian Mining Co. (Arabia Saudita).

Em 2020, a demanda global por P_2O_5 foi de 46 milhões de t. Essa demanda mundial tem crescido a uma taxa anual de 2,2%. A expectativa de curto prazo é que a demanda diminua em vários países, levando a uma redução na taxa de crescimento da demanda para 1,1% a.a. até 2024. O mercado global de enxofre, estimado em 64,1 milhões de t no ano de 2020, está projetado para atingir 69,1 milhões de t até 2027. A demanda global de enxofre vinha crescendo a um ritmo de cerca de 2% (a.a.). O mercado global de ácido sulfúrico atingiu um volume de quase 284,4 milhões de t em 2020 e estima-se que a indústria deva crescer à taxa de 1,5% a.a. entre 2021 e 2026 para atingir cerca de 311 milhões de t em 2026.

Em relação à competitividade, apesar das fortes posições de mercado das nações produtoras como EUA, Marrocos, China e Rússia, a indústria é bastante competitiva. Existem reservas abundantes (350 anos nas taxas de uso recentes) que nas projeções de longo prazo estariam centradas dominantemente no Marrocos, e os produtores de rocha

fosfática foram em grande parte formadores de preços no passado. Barreiras de entrada são relativamente baixas, embora a qualidade dos depósitos (essencialmente teores e facilidade de processamento/concentração) constitua relevante fator de diferenciação.

Sobre as projeções de acesso às matérias-primas, um fator primordial é que os teores em P₂O₅ de parte das principais minas, especialmente da China, estão progressivamente em declínio, o que pode comprometer a viabilidade dos respectivos empreendimentos. Constata-se uma tendência, em alguns países, caso de EUA e Canadá, de importação da rocha fosfática do Marrocos para alimentar as usinas das fabricantes de produtos intermediários e fertilizantes fosfatados. A Índia também tem evoluído com o aumento das importações de matéria-prima e de DAP. Adicionalmente, alguns países apontam para uma situação de pico fósforo (com uma tendência de declínio de produção, não atendendo a aumentos ou estabilidade nas demandas). Com relação à integração com nitrogenados e verticalização, por muitos anos, a maioria dos produtores simplesmente exportou rocha fosfática para unidades de processamento de fertilizantes nos países consumidores. A partir do final dos anos 1980, é observada uma tendência cada vez maior do processo de verticalização, e estima-se que atualmente pelo menos 80% da rocha fosfática produzida seja convertida ao menos em ácido fosfórico. É o que se observa, por exemplo, no comportamento da indústria de fertilizantes fosfatados de Marrocos.

Um dos temas mais sensíveis para a indústria de fertilizantes fosfatados relacionase aos aspectos de geração de fosfogesso (FG) como resíduo da fabricação de ácido fosfórico. Uma tonelada de ácido fosfórico produzido gera aproximadamente 5 toneladas de fosfogesso. O aproveitamento de fosfogesso é de extrema importância devido aos problemas ambientais, regulações governamentais, e custos operacionais de disposição.

O preço de venda da rocha fosfática se manteve constante no período de 1900 até 1973, com uma média de US\$ 4,2/ton. A partir de 1973, o valor aumenta para valores de até US\$ 124/t (como em 2009). Após uma queda, o custo de venda em 2018 ficou em torno de US\$ 70/t. A evolução é marcada por uma série de preços crescentes desde 1960, com alguns picos onde os preços foram aumentados abruptamente. A pandemia devido à COVID-19 não modificou muito a relação oferta/demanda, apesar de a China ter sido afetada de forma desproporcional no primeiro trimestre de 2020, tendo influenciado variações no preço. Desde o final de 2020 até março de 2021, os preços do DAP e MAP estão subindo (570 e 595 U\$ FOB, respectivamente) significando um aumento de cerca de 36% em diferentes mercados, mostrando, portanto, uma nova tendência de elevação de preços.

A principal rota tecnológica utilizada nas plantas industriais de concentração de minérios de fosfato é a de flotação. São observadas maiores variações nas operações unitárias prévias à etapa de flotação, como moagem e deslamagem. Esse processo é empregado nas plantas da maioria dos países produtores de rocha fosfática a partir de

minérios sedimentares (China, EUA, Índia, Arábia Saudita). O maior desafio no processamento de minérios de fosfato, tanto de origem sedimentar, ígnea ou metamórfica (caso do depósito de Santa Quitéria/CE), está relacionado a depósitos com ganga formada por minerais de carbonatos, em especial calcita e dolomita. Devido à semelhança nas propriedades superficiais dos minerais de carbonatos e a apatita, a separação por flotação entre esses é extremamente complexa.

Contudo, para a fabricação de fertilizantes ou produção de ácido fosfórico, o concentrado fosfático, independentemente da origem do minério, precisa atingir determinados critérios de qualidade. O minério fosfático possui, como principais impurezas, a calcita, dolomita, óxidos de ferro, de alumínio ou de magnésio, sílica e cloro. Dentre eles, os carbonatos têm um impacto considerável na operação e custo de produção do ácido fosfórico. Com isso, o concentrado de fosfato de valor comercial deve conter teor de P_2O_5 entre 28% e 30%, razão $CaO/P_2O_5 < 1,6$; razão $MgO/P_2O_5 < 0,022$ e porcentagem de MgO < 1%.

Diagnóstico

Atualmente, as reservas oficiais brasileiras (medidas + indicadas) são da ordem de 5,2 bilhões de t, correspondendo a 460 milhões de t de P₂O₅ contido. Cerca de 80% das reservas estão associadas a corpos magmáticos, e as atividades de mineração ocorrem em lavra a céu aberto. A reserva lavrável é de 2,9 bilhões de t (com teor médio em torno de 10%), compreendendo 317 milhões de t de P₂O₅ contido. O Brasil possui potencial geológico favorável para a expansão de suas reservas. Atualmente existem 4.321 processos registrados na ANM em diferentes fases, desde requerimento de pesquisa a concessão de lavra.

A produção nacional de concentrado fosfático, em 2019, foi de 5,3 milhões de t com teor médio do concentrado de 33 a 35% P₂O₅. Tal produção se relaciona aos corpos alcalino-carbonatíticos de Tapira/MG, Salitre/MG, Araxá/MG, Catalão I e II (GO), Cajati/SP, Angico dos Dias/BA, Registro/SP, além das jazidas sedimentares em Arraias/MG, Pratápolis/MG e Bonito/MS. A mina de Patos de Minas/MG, que também era produtora, foi paralisada, e, em Lagamar/MG, a reserva está esgotada. Os termofosfatos são produzidos em Poços de Caldas e Pratápolis (MG) e Sapucaia/Bonito (PA). A Mosaic Fertilizantes é a grande líder na produção nacional (52%), seguida por CMOC (20%), Yara (11%), Itafós (5%), Galvani (4%), Mineração Curimbaba (3%), Grupo Scheffler (2%), EDEM (2%) e Mineração Morro Verde (1%).

Novos projetos ou expansão dos projetos existentes estão previstos pelas empresas Yara (Salitre/MG), Itafos (Santana/PA e Arraias/TO), Aguia Resources (Três Estradas/RS), Fosnor-Galvani (Santa Quitéria/CE e Irecê/BA) e EDEM (Bonito/MS). Em conjunto, tais empreendimentos permitirão ampliar a capacidade instalada atual de 7,9 milhões de t/ano para 11,4 milhões de t/ano até 2026, reduzindo a dependência nacional.

A produção de ácido fosfórico tem sido de cerca de 1,1 milhões de t/ano de P₂O₅ contido e de fertilizantes fosfatados entre 1,7 e 2,0 milhões de t/ano de P₂O₅ contido, nos últimos 5 anos.

O Brasil, em 10 anos, dobrou a quantidade de fertilizantes importados. Em 2019, as importações de fertilizantes fosfatados foram da ordem de 3,9 milhões de t P_2O_5 contido. O País também depende da importação de enxofre para a produção nacional de fertilizante.

A produção de ácido sulfúrico nacional é obtida essencialmente como subproduto da mineração e processamento de minerais sulfetados. Essa produção para a indústria de fertilizantes em 2019 foi da ordem de 3,3 milhões de t, sendo Mosaic (47%), Yara (17%), CMOC (14%) e Paranapanema (8%) as empresas líderes da produção nacional. A importação de enxofre para atender ao mercado brasileiro em geral foi de 1,5 milhões de t em 2019. Também no Brasil, a geração de grandes volumes de fosfogesso, como resíduo da fabricação de ácido fosfórico, constitui um tema sensível para a indústria nacional de fertilizantes fosfatados. Entretanto, diversos estudos evidenciam a viabilidade de seu aproveitamento, mas que ainda acontece numa pequena escala.

Para efeito de estruturação dos cenários previsíveis de evolução da oferta de fertilizantes fosfatados, foram consideradas as seguintes variáveis motrizes: i) Crescimento do PIB do Brasil; ii) Aprimoramento de fatores estruturais da competitividade; e iii) Aprimoramento de fatores sistêmicos da competitividade. Pelo lado da demanda, foram considerados os seguintes fatores: 1) No âmbito do mercado doméstico de alimentos: i) crescimento da população; ii) crescimento do PIB nacional; iii) melhoria da distribuição da renda; iv) políticas de estímulo às energias renováveis; v) mercado de papel e celulose e de produtos siderúrgicos; e vi) incremento de produtividade; e 2) no âmbito do mercado de exportação de alimentos: vii) crescimento da população mundial; viii) crescimento do PIB mundial; ix) melhoria da distribuição da renda nos países emergentes; x) oscilações dos preços do petróleo; xi) aquecimento global: intensidade de alarmes/consciência com relação aos respectivos impactos ambientais; xii) comércio internacional de grãos.

No Brasil, o consumo aparente de fertilizantes fosfatados em 2019 foi de 5,2 milhões de t de P₂O₅, e se estima um valor de 6,0 milhões em 2020. Nos últimos 5 anos, verificou-se um aumento de 16% no consumo aparente, numa taxa de crescimento muito variável (em média de 3,2% a.a.), maior que a taxa mundial. A produção brasileira não supre a demanda nacional por fertilizantes fosfatados, o que impõe uma necessidade de importação. A atual dependência externa (2020) em nutrientes de P₂O₅ é de 72%. No Brasil, apenas a região Sudeste consome fertilizantes produzidos na própria região. A região Centro-Oeste é responsável por cerca de 40% do consumo nacional de fosfatados, enquanto a região Sudeste responde por 18%, a região Sul por 27% e a as regiões Norte e Nordeste por 15%.

Sobre análise da projeção do índice de dependência a importações de fosfatados, pode-se concluir que, no período 2022 a 2050, a oferta deverá crescer a uma taxa média de 4,1% a.a., desde que adotadas as devidas medidas de estímulo, enquanto a demanda evoluirá a taxas de 1,9% a.a. (Cenário A), 2,2% (Cenário B) e 2,6% (Cenário C). Partindo do nível de dependência a importações verificado em 2019 (68%), tal indicador evoluirá, em 2050, para 17% (Cenário A); 26% (Cenário B); e 34% (Cenário C).

Tomando por referência o Cenário B, a evolução do referido indicador evidencia queda de 68%, em 2019; para 53%, em 2025; 41%, em 2030; 22%, em 2040; e 26%, em 2050. Em todos os cenários, as estimativas de demanda ultrapassam substancialmente a capacidade de produção interna de enxofre empregado na fabricação de fertilizantes. Quando comparados à estimativa de produção interna de enxofre em 2050, o Cenário A requer aumentar a produção em 8,22% a.a. em relação a 2019, enquanto os cenários B e C requerem aumento da produção em 9% a.a. e 9,48% a.a., respectivamente. Portanto, é indubitavelmente necessário estimular a produção de enxofre no Brasil e também a instalação de infraestrutura capaz de fabricar o ácido sulfúrico na mesma escala.

A análise estratégica da cadeia produtiva de fertilizantes fosfatados permitiu caracterizar as suas forças e fraquezas, assim como as suas principais oportunidades e ameaças, como, por exemplo:

- Localização da produção em relação aos polos de demanda os principais polos brasileiros produtores de fertilizantes fosfatados encontram-se localizados relativamente próximos à grande região de cerrado, onde se processa uma vertiginosa expansão da fronteira agrícola do País;
- Perspectivas de integração entre os polos produtores de fosfatados, potássicos e nitrogenados - Em alguns dos polos produtores de matéria-prima e produtos fertilizantes, observam-se perspectivas convergentes de integração da produção de nitrogenados, fosfatados e potássicos;
- Extrema dependência de importação A crescente dependência de importação de fosfatados (44%, em 2000 e 72%, em 2020) evidencia uma ameaça que poderá prejudicar a posição competitiva do agronegócio brasileiro. Tal dependência se afigura anda mais perversa ao se constatar que a composição das importações de fosfatados vem evidenciando crescente participação de produtos de maior valor agregado;
- Capacidade ociosa dos produtores internacionais A indústria mundial de fertilizantes fosfatados passou por intensa consolidação nas últimas décadas e, em consequência, a sua atual capacidade instalada é concentrada em pequeno número de produtores, com sistemas produtivos localizados em pequeno número de países. Importantes produtores mundiais de fosfatados exercem papel de destaque na indústria brasileira de fertilizantes e, nas suas instalações em outros países, tais produtores vêm operando com capacidade ociosa, sendo possível admitir que esses atores priorizem a

obtenção de melhores índices de ocupação para os seus complexos produtivos que disponham de melhores condições competitivas, seja devido a fatores estruturais (ex.: características de jazidas, e infraestrutura de transporte e energia) ou sistêmicos (ex.: clima de investimento, custo de energia, e tributação);

- O Brasil é um tomador e não um formador de preços. Entretanto, o País deve estar preparado para os grandes impactos externos na formação dos preços internacionais, como o desenvolvimento de países emergentes e aumento das demandas, esgotamento de reservas com estreitamento das produções e aumento da competição na demanda.
- O Brasil tem longa experiência, histórico de inovação e corpo técnico qualificado para o desenvolvimento de processos para concentração de apatita no caso de implantação de novas unidades industriais. Mesmo para o beneficiamento de minérios com ganga carbonática, o País possui patentes com processo alternativo ao uso de ácidos inorgânicos. Esse processo alternativo (baseado no uso de gás carbônico) tem sido testado, em escala de laboratório e piloto e até mesmo um breve teste em escala industrial, que evidencia sua viabilidade técnica do processo.

Visão de Futuro

Conforme visto, o Brasil depende de importações para atender sua demanda interna por rocha fosfática e derivados. Atualmente, tal índice de dependência é da ordem de 72% (em termos de P₂O₅ contido), cabendo destacar a participação acentuada de produtos de maior valor agregado. Considera-se, ainda, a dependência externa de enxofre, componente relevante dessa cadeia produtiva. Essa condição deixa o País em uma posição vulnerável, uma vez que a maior parte da produção mundial é consumida domesticamente nos países produtores. Dessa forma, o País deve se preparar internamente para superar os eventos externos que podem impactar negativamente na oferta do produto, como o desenvolvimento de países emergentes com o consequente aumento da demanda. Some-se às questões externas a crescente demanda interna com a expansão da fronteira agrícola.

As situações descritas, apesar de representarem riscos para o consumidor de fertilizantes à base de fosfato, são estímulos para alavancar a produção nacional de rochas fosfáticas e seus derivados, o que aumenta a importância da descoberta e avaliação de novas reservas de rocha fosfática, assim como de estimular a expansão da produção em todos os elos da respectiva cadeia produtiva. Dessa forma, sinteticamente, pode-se apresentar a visão de futuro para o fosfato como: reduzir a dependência externa por meio do crescimento sustentável da produção interna de rocha fosfática e seus derivados e do uso mais eficiente do fósforo na agricultura.

Para isso, o País precisa envidar esforços públicos e privados que perpassam toda a cadeia do fosfato, sendo necessário avançar de forma contínua em diversas áreas que impactam no mercado de fertilizantes de forma a ser reconhecido internacionalmente por possuir: um marco regulatório que propicie segurança jurídica aos investidores privados nacionais e estrangeiros; órgãos públicos estruturados e capazes de agir com tempestividade e segurança; rede de pesquisa sobre beneficiamento de minérios de fosfato e aproveitamento de resíduos contando com pesquisadores de instituições técnico-científicas brasileiras públicas e privadas; acréscimo na produção de enxofre e ácido sulfúrico associada à melhoria da logística de armazenamento e distribuição desse tipo de material; fontes de recursos públicos e privados com juros no patamar internacional; e mercado interno competitivo e com variedade de produtores e fornecedores.

Esse esforço pode criar condições favoráveis para que o País avance de forma contínua e sustentável rumo ao cenário desejável no horizonte desse plano, conforme descrito na sequência para os marcos temporais do PNF:

2025

- ✓ O Serviço Geológico do Brasil CPRM avança com os seus levantamentos básicos no território, de forma a ampliar os percentuais mapeados em escalas adequadas para a descoberta de novas jazidas.
- ✓ ANM realiza leilões das áreas disponíveis, e o País começa a ter fontes de recursos para o financiamento da pesquisa mineral, o que passa a estimular a realização de investimentos privados em pesquisa mineral e oportunizar a descoberta e avaliação de novos depósitos minerais, com consequente ampliação das reservas nacionais de rocha fosfática.
- ✓ A produção nacional de alimentos continua em crescimento, o que aumenta a demanda por fertilizantes fosfatados, estimulando a ampliação da produção nacional que alcança patamar próximo a 8,5 milhões de t/ano de rocha fosfática (2,9 milhões de t/ano de nutrientes em P₂O₅).
- ✓ Com a entrada do País na OCDE, inicia-se uma adequação regulatória visando aderir às melhores práticas internacionais, o que trará maior segurança jurídica e a melhoria do ambiente de negócio atraindo investidores para todos os elos da cadeia de fertilizantes fosfatados.
- ✓ O Brasil institui política para viabilizar os investimentos em PD&I e produção em larga escala de fontes minerais alternativas de fosfato, como aplicação direta de fosfato natural, termofosfato, entre outras.

2030

✓ Com a demanda de fertilizantes crescente, o avanço do mapeamento geológico do território permanece na agenda política do Governo Federal, o que faz com que o País evolua nessa atividade.

- ✓ O País conta com fontes de recursos consolidadas para o financiamento de pesquisa mineral, com isso se intensificam os investimentos na descoberta e avaliação de novos depósitos minerais. Adicionalmente, ocorre a expansão de reservas em depósitos já conhecidos como Serra Negra, Salitre e Tapira, do Projeto Ressaca em Bonito, do Projeto Miriri e Lucena na Paraíba, na região de Mata da Corda, Jauru, em Joca Tavares no Rio Grande do Sul e pelo Projeto de Prospecção e Exploração de Depósitos de Fosforitas Marinhas na Plataforma Continental Jurídica Brasileira. Com esses avanços, as reservas nacionais passam para 400 milhões de t de P₂O₅ contido.
- ✓ O País continua como player importante no mercado mundial de alimentos, o que traz resultados favoráveis à balança comercial brasileira. Dessa forma, os órgãos públicos reguladores e licenciadores começam a agir de forma mais tempestiva, políticas públicas como a de pró-minerais estratégicos se consolidam, e se observa uma ampliação nos investimentos em PD&I, o que favorece a produção nacional que alcança 14 milhões de t/ano de rocha fosfática (4,2 milhões de t/ano em nutrientes P₂O₅), diminuindo a dependência para 41% em fertilizantes fosfatados.
- ✓ Com a adequação regulatória propiciando maior segurança jurídica, os investimentos privados são intensificados, e o mercado brasileiro começa a contar com mais empresas produtoras e fornecedoras de fertilizantes fosfatados, iniciando a desconcentração do mercado nacional e a reversão da tendência ologopolística, que anteriormente se evidenciava.
- ✓ Com a política instituída em PD&I, o País avança para a produção e utilização de fontes minerais alternativas de fosfato, as quais passam a suprir parte da demanda por fertilizantes fosfatados.

2040

- ✓ Com a entrada de novos investidores no mercado, cresce a demanda por novas áreas para pesquisa mineral, com consequente intensificação no fluxo de descoberta e avaliação de novos depósitos minerais.
- ✓ Com a melhoria do ambiente de negócios, a crescente demanda, e a evolução do conhecimento do território nacional, o país atrai novos investidores, intensificando as pesquisas, o que eleva as reservas nacionais para patamar próximo a 480 milhões de t de P₂O₅ contido.
- ✓ A produção nacional cresce de forma contínua e sustentável atingindo patamares próximos a 21 milhões de t/ano de rocha fosfática (7,25 milhões de toneladas/ano em nutrientes P₂O₅), o que diminui a dependência externa para 22% em fertilizantes fosfatados.

- ✓ O Brasil apresenta melhoria contínua nos rankings da OCDE, o que, juntamente com a crescente produção nacional de alimentos, atrai mais investidores para a cadeia produtiva nacional de fertilizantes fosfatados.
- ✓ O Brasil possui uma cadeia produtiva de fontes minerais alternativas de fosfato consolidada, tornando-se referência no tema.

2050

- ✓ Com a continuidade de produção das minas em operação e diminuição das reservas dessas minas, deve-se manter esforços para ampliar o conhecimento geológico do território.
- \checkmark A pesquisa mineral continua evoluindo devido ao ambiente favorável, e o País aumenta suas reservas em novos depósitos, mas diminui reservas em jazidas largamente produtoras. Dessa forma, as reservas permanecem no patamar de 480 milhões de t em P_2O_5 contido.
- ✓ Os crescentes investimentos em PD&I permitem ao País desenvolver novas tecnologias tornando atrativas jazidas antes consideradas economicamente inviáveis. Assim a produção nacional aumenta para 27 milhões de t/ano de rocha fosfática (9,2 milhões de toneladas em nutrientes P₂O₅/ano).
- ✓ Com um mercado nacional consolidado e competitivo, as empresas investem cada vez mais em PD&I, aumentando a produtividade da indústria nacional de fertilizantes fosfatados.
- ✓ Com a consolidação da cadeia de fontes minerais alternativas de fosfato e com o aumento da produção de fertilizantes fosfatados, o Brasil diminui de forma significativa a dependência pela importação de fertilizantes fosfatados.

1.3.POTÁSSIO

Benchmarking Internacional

O mundo tem sido cada vez mais dependente de insumos minerais, principalmente os relacionados a aplicações na agricultura como o fósforo e o potássio. Em relação a esse último, na América do Sul, o Brasil apresenta perspectivas de expansão da produção, em virtude do correspondente potencial geológico e da expressiva dependência de importações.

Minerais portadores de potássio, minérios e produtos refinados são conhecidos pelo termo genérico "potássio". O número de depósitos de minérios de potássio com potencial de aproveitamento econômico é relevante e com certa distribuição pela crosta. Entretanto, assim como observado em todos os bens minerais, a qualidade dos depósitos

apresenta grandes variações, relacionadas ao porte (tamanho da reserva); teor (K₂O ou KCI) e outros fatores econômicos importantes, como localização geográfica, custos de mineração e processo. Os principais depósitos potássicos econômicos de classe mundial se localizam em Delaware, Michigan e Novo México (EUA); Zechstein (Europa); Louann (Golfo do México); Hormuz (Golfo da Arábia); Bacias Miocênicas (Mar Mediterrâneo); Elk Point e Saskatchewan (Canadá); Moscou (Rússia); Grupo McArthur (Austrália); Bacia Sergipe, Margem Continental Brasileira e Bacia do Amazonas (Brasil). As minas situadas em alguns desses depósitos ao redor do globo são operadas principalmente pela K+S Potash (Canadá), ICL Group (Israel), Mosaic Company (Canadá), Uralkali Company (Rússia), Belaruskali Company (Bielorússia) e, Nutrien Company (Canadá).

O Canadá, Bielorrússia, Rússia, Alemanha e Israel respondem por 92% do KCl comercializado no mundo, com destaque ao Canadá, que detêm 30% do *market share* mundial. O Canadá representa em torno de 33% da produção mundial; a Bielorrússia e a Rússia em torno de 17% cada, e a China, 11%. O mercado é extremamente concentrado em quatro empresas: Belaruskali, Nutrien, Uralkali e Mosaic.

A oferta tende a ser controlada pelos grandes produtores e fornecedores em face do preço atrelado principalmente às condições operacionais das minas, variações cambiais, oscilações inflacionárias e, aumento das áreas agriculturáveis pelas nações vocacionadas. Em exemplo, a Nutrien afirma ter capacidade ociosa de 6 milhões de t e que ativará a produção se os preços compensarem, enquanto a Mosaic colocou em *stand-by* a mina Colonsay e programou a Saskatchewan K3 para dobrar a produção. Na contramão, a Belaruskali fechou fornecimento com a China e Índia a preços que a Nutrien classificou como abaixo do valor de mercado.

A produção em 2020 alcançou 43,2 milhões de t de K₂O, ou seja, aumento de 5,1% em relação a 2019. Esse aumento foi liderado pelo Canadá com 14 milhões de t (30%), a Rússia com 7,6 milhões de t (16%), a Bielorrússia com 7,3 milhões de t (20%), a China com 5 milhões de t (9%) e a Alemanha com 3 milhões de t (7%), que juntos somam 36,9 milhões de t, o que correspondeu a 82% do total de potássio fertilizante produzido no ano em análise. Vale ressaltar que em 2019 o custo médio do produto importado ficou em aproximadamente US\$ 326,14/t, enquanto, em 2020, as compras a varejo fecharam com média anual de US\$ 358,08/t.

A respeito das reservas mundiais, a reserva global de potássio é estimada em 250 bilhões de t. Em 2001, as reservas mundiais medidas de K₂O estavam no patamar de 8,4 bilhões de t e, desde então, experimentaram variações em seus volumes nos anos de 2003 (8,3 bilhões de t), 2010 (8,5 bilhões de t), 2013 (9,5 bilhões de t), 2016 (3,7 bilhões de t), 2019 (5,8 bilhões de t) e 2020 (3,7 bilhões de t). Neste último ano, o Canadá apresentou reservas de 1,1 bilhões de t (30%), a Bielorrússia, 750 milhões de t (20%), a Rússia, 600 milhões de t (16%), e a China, 350 milhões de t (9%). Essas nações ocuparam as quatro primeiras posições no ranking mundial das reservas de K₂O equivalente, enquanto o Brasil ficou em 11ª colocação, com 2,3 milhões de t (Sergipe: silvinita) em

termos de reserva lavrável. Ao ritmo da produção mundial atual de 41 milhões de t a, as reservas suprem a demanda por mais 195,3 anos.

A respeito da demanda mundial, um dos fatores que fortemente influencia a demanda por potássio é o crescimento da população mundial que pode chegar a 11,3 bilhões de habitantes em 2100. Em recentes publicações, o Brasil foi citado pelo fato de sua produção agrícola alimentar aproximadamente 800 milhões de pessoas, ou seja, pouco mais de 10% da população mundial. Dados revelam que a produção mundial de potássio entre 2000 (25,3 milhões de t) e 2010 (33,7 milhões de t) aumentou 23,7%, enquanto, entre 2011 (36,3 milhões de t) e 2020 (43,2 milhões de t), aumentou 15,9%. As principais regiões consumidoras de potássio em 2020 foram a Ásia e a América do Sul, devido a suas expressivas participações na população mundial e área agricultável. Espera-se que, em 2021, a demanda global de potássio atinja um recorde entre 68 e 70 milhões de t.

Com essa perspectiva de demanda, a maior parte da oferta seria de MOP (Muriato de Potássio, similar ao KCI), por meio de novos projetos de expansão na Bielorrússia, Canadá e Rússia. Outros projetos em andamento incluem novas minas de SOP (Sulfato de Potássio) na Austrália, China e Eritreia, bem como novas minas de MOP no Brasil, Etiópia e Espanha. Devido às condições econômicas desfavoráveis, vários projetos ao redor do mundo foram fortemente impactados pela pandemia de COVID-19, como, por exemplo a sudoeste de Salt Lake City, UT-USA, cuja produção estava programada para começar em 2022 com 30 mil t/a de SOP com *ramp-up* para capacidade total de 372 mil t/a de SOP em 2025, porém não conseguiu se capitalizar, tendo que adiar os investimentos.

Belarus é autossuficiente na produção de potássio mineral e detém um dos maiores depósitos mundiais. Formada há 360 milhões de anos atrás, a reserva de Starobin, ao sul da capital Minsk, é a principal fonte utilizada e abrange área de aproximadamente 350 km². Os fertilizantes potássicos representam 87,9% da produção da Belaruskali, que produz ainda mais de 20 tipos diferentes de fertilizantes certificados, como fertilizantes complexos NPK (2,2%) e sais, incluindo comestíveis (9,9%). A respeito da expansão da capacidade produtiva, nos últimos anos, a Belaruskali desenvolveu duas minas na reserva de Starobin: Krasnoslobodsky (2009) e Berezovsky (2012). Também em 2012, avançou o projeto Petrykov, o maior investimento da empresa (e um dos empreendimentos *greenfield* mais recentes do mundo) e que iniciou a produção em 2018.

O Canadá é o maior produtor e exportador mundial de potássio, seguido por Belarus e Rússia. A atividade concentra-se na província de Saskatchewan. Os maiores produtores da província – Nutrien, K+S Potash Canada, Mosaic – operam 10 minas na localidade (sete por mineração convencional e três por dissolução) e respondem pela produção de cerca de 20 milhões de toneladas de cloreto de potássio por ano. Detentora de seis instalações dedicadas à produção e beneficiamento no Canadá, a Nutrien,

resultado da fusão entre "Agrium Inc" e "Potash Corp" em 2018, é o maior *player* do mundo. A empresa também atua nos setores de nitrogênio e fosfato. Por sua vez, a "K+S Potash Canada" possui mina com capacidade de produção de 2,86 milhões de toneladas. A Mosaic, que atua também no Brasil, nos EUA e no Peru, nos setores de potássio e de fosfato, principiou, no Canadá, a construção de nova instalação (projeto K3), orçado em US\$ 3,2 bilhões de dólares. A companhia afirma que a nova operação será a maior e uma das mais eficientes do mundo. A respeito do comércio internacional, grande parte das exportações de fertilizantes do Canadá se destina aos EUA, que estimou crescimento de 43% da renda agrícola em dezembro de 2020, em relação ao ano anterior.

A Rússia é um dos maiores fornecedores de fertilizantes minerais do mundo, com produção de 52 milhões de toneladas em 2020 (aumento de 4,9% em relação a 2019), das quais 76% foram exportadas para mais de 90 países. No mesmo ano de 2020, 47,2% da produção setorial foi de fertilizantes nitrogenados (N), 34,7% de potássio (K) e 18,1% de fosfatados (P). No setor potássico, a empresa Uralkali respondeu por 83,5% da produção. A estrutura produtiva de fertilizantes minerais é determinada basicamente pela localização das fontes de matéria-prima. Na Rússia, as reservas situam-se na província de Perm, nos Urais, onde opera a Uralkali. Em 2018, o Kremlin publicou o "Plano de Desenvolvimento da Produção de Fertilizantes Minerais até 2025", sob a coordenação do Ministério da Indústria e Comércio. O Plano prevê apoio do governo como financiamento estatal e acesso a fontes de matéria-prima a preços competitivos a projetos de investimento no setor, ao desenvolvimento de infraestrutura logística, ao aumento da exportação e ao incremento do consumo doméstico. Prevê, ainda, maior eficiência na estrutura tributária do setor, para reduzir os custos ao longo da cadeia produtiva. O Brasil é importante cliente da indústria russa de fertilizantes, que correspondem a cerca de 70% das exportações da Rússia para o País.

Diagnóstico

O Brasil sempre dependeu da importação de potássio, fato este que aumenta a cada ano devido aos recordes da produção agrícola brasileira. Com o deslanche da produção agrícola brasileira, em 1980 o Brasil se tornava o segundo maior importador mundial de potássio - a produção interna de cloreto de potássio veio a ser iniciada no ano de 1985, a partir do complexo da Mina/Usina Taquari-Vassouras, no estado de Sergipe, que foi operada pela mineradora Companhia Vale do Rio Doce (Vale) e que hoje está sob o comando da Mosaic Fertilizantes.

Sobre as reservas nacionais, no Brasil, as principais reservas de sais de potássio estão localizadas nas regiões de Taquari/Vassouras e Santa Rosa de Lima (mineral silvinita) e Rosário do Catete (mineral carnalita) em Sergipe (Mosaic Fertilizantes), bem como nas regiões de Itacoatiara, Nova Olinda do Norte e Autazes (silvinita) no estado do

Amazonas (Potássio do Brasil Ltda.). Por sua vez, as reservas indicadas brasileiras, correspondem a 3% das reservas mundiais (ou 0,1% em termos de K₂O), e o depósito brasileiro em exploração (Sergipe - silvinita) ainda possui 2,3 milhões de t de K₂O. Outro projeto que está em fase de avaliação é Projeto Carnalita, no qual – segundo dados divulgados pela Vale Fertilizantes S/A, arrendatária anterior à Mosaic Fertilizantes P&K – o volume de reservas é da ordem de 12 bilhões de t de minério com 2,5 bilhões de t de KCI (teor 8,3%), que equivale a 1,5 bilhão de t de K₂O *in situ*.

O único parque produtivo nacional, Taquari/Vassouras em Sergipe, iniciou suas atividades em 1988 com produção de 55.720 t/a de K₂O e, desde então, experimentou oscilações de produção. No Brasil, a Mosaic Fertilizantes P&K assumiu em 2018 as operações da mina de Taquari/Vassouras, que, de 1988 a 2020 produziu aproximadamente 9,5 milhões de t de K₂O. A empresa afirmou recentemente a necessidade de novos investimentos na unidade, para que ela não pare as operações em 2024. Além dos depósitos evaporíticos, outra fonte de potássio provém de rochas sedimentares siliciclásticas, o verdete, que é explorado por exemplo pela VERDE Agritech em Minas Gerais, com capacidade produtiva da ordem de 12,7 mil t/a de K₂O.

Sobre a demanda nacional, a produção agrícola do Brasil posiciona o País como um dos grandes produtores de grãos do planeta, bem como o posiciona no ranking mundial como o segundo maior consumidor global de potássio, ficando apenas atrás da China. Conforme supracitado, a participação brasileira no cenário mundial da produção de potássio pode ser considerada ínfima, pois atingiu no máximo 0,1%. No ano de 2020, nossa dependência dos fornecedores externos atingiu 96,4%, pois foi necessário importar 6,80 milhões de t de KCI (K₂O contido), enquanto nossa produção foi de 250 mil t de KCl. Destas, 89 mil t foram exportadas, enquanto o consumo aparente fechou em 6,8 milhões de t de K₂O. Dados de 2020 evidenciam que a região Centro-Oeste, impulsionada principalmente pela produção de soja no cerrado, consumiu 2,3 milhões de t de K₂O (38%), seguido pela produção de café e cana-de-açúcar na região Sul com 1,7 milhões de t de K₂O (25%), produção de cana-de-açúcar no Sudeste com 1,2 milhão de t de K₂O (22%) e na Norte/Nordeste, que envolve a região de MATOPIBA com 854 mil t de K₂O (15%).

A evolução da oferta de fertilizantes potássicos, para o período 2022 a 2050, foi estimada a partir dos empreendimentos em operação, os programados e os previsíveis. Para 2022, foi prevista a produção de 0,3 milhão de t e, para 2035, de 8,7 milhões de t de K₂O contido. A elevada expansão nesse período reflete a previsão de viabilização e entrada em operação do Projeto Carnalita, em Sergipe, e os de Altazes, Fazendinha e Arari, no Amazonas. A partir de 2035, admite-se que a oferta continuará se expandindo a uma taxa da ordem de 4,5% a.a., bem inferior à do período 2022 a 2035.

Para efeito de projeção da demanda, foram consideradas as mesmas variáveis motrizes já apresentadas na análise de Cenários de Fertilizantes Fosfatados, cabendo destacar as principais – seja no âmbito do mercado doméstico ou de exportação de

alimentos: i) Crescimento da população; ii) Crescimento do PIB; e iii) Melhorias previsíveis de distribuição da renda. Para o período 2022 a 2035, admite-se que a demanda evoluirá, no cenário intermediário (Cenário B), à mesma taxa média anual de crescimento verificada no período 2002 a 2020 (5% a.a.). No Cenário A, é admitida uma taxa anual de crescimento 2 pontos percentuais inferiores à do Cenário B e, no Cenário C, superior em 1,5 ponto percentual. Para o período 2035 a 2050, foram estimadas taxas médias anuais de crescimento inferiores às dos respectivos períodos de 2022 a 2035, refletindo a tendência de uma mais intensiva utilização de rocha para aplicação direta, além de expansão de uso de remineralizadores, bem como de uma racionalização do uso de fertilizantes, com o suporte de mais aprofundadas pesquisas agronômicas.

Sobre a análise da projeção do índice de dependência a importações de potássicos, pode-se concluir que, no período 2022 a 2050, a oferta deverá crescer a uma taxa média de 15,6% a.a., desde que adotadas as devidas medidas de estímulo, enquanto a demanda evoluirá a taxas de 1,9% a.a. (Cenário A), 3,4% a.a. (Cenário B) e 4,4% a.a. (Cenário C). Partindo do nível de dependência a importações verificado em 2020 (98%), tal indicador evoluirá, em 2052, para 7% (Cenário A); 40% (Cenário B); e 55% (Cenário C). Tomando por referência o Cenário B, a evolução do referido indicador evidencia queda de 98%, em 2020; para 92%, em 2025; 62%, em 2030; 46%, em 2040; e 40%, em 2052.

A análise estratégica da cadeia produtiva de fertilizantes potássicos permitiu caracterizar as suas forças e fraquezas, assim como as suas principais oportunidades e ameaças, como, por exemplo:

- Localização da produção em relação aos polos de demanda: as principais regiões do País detentoras de depósitos de rochas potássicas encontram-se localizadas relativamente próximas a grandes polos de demanda de fertilizantes e/ou de infraestruturas que poderão facilitar o escoamento de produção desse insumo agrícola em direção ao seu mercado.
- Perspectivas de integração entre os polos produtores de fosfatados, potássicos e nitrogenados: em alguns dos polos produtores de matérias-primas e produtos fertilizantes, observam-se perspectivas convergentes de integração da produção de nitrogenados, fosfatados e potássicos.
- Extrema dependência de importação: a crescente dependência de importação de potássicos (93%, em 2002, e 96,4%, em 2020) evidencia uma ameaça que poderá prejudicar a posição competitiva do agronegócio brasileiro.
- Capacidade ociosa dos produtores internacionais: a indústria mundial de fertilizantes passou por intensa consolidação nas últimas décadas e, em consequência, a sua atual capacidade instalada é concentrada em pequeno número de produtores, com sistemas produtivos localizados em pequeno número de países. Importantes produtores mundiais exercem papel de destaque na indústria brasileira de fertilizantes e, nas suas instalações em outros países, tais produtores vêm operando com capacidade ociosa,

sendo possível admitir que esses atores priorizem a obtenção de melhores índices de ocupação para os seus complexos produtivos que disponham de melhores condições competitivas, seja devido a fatores estruturais (ex.: características de jazidas e infraestrutura de transporte e energia) ou sistêmicos (ex.: clima de investimento, custo de energia e tributação).

Visão de Futuro

O Brasil é altamente dependente da importação de potássio de outros países, em volumes crescentes a cada ano, atualmente, com valores da ordem de 97% e com demanda interna também em ascensão, em função da expansão da produção agrícola. Isso o deixa em uma situação vulnerável, uma vez que a maior parte da produção mundial é consumida domesticamente nos países produtores.

As situações descritas, apesar de representarem riscos para o consumidor de fertilizantes à base de potássio, são estímulos para alavancar a produção nacional de recursos minerais de cloreto de potássio (KCI) de fontes sedimentares, em depósitos evaporíticos e da produção de óxido de potássio (K₂O) com origem em rochas silicáticas bem como, reciclagem de fontes residuais minerais e organominerais. São fatores que aumentam a importância da mineração na cadeia produtiva. Dessa forma, sinteticamente, pode-se apresentar a visão de futuro para o potássio como: *Reduzir a dependência externa por meio do crescimento sustentável da produção interna de fertilizantes potássicos*.

Para isso, o País precisa envidar esforços públicos e privados que perpassam toda a cadeia do potássio, sendo necessário avançar de forma contínua em diversas áreas que impactam no mercado de fertilizantes de forma a ser reconhecido internacionalmente por possuir: um marco regulatório que propicie segurança jurídica aos investidores privados nacionais e estrangeiros; órgãos públicos estruturados e capazes de agir com tempestividade e segurança; rede de pesquisa agrogeológica para avançar no aproveitamento de fontes de potássio em rochas silicáticas, contando com pesquisadores de instituições técnico-científicas brasileiras púbicas e privadas; rede de laboratórios certificados ao MAPA para análises e ensaios químicos, mineralógicos e agronômicos; fontes de recursos públicas e privadas com juros no patamar internacional; e mercado interno competitivo e com variedade de produtores e fornecedores.

Dessa forma, é esperado que o País avance de forma contínua e sustentável rumo ao cenário desejável no horizonte deste plano, conforme descrito na sequência para os marcos temporais do PNF:

2025

✓ A CPRM avança com as pesquisas no território de forma a ampliar os percentuais mapeados em escalas adequadas para a descoberta de novas jazidas de potássio.

- ✓ ANM realiza leilões das áreas disponíveis e o País começa a ter fontes de recursos para o financiamento de pesquisa mineral, o que pode estimular os investimentos privados em pesquisa mineral e oportunizar a ampliação das reservas nacionais de potássio.
- ✓ A produção nacional de alimentos continua em crescimento, o que aumenta a demanda por fertilizantes potássicos, estimulando a ampliação nacional que alcança patamar próximo a 1 milhão de t/ano de K₂O.
- ✓ Com a entrada do País na OCDE, inicia-se uma adequação regulatória visando aderir às melhores práticas internacionais, o que trará maior segurança jurídica e a melhoria do ambiente de negócio, atraindo investidores para todos os elos da cadeia de fertilizantes potássicos.
- ✓ O Brasil institui política para viabilizar os investimentos em PD&I e produção em larga escala de remineralizadores e outras fontes alternativas de K₂O oriundo de rochas silicáticas.

2030

- ✓ Com a demanda de fertilizantes crescente, o mapeamento do território permanece na agenda política do Governo Federal, o que faz com que o País evolua nesta atividade.
- ✓ O País conta com fontes de recursos consolidadas para o financiamento de pesquisa mineral, intensificando as pesquisas geológicas. Adicionalmente, com esses avanços, as reservas nacionais passam para 4,3 bilhões de t de K₂O.
- ✓ O País continua como player importante no mercado mundial de alimentos, o que traz resultados favoráveis à balança comercial brasileira. Dessa forma, os órgãos públicos reguladores e licenciadores começam a agir de forma mais tempestiva, políticas públicas como a de Pró-Minerais Estratégicos se consolidam, e se observa uma ampliação nos investimentos em PD&I, o que favorece a produção nacional que alcança 6,3 milhões de t/ano de K₂O.
- ✓ Com a adequação regulatória propiciando maior segurança jurídica, os investimentos privados são intensificados, e o mercado brasileiro começa a contar com mais empresas produtoras e fornecedoras de fertilizantes potássicos, iniciando a desconcentração do mercado nacional, que apresenta características de oligopólio.
- ✓ Com a política instituída e avanços em PD&I, o País avança para a produção e utilização de remineralizadores e outras fontes alternativas de K2O em média e larga escala, suprindo parte da demanda por fertilizantes potássicos.

2040

- ✓ Com a melhoria do ambiente de negócios, a crescente demanda e a evolução do conhecimento do território nacional, o País atrai novos investidores, intensificando as pesquisas, o que eleva as reservas nacionais para patamar próximo a 5,3 bilhões de t de K₂O.
- ✓ A produção nacional de KCl e K₂O cresce de forma contínua e sustentável, atingindo patamares próximos a 10,3 milhões de t/ano de K₂O, o que diminui a dependência externa por fertilizantes potássicos.
- ✓ O Brasil apresenta melhoria contínua nos rankings da OCDE, o que, juntamente com a crescente produção nacional de alimentos, atrai mais investidores, consolidando a cadeia produtiva nacional de fertilizantes potássicos.
- ✓ O Brasil possui uma cadeia produtiva de remineralizadores associada a outras fontes alternativas de K₂O, de forma consolidada, tornando-se referência no tema.

2050

- \checkmark A pesquisa mineral continua evoluindo devido ao ambiente favorável, e o País alcança reservas no patamar de 8 bilhões de t de K_2O .
- ✓ Os crescentes investimentos em PD&I permitem ao País desenvolver novas tecnologias, tornando atrativas jazidas antes consideradas economicamente inviáveis. Assim, a produção nacional aumenta para 14,6 milhões de t/ano de K₂O.
- ✓ Com um mercado nacional consolidado e competitivo, as empresas investem cada vez mais em PD&I, aumentando a produtividade da indústria nacional de fertilizantes potássicos.
- ✓ Com a consolidação da cadeia de produção de K₂O de rochas silicáticas, como remineralizadores, entre outras e com o aumento da produção de fertilizantes potássicos, o Brasil diminui de forma significativa a dependência pela importação de fertilizantes potássicos.

1.4. CADEIAS EMERGENTES

Benchmarking Internacional

Fertilizantes orgânicos são definidos como produtos de natureza fundamentalmente orgânica, obtido por processo físico, químico, físico-químico ou bioquímico, a partir de matérias-primas de origem industrial, urbana ou rural, vegetal ou animal, enriquecido ou não de nutrientes minerais. Quando o produto for resultante da mistura física ou combinação de fertilizantes minerais e orgânicos, trata-se de fertilizante organomineral. A grande maioria das matérias-primas se caracteriza como subprodutos de outras atividades. Os fertilizantes organominerais correspondem a uma alternativa na destinação e no reúso desses subprodutos e apresentam ganhos sob o ponto de vista ambiental e econômico.

Em estudo de mapeamento tecnológico de patentes realizado pela EQ/UFRJ e pela Embrapa, verificou-se que a China é a maior depositante nas categorias tecnológicas prospectadas, sendo o dobro da quantidade de número de depósitos em relação ao segundo colocado, a Alemanha. Foi verificado que essa evolução chinesa, influenciando os indicadores globais, está relacionada ao crescimento de invenções que utilizam insumos orgânicos em substituição a fontes não renováveis como depósitos minerais e petróleo. Na Alemanha, o uso de resíduos orgânicos na agricultura, silvicultura e horticultura está regulamentado para proporcionar tanto a reciclagem quanto a recomposição biológica do solo pela introdução de matéria orgânica. A Austrália é a terceira maior depositante nas categorias prospectadas, e a reciclagem de matéria orgânica como insumo para produção de fertilizantes tem aumentado, sobretudo, pelo tratamento de resíduos gerados nas criações confinadas de animais e nas usinas do lixo municipal. O Brasil ocupa a 13ª posição dentre os 15 principais países depositantes dessa tecnologia.

Os campos de conhecimento científico mais citados nas publicações de patentes são as áreas de química e de agricultura, seguidas por microbiologia, polímeros e instrumentação. A subclasse da Classificação Internacional de Patentes mais presente nos documentos levantados em relação aos organominerais foi a referente a aditivos. Um aumento progressivo de depósitos por empresas foi identificado no trabalho. A maior depositante (chinesa), com 17 depósitos, é um player internacional de tecnologias de fertilizantes organominerais, vinculados à subclasse de misturas de fertilizantes com aditivos e métodos de preparação industrial de biocompostos combinados ou não com aplicações biotecnológicas, além de uso de polímeros. A segunda maior empresa (chinesa) do ranking tem atuação vinculada à área de agricultura, química e instrumentação.

O aproveitamento de subprodutos com potencial de uso agrícola como fertilizantes é uma estratégia que resulta em mais uma fonte de nutrientes para a

agricultura e atende às novas demandas de mercados mundiais relacionadas à sustentabilidade ambiental, sendo prática comum em diversos países. A utilização de fertilizante obtido a partir de subprodutos, ou com esses na sua composição, atende plenamente aos princípios da economia circular, tem forte alinhamento com a agricultura de baixo carbono (reduz a pressão ambiental por fontes não renováveis de nutrientes e há possibilidade de estabilização de parte do carbono na matriz orgânica no solo) e favorece os resultados da avaliação de ciclo de vida (as emissões ocorridas na sua geração não são contabilizadas).

De forma geral, os subprodutos com potencial de aproveitamento na agricultura são gerados pelo consumo e descarte de resíduos orgânicos pela população urbana, pelo agronegócio e por atividades de exploração mineral. O uso de resíduos urbanos é bem estabelecido em diversos países, sendo ainda incipiente no Brasil. Os resíduos agroindustriais têm sido destinados à agricultura brasileira conforme o apelo econômico da prática, sendo que a opção mais frequente tem sido o aterramento. Em outros países, o histórico de fortalecimento da cadeia de fertilizantes obtidos a partir de subprodutos envolve muito mais do que ações exitosas de empresas dos setores envolvidos.

Nesse caso específico, o sucesso se baseia principalmente em políticas públicas de estímulo ao aproveitamento de resíduos. É comum que os países tenham programas de incentivo à reciclagem de resíduos, que envolvem redução de impostos para empresas que reciclam e linhas de financiamento mais atrativas para atividades com esse fim, fortalecendo essa cadeia produtiva. Uma iniciativa nova e interessante foi a atualização das normativas da União Europeia, que possibilitará a partir de 2022 o enquadramento de subprodutos como materiais componentes de fertilizantes. Requisitos mínimos relacionados a teores mínimos de nutrientes e máximos de elementos potencialmente tóxicos foram padronizados. A nova legislação abriu possibilidades para a inovação e o aproveitamento de subprodutos de diversas fontes.

O mercado de bioinsumos destinados a nutrição vegetal, da mesma forma que o biocontrole, está em crescimento no mundo e com projeções de se manter crescendo a taxas superiores a 10% ao ano nos próximos anos. Europa, América do Norte e Ásia-Pacífico apresentam as maiores taxas de crescimento e as maiores ofertas de produtos. A expansão da agricultura orgânica, a forte opinião da sociedade, o surgimento de startups e políticas governamentais visando à redução e otimização do uso de fertilizantes têm sido os fatores decisivos para a ampliação do mercado.

De forma geral, o mercado de inoculantes (nominados *biofertilizers* mundialmente) não tem apresentado importantes inovações, tendo como base os produtos à base de rizóbios, principalmente, seguidos por solubilizadores de fosfatos, outros promotores de crescimento vegetal (especialmente Azospirillum, que promove maior enraizamento das plantas) e fungos micorrizos.

Da mesma maneira, o mercado de bioestimulantes (conhecidos como biofertilizantes no Brasil) também está em franca expansão e com uma infinidade de produtos no mercado dos EUA, Europa, China e Índia. Esses produtos, de forma geral, são moléculas naturais que melhoram a saúde e nutrição da planta, podendo aumentar a eficiência do uso de nutrientes no sentido geral. As principais indústrias se situam na Europa, América do Norte, China e Índia, e têm surgido dezenas de novas empresas nesses dois últimos países. Muitas dessas novas empresas estão se instalando também no Brasil. É interessante destacar que é um setor em que várias empresas dividem o mercado mundialmente, o que também é observado no Brasil, pois o mercado ainda é pouco consolidado. Diversos artigos científicos apontam a possibilidade de novos produtos com base em microrganismos, mas a inovação tecnológica no setor tem sido lenta (apesar do mercado em expansão). A regulação complexa parece ser um entrave em vários países, notadamente nos da Europa, o que também se observa no Brasil. Temas como uso de consórcios microbianos multifuncionais, veiculação de microrganismos em fertilizantes, em compostos orgânicos ou em organominerais e tratamento de sementes na indústria estão entre as tendências apontadas por consultorias especializadas e pela literatura científica, como forma de dar suporte à inovação tecnológica do setor nos próximos anos.

A nanotecnologia em aplicações agrícolas ocorre tanto pela utilização de nanopartículas fertilizantes ou por nanoestruturas que carregam um nutriente convencional e controlam sua liberação. Os nanomateriais inorgânicos representam 55% da aplicação total do setor, enquanto nanoencapsulados, nanocompósito e nanomateriais à base de carbono são explorados em 26%, 7% e 6% das tecnologias, respectivamente. A nanotecnologia deve ser entendida não somente como o uso de nanopartículas (partículas com tamanhos menores de 100 nm ou, dependendo da definição, menores de 500 nm), mas como todas as estratégias de modificação dos materiais, incluindo fertilizantes e materiais contendo fertilizantes, que leve a uma mudança de uma propriedade, em função do tamanho ou da escala de organização da microestrutura. As oportunidades vislumbradas com o uso da nanotecnologia são: aumento da eficiência dos fertilizantes minerais e novas tecnologias existentes como os de organominerais; redução na quantidade de fertilizantes químicos, em especial contendo micronutrientes; e aumento da demanda por nanofertilizantes (*all-in-one*) nos próximos anos.

A combinação de ferramentas digitais, como GPS, sensores e softwares de modelagem de dados, com tecnologias de automação em máquinas e equipamentos inteligentes, drones e robôs, tem trazido eficiência no uso de insumos, por meio de um gerenciamento econômico do sistema de produção. A agricultura digital (AD) está estabelecendo as ações de gerenciamento, não apenas com base na variabilidade do campo, mas também nos dados e imagens coletados durante o desenvolvimento da lavoura em tempo real, com avaliações e correções dos problemas de deficiência de nutrientes, água, fitossanitário etc., permitindo recuperação da produtividade das

culturas. A AD tem sido impulsionada pelos rápidos desenvolvimentos da internet das coisas (IoT), big data, computação em nuvem e inteligência artificial (AI), trabalhando com a integração de interfaces e tecnologias que se sobrepõem e englobam ideias como agricultura de precisão e sistemas de informação de gestão na agricultura.

Os remineralizadores (REM) são derivados de rochas silicáticas cominuídas, abundantes, ricas em bases e minerais primários frescos, com potencial para serem intemperizados no solo agrícola na escala de tempo agronômica, melhorando a qualidade do solo e fornecendo nutrientes para a microbiota e às plantas cultivadas. Cinco tipos de rochas têm possibilidade de se transformar em REM: magnesianas (ex.: dunito, piroxenito, serpentinito); cálcicas (ex.: calcissilicáticas, anortositos); cálciomagnesianas (ex.: basaltos, diabásios, gabros, anfibolitos); potássicas (ex.: rochas alcalinas, rochas ricas em biotita); e cálcio-magnésio-potássicas (ex.: kamafugitos, olivina melilitito). Os REM são utilizados em países de clima temperado em nichos de mercados, como na produção orgânica e agricultura regenerativa.

O maior potencial de uso ocorre em solos tropicais profundamente intemperizados, como é o caso do Brasil, o país que mais estuda e desenvolve esses insumos, assim como é o único país que tem uma regulamentação bem estabelecida para registro, comercialização e fiscalização dos REM. Países como Austrália, Indonésia, Índia e alguns da África também desenvolvem os REM, mas ainda de forma inicial e em pequena escala. Nas condições tropicais e em conjunto com outros insumos e manejos de intensificação biológica, os REM podem contribuir para aumentar a produtividade agrícola.

Apesar do conhecimento geológico amplo, ainda carecem de estudos para prospecção e quantificação de materiais que podem ser transformados em REM, assim como as pesquisas agronômicas a campo de longo prazo. Parte desses insumos podem ser provenientes de atividade mineral já existente, a partir de desenvolvimento de coprodutos, desde que sejam materiais seguros (atendam às normas estabelecidas – IN 05/2016) e eficientes agronomicamente. Os processos de produção dos REM são passiveis de serem implementados em mineração de todos os portes, envolvendo etapas de cominuição (onde o maior custo está no processo de moagem) que deve ser otimizado em função das respostas agronômicas ou da demanda de diferentes perfis produtivos.

Os REM são insumos regionais e devem ser consideradas as limitações logísticas, de centenas de quilômetros, a depender da composição, características dos sistemas de cultivos e tipo de transporte. Ao mesmo tempo, considerando o ciclo de intemperismo dos REM, existe um elevado potencial de sequestro e armazenamento de carbono no solo agrícola manejado com esses insumos. Conclui-se que os REM apresentam um elevado potencial para aumentar a eficiência do manejo da fertilidade e nutrição das plantas cultivadas.

Diagnóstico

Historicamente, a produção nacional de fertilizantes é inferior à demanda nacional e não tem apresentado crescimento similar ao da demanda. Nesse contexto de deficit estrutural de produção nacional de nutrientes vegetais, o segmento de fertilizantes orgânicos (FO) e organominerais (FOM) surge como alternativa para a correção de deficiências estruturais do solo brasileiro e a diminuição da dependência internacional.

O mercado de FOM cresceu 19,5% em 2019. Os organominerais necessitam de apoio do Governo Federal para ganhar escala, bem como necessidade de adaptação do arcabouço regulatório. Os produtos organominerais ainda são bastante primários (geralmente granulados simples) e falta muito em termos de padronização do teor de nutrientes. Há a necessidade da integração dos fertilizantes organominerais e orgânicos com a cadeia "tradicional". Não existe, por exemplo, um CNAE específico para fertilizantes orgânicos, o que implica um agrupamento com outras atividades que têm características e conceitos de controle ambiental diferentes. Há, ainda, concentração de fornecedores de matéria-prima da fração mineral. Faz-se necessário criar mecanismos de financiamento para fomentar o organomineral, pois, além de tudo, o câmbio desvalorizado encarece a sua produção (por conta da matéria-prima NPK importada).

A maior dificuldade em relação à matéria-prima é a sua padronização. Cada tipo de processo – granulação, produção de farelos ou peletização – depende do tipo de matéria-prima. Os equipamentos envolvidos para a produção de organominerais não são adequados. Outro aspecto importante é o logístico, pois os polos de produção devem estar próximos dos locais de destinação. Muitas vezes, os equipamentos envolvidos para a produção de organominerais não são adequados. A estabilidade do composto é essencial para obter um produto de qualidade. As rotas de produção de FOM podem contribuir para que o setor de fertilizantes intensifique a adoção de conceitos da bioeconomia e da economia circular, a partir do emprego de matérias-primas renováveis. A síntese de FOM envolve rotas variadas, com o uso de matérias-primas oriundas de plantas de compostagem, subprodutos de processos industriais de fermentação, lodo de biodigestores e, mais recentemente, biocarvão gerado em reatores de pirólise.

O custo da matéria-prima representa cerca de 70% do custo total da produção de FOM, maior que no caso de fertilizantes orgânicos (50%) e fertilizantes foliares (65%). O segmento de bovinos de corte é o que mais tem dificuldades e desafios para aproveitamento, sobretudo em função da dispersão do rebanho pelo País e da preponderância da produção extensiva, o que aumenta o desafio logístico. A construção de instalações em pequena escala no local de geração de resíduos pode ser a solução prática. Foi verificado o interesse na produção de organominerais com revestimentos e aditivos (além de microrganismos), mas a disponibilidade tem sido bastante pequena no

mercado, porém com grande potencial para crescer nos próximos anos. É um setor que necessita de incentivos para superar as barreiras, tais como fomento a novas tecnologias de base biológica, financiamento da construção de instalações de produção e comercialização, benefícios fiscais para o uso de matérias-primas renováveis e apoio à comercialização de produtos por meio da conscientização dos agricultores.

As cadeias emergentes de subprodutos com potencial de uso agrícola, como resíduos urbanos e industriais, principalmente de agroindústrias e indústrias alimentícias, representam importante oportunidade para diminuir a dependência nacional por insumos importados no atual cenário do mercado de fertilizantes no Brasil. O fortalecimento dessa cadeia, viabilizando o uso de subprodutos como solução alternativa regionalizada aos fertilizantes convencionais, pode reduzir problemas logísticos e custos financeiros e ambientais.

Novas tendências de mercado, como economia circular, agricultura de baixo carbono, análise de ciclo de vida e fertirrigação, impulsionam o aproveitamento de resíduos como fertilizantes, que, além de promoverem a reciclagem de nutrientes e da matéria orgânica, podem melhorar atributos químicos, físicos e biológicos do solo. Mesmo com vários pontos favoráveis a essa prática, a cadeia não está consolidada no Brasil. Ainda são necessárias informações regionalizadas sobre a disponibilidade de resíduos e seus atributos de interesse agrícola e de segurança ambiental, assim como um diagnóstico mais amplo de iniciativas de compostagem no Brasil e formas para que seja processado um volume maior de resíduos, o que pode ser feito por meio do fortalecimento de soluções consorciadas entre municípios de pequeno e médio porte.

Um inventário nacional facilitaria a identificação dos fertilizantes potenciais, viabilizaria estimativas dos volumes gerados e subsidiaria a elaboração de planos de negócio. A falta de integração entre as políticas públicas agrícolas e as de gestão de resíduos é outra limitação. Embora a Política Nacional de Resíduos Sólidos (PNRS) seja uma importante diretriz para o aproveitamento agrícola de resíduos, não houve aumento relevante no uso destes após sua publicação, mesmo com todo potencial e atratividade.

O PNF deve ser um estimulador da PNRS, por meio do estabelecimento de políticas públicas que incentivem o uso agrícola dos subprodutos e consolidem esse mercado. Dado o forte peso ambiental que o uso de subprodutos como fertilizantes carrega, é plausível que linhas específicas de crédito mais atrativas sejam oferecidas para o desenvolvimento dessas cadeias de produção. Incentivos fiscais, como reduções na tributação para que as indústrias geradoras destinem os resíduos que atendam aos requisitos para a agricultura, para que as empresas produtoras de fertilizantes a partir de subprodutos se estabeleçam e consolidem, são factíveis e benéficos. A regulamentação do pagamento por serviços ambientais também se configura como uma medida para alavancar o uso de resíduos orgânicos, de modo a remunerar os atores envolvidos na cadeia de reciclagem e produção de fertilizantes orgânicos, contribuindo para a sustentabilidade dessa atividade.

As regulamentações nacionais de fertilizantes consideram vários subprodutos e possibilitam que outros sejam registrados ou tenham permissão de uso, embora algumas precisem de atualização. Instruções normativas que visam garantir a eficiência agronômica e a segurança ambiental desses produtos estão em vigor, com destaque para uma importante modernização da legislação de fertilizantes orgânicos em que a IN nº 61/2020, do Mapa, define que os resíduos urbanos podem ser utilizados como matéria-prima para a produção de fertilizante orgânico Classe "A", desde que segregados na fonte geradora e a coleta seja diferenciada em, no mínimo, três frações: resíduos orgânicos, resíduos recicláveis e rejeitos, evitando qualquer tipo de contaminação sanitária. Essa previsão normativa representa um avanço na harmonização das legislações dos setores agrícola e de resíduos urbanos.

O diagnóstico da cadeia emergente de subprodutos utilizados como fertilizantes demonstra que o estímulo a esse segmento é estratégico tanto sob o ponto de vista de atendimento à demanda interna por nutrientes e diminuição da dependência por insumos importados, como sob o ponto de vista ambiental, atendendo a novas exigências de mercado ligadas à economia circular e às mudanças climáticas.

O combate às perdas e aos desperdícios de alimentos ao longo da cadeia produtiva e no pós consumo também tem potencial de reduzir a demanda interna por nutrientes, além de contribuir com a segurança alimentar e nutricional no Brasil. De acordo com o relatório da Organização das Nações Unidas para Alimentação e Agricultura (FAO) intitulado "Global food losses and food waste", publicado em 2011, cerca de um terço dos alimentos produzidos no mundo são desperdiçados todos os anos, o que representa mais de 1,3 bilhões de toneladas por ano.

Além dos impactos no agravamento da crise humanitária relacionadas à fome, todo esse desperdício também agrava as mudanças climáticas em curso. Nesse sentido, a redução do desperdício de alimentos não depende unicamente de uma destinação diferenciada a alimentos que seriam descartados e passa necessariamente por uma integração entre políticas públicas relacionadas com o ciclo da matéria orgânica na produção de alimentos. Estas políticas públicas incluem, além da agenda de resíduos sólidos, as agendas de segurança alimentar e nutricional, agricultura familiar, agroecologia e produção orgânica, entre outras.

Em relação ao mercado de bioinsumos destinados à nutrição vegetal, da mesma forma que o mercado de biocontrole, está em franco crescimento no Brasil. Foi observado um aumento superior a 80% nas vendas de inoculantes (90 milhões de doses na safra 2019/2020) contendo bactérias fixadoras de N e/ou promotoras de crescimento de plantas nos últimos 5 anos. Existem no Mapa (ano 2021) 436 produtos inoculantes com registro ativo produzidos por 55 diferentes estabelecimentos.

Desse total, mais de 40% dos produtos são rizóbios para a cultura da soja. Também têm destaque inoculantes com rizóbios para o feijão, feijão-caupi e amendoim. Para o milho, há cerca de 40 produtos registrados, a maioria contendo a bactéria *Azospirillum* (que é uma bactéria fixadora de N de vida livre e que realiza diversas outras

funções). Alguns inoculantes contendo *Bacillus*, com bactérias facilitadoras de absorção de *P. Azospirillum*, estão disponíveis para várias culturas, destacando-se a coinoculação com *Bradyrhizobium* na soja e recentemente recomendação para pastagem. Outros microrganismos como *Bacillus*, *Nitrospirillum* e *Pseudomonas* também já fazem parte da tecnologia de promotores de crescimento de plantas, e os principais ganhos têm sido observado na maior eficiência de uso dos nutrientes, como o P, K e o próprio N.

Historicamente, o mercado de inoculante é pouco inovador, mas tem havido aumento na oferta de produtos diferenciados, especialmente aqueles para inoculação de sementes de forma antecipada ao plantio e que se baseiam em veículos formulados de forma mais sofisticada. A seleção de novos grupos microbianos, incluindo fungos colonizadores de raízes, outros mecanismos de ação que melhorem o desenvolvimento das plantas para aumentar a eficiência do uso de nutrientes e a adaptação a estiagem, o desenvolvimento de produtos baseados em comunidades microbianas, bem como a associação de microrganismos a organominerais e minerais objetivando a liberação de nutrientes são tendências emergentes e devem ser perseguidas nos próximos anos.

A legislação vigente precisa ser aprimorada, especialmente para registro de condicionadores de solo e a multiplicação de microrganismos nas propriedades rurais, o que representa uma oportunidade de se ampliar o acesso a bioprodutos, com o devido gerenciamento dos riscos. Alterações nas regras vigentes devem perseguir a qualidade, aumento da oferta e segurança dos produtos para os produtores e consumidores. Investimentos em ecossistemas de inovação voltados para produtos de base biológica têm acontecido, mas ainda de forma incipiente devido aos baixos investimentos.

Dentre 504 produtores brasileiros, 84% utilizam pelo menos uma tecnologia digital em seu sistema de produção, com a percepção de aumento de produtividade, e 95% estão dispostos para conhecer novas tecnologias. Os principais desafios elencados estão nos custos de aquisição de máquinas, equipamentos, softwares e na conectividade. Salienta-se que, para ambos os temas, é imprescindível a formação de profissionais/equipes habilitados para novas tecnologias.

A cadeia emergente dos remineralizadores (REM) constitui-se em uma oportunidade de o Brasil diminuir a dependência externa de aquisição de fertilizantes, uma vez que potencializa a eficiência de uso de nutrientes e a melhoria dos solos agrícolas. Os REM foram definidos no Brasil na Lei nº 12.890/2013 e, posteriormente, regulamentada pelo Decreto nº 8.384/2014 e pelas Instruções Normativas (IN) 5 e 6 de 2016, publicadas pelo Mapa, onde foram definidos os critérios para registro, garantias mínimas, comercialização e fiscalização desses insumos.

Atualmente, existem 25 produtos registrado no País, nos seguintes estados: BA, TO, GO, MG, SP, MS, PR e SC. Porém, ainda é imperativo ampliar a oferta dos REM em estados importantes na produção agrícola, tais como o MT e RS, além de estados do Nordeste. Estudo desenvolvido pela Embrapa e o Serviço Geológico do Brasil (CPRM) em

2018 mostra que existe a disponibilidade de REM no Brasil para qualquer área agrícola a menos de 300 km de distância do fornecedor. Nesse sentido, são necessários o apoio e o desenvolvimento ao setor mineral para ampliar a produção desses insumos destinados a todas as regiões do País. Estrategicamente, parte desse potencial deve ser desenvolvido inicialmente a partir da atividade mineral já existente, mas não exclusivamente. Em função dos tipos de rochas envolvidos nas cerca de 9.500 pedreiras/minerações ativas atualmente no País (dados da ANM) que se destinam à produção de vários bens minerais, incluindo principalmente brita e areia artificial, acredita-se que esse setor poderá gerar coprodutos (como REM), desde que tais insumos atendam às condicionantes estabelecidas na IN 5 do Mapa.

O mercado atual está crescendo rapidamente, passando de 650 mil toneladas comercializadas em 2019 para 1,1 milhão de toneladas em 2020, especialmente nas regiões Centro-Oeste, Sudeste e Sul. A ampliação da oferta de diferentes produtos em locais distintos deve ser acompanhada pelo cuidado nos processos de beneficiamento, os quais devem ser apropriados e desenvolvidos para aumentar a eficiência de produção de granulometria adequada e com baixo custo energético.

A logística rodoviária apresenta limitação econômica de transporte para os REM a 300 km, mas estudo sobre o ciclo de vida de REM derivados de basaltos em SP mostram que, para a questão do sequestro de carbono nessas condições, o limite é de 500 km. O modal ferroviário pode aumentar consideravelmente as distâncias viáveis de transporte dos REM. Ainda não existem políticas públicas que incentivem o uso de REM com a perspectiva de financiamento de aquisição pelo agricultor como investimento, uma vez que o manejo com esses insumos melhora o solo agrícola. Da mesma forma, ainda não existe crédito para as empresas que queiram adequar seu processo de produção de forma a ampliar a oferta de tais insumos. O manejo dos REM constitui uma ferramenta que implica desenvolvimento de cadeias produtivas regionais (arranjos produtivos locais minero-agrícolas) que aumentam a intensidade da economia circular e da bioeconomia.

Visão de Futuro

Os fertilizantes organominerais constituem-se em alternativas relevantes para a redução da dependência de importação de fertilizantes minerais, pois agregam nutrientes ao solo ao mesmo tempo que potencializam a eficiência dos fertilizantes minerais aplicados. Cooperam para a construção e recuperação da fertilidade dos solos brasileiros – carentes em matéria orgânica, especialmente por promover melhoria significativa nas suas características físicas, químicas e biológicas. Além disso, são ferramentas essenciais para melhorar a saúde do solo e sua capacidade de sequestrar e armazenar carbono, sendo imprescindível para o protagonismo da agricultura nacional nos aspectos relacionados a mudanças climáticas e ao aquecimento global.

Melhorar a qualidade dos solos resulta em maior produtividade e, no médio/longo prazo, em menor investimento em insumos, aumentando a competitividade da produção agrícola e consequentemente reduzindo a necessidade de expansão da área plantada.

As vendas de fertilizantes organominerais sólidos para aplicação no solo tiveram um crescimento robusto nos últimos anos (média de 20% ao ano, nos anos de 2018 e 2019). O faturamento das indústrias do setor nesses segmentos de produtos (líquidos e sólidos) totalizou em 2020 R\$ 2,575 bilhões, faturamento 1,58 vez superior ao de 2015.

Em 2020, o segmento de produtos apresentou um crescimento muito acima das expectativas, causado pela expansão do nível de adoção desse tipo de produto pelos agricultores em decorrência dos excelentes resultados obtidos na produção, especialmente nas grandes culturas. Em 2020, as culturas que mais se destacaram no quesito "aumento de adoção" foram as de soja, café, milho, cana-de-açúcar e as frutas – especialmente aquelas destinadas à exportação. No café, os fertilizantes organominerais e orgânicos apresentaram o maior crescimento.

Percebe-se ainda uma expansão importante na produção/oferta de matériasprimas de base orgânica, obtidas através do processamento de resíduos agropecuários, especialmente os de origem animal e vegetal, que favorece a competitividade do setor.

A cultura que mais gera resíduo é a de cana-de-açúcar. Em relação ao potencial de geração de resíduos na pecuária, o Brasil apresenta o segundo maior rebanho de bovinos do mundo e é o segundo maior produtor mundial de carne, permanecendo atrás dos Estados Unidos.

Estima-se que, em 2020, essa categoria de produtos atingiu um volume de vendas de 1 milhão de toneladas, e, a se manterem as condições atuais (particularmente em relação à taxa de câmbio e aos preços das matérias-primas minerais), o setor continuará apresentando bom desempenho em 2021.

A estabilidade do composto é essencial para obter um produto de qualidade. No armazenamento e transporte, pode ocorrer a liberação de gases e aquecimento do produto, e, no campo, perda de matéria orgânica que ainda está se decompondo. A estabilização do composto gera um fertilizante de melhor qualidade e mais estável, minimizando os problemas de armazenamento, transporte e aplicação.

Ao implementar as premissas para o Plano Nacional de Fertilizantes, para cadeias emergentes como a produção de fertilizantes organominerais, a logística, demandas energéticas e organização da produção são de vital importância.

2025

✓ Adaptação do arcabouço regulatório para produção de fertilizantes organominerais e orgânicos, tais como relativos a licenciamento ambiental;

- ✓ Maior padronização do teor de nutrientes nos produtos organominerais e melhoria das metodologias de análise de FOM, notadamente nos produtos fluidos;
- ✓ Adoção de metas obrigatórias e progressivas de destinação ambientalmente adequada de resíduos sólidos urbanos pelos poderes públicos municipais, por meio dos processos de compostagem ou outro tratamento biológico, contribuindo com a ampliação da oferta de resíduos orgânicos e organominerais;
- ✓ Criação de CNAE para a atividade de produção de fertilizantes orgânicos e condicionadores de solo, visando adequar o processo de licenciamento de operação à realidade do setor (as regras atuais de licenciamento são rígidas e incompatíveis com os riscos ambientais);
- ✓ Definição dos limites de baixo impacto ambiental aplicáveis aos processos de compostagem pelos órgãos ambientais competentes, em observância aos parâmetros mínimos previstos na Resolução Conama nº 481/2017, visando estabelecer procedimentos simplificados de licenciamento ou a sua dispensa;
- ✓ Adequação de alíquotas de importação de máquinas, equipamentos e insumos sem similar nacional, assim como investimento na nacionalização do desenvolvimento industrial desses maquinários, visando à modernização do parque industrial e consequentemente à produtividade e competitividade da indústria;
- ✓ Definição de critérios e procedimentos para o reúso de efluentes em sistemas de fertirrigação, de forma a incentivar essa técnica de adubação que utiliza a água de irrigação para levar nutrientes ao solo cultivado, a partir do efluente estabilizado de atividades, tais como indústrias de alimentos, bebidas, laticínios, frigoríficos e graxarias;
- ✓ Disponibilização de linhas de crédito incentivadas voltadas a investimentos em expansão ou retomada de capacidade produtiva de fertilizantes e em fertirrigação, abrangendo, ainda, a instalação ou melhoria de plantas de compostagem e reciclagem de resíduos orgânicos;
- ✓ introdução de projetos de investimento em capacidade produtiva de fertilizantes e outros insumos básicos destinados ao agronegócio; e
- ✓ Fomento da pesquisa científica visando à validação e ampliação dos benefícios da utilização dos fertilizantes de base orgânica e ações para a difusão dos resultados.

✓ Ampliação da oferta de formulações customizadas, atendendo às necessidades específicas dos agricultores em função da diversidade de solos e de culturas;

- ✓ Evolução dos processos industriais visando à melhoria das características físicas do produto e, consequentemente, maior eficácia na sua aplicação;
- ✓ Desenvolvimento tecnológico para o aproveitamento dos nutrientes dos resíduos e a disponibilidade para sua utilização como fertilizante, reduzindo a limitação logística para aproveitamento desse potencial, em função da dificuldade de se transportar resíduos por longas distâncias;
- Mudanças fiscais relacionadas ao beneficiamento e movimentação dos orgânicos de forma a viabilizar a competitividade desse tipo de produto em maiores distâncias da planta fabril;
- ✓ Maior integração dos fertilizantes organominerais e orgânicos com a cadeia "tradicional";
- ✓ Desenvolvimento de novas técnicas para estabilização e reaproveitamento de resíduos orgânicos;
- ✓ Criação de processos de fiscalização mais efetivos visando ao enquadramento dos empreendimentos informais às regras impostas à atividade e a preservação da reputação destes segmentos de produtos (garantia da qualidade);
- ✓ Maior competitividade dos fertilizantes orgânicos e organominerais em relação aos fertilizantes minerais convencionais (NPK) em decorrência da forte valorização do dólar;
- ✓ Fertilizantes organominerais devem chegar a 5%-6% do consumo total de fertilizantes, mantidas as bases da conjuntura econômica atual.

- ✓ Instalação de polos de produção junto às fontes de resíduos da produção mineral;
- ✓ Construção de instalações de linhas de produção de fertilizantes organominerais em pequena escala no local de geração de resíduos, administradas por produtores de fertilizantes, para a implementação de tecnologias baseadas em matérias-primas de base biológica, estabelecendo uma integração lateral com parceiros geradores de matéria-prima orgânica e possíveis consumidores de fertilizantes:
- ✓ Maior reconhecimento dos benefícios da sua utilização pelos agricultores, e consequente aumento do faturamento das indústrias do setor, causado pelo reconhecimento dos consumidores/compradores dos benefícios de práticas sustentáveis de produção;
- ✓ Fertilizantes orgânicos e organominerais atingem entre 15% e 20% do consumo total de fertilizantes;
- ✓ Fomento da pesquisa científica visando à validação dos benefícios da utilização dos fertilizantes de base orgânica e ações para a difusão dos resultados.

- ✓ Com a consolidação da cadeia de fontes minerais alternativas de fosfato e com o aumento da produção de fertilizantes fosfatados, o Brasil diminui de forma significativa a dependência pela importação de fertilizantes fosfatados;
- ✓ Com um mercado nacional consolidado e competitivo, as empresas investem cada vez mais em PD&I aumentando a produtividade da indústria nacional de fertilizantes orgânicos e organominerais.

A principal característica levantada sobre o cenário atual de fertilizantes no Brasil diz respeito à dependência nacional por insumos importados, o que torna o País vulnerável a questões externas, como aumento do consumo de fertilizantes pelos países exportadores e o surgimento de novos consumidores mundiais, resultando em redução de oferta e consequente aumento de preços. Além disso, destacam-se questões internas relacionadas à crescente demanda, expansão de fronteiras agrícolas, entre outros. Com base no exposto, fica evidente que o uso de resíduos ou subprodutos e da fertirrigação deve ser uma cadeia estimulada, uma vez que esse segmento é estratégico tanto sob o ponto de vista de atendimento à demanda interna por nutrientes e diminuição da dependência por insumos importados, como sob o ponto de vista ambiental, atendendo a novas exigências de mercado ligadas à economia circular e às mudanças climáticas.

No cenário atual, a cadeia de fertilizantes à base de subprodutos e resíduos, principalmente os urbanos, não está consolidada. Ainda é necessário o desenvolvimento de uma base de informação mais ampla e investimentos em pesquisa, mas o principal para seu crescimento é o estímulo por meio de políticas públicas, o que tem sido recorrente em outros países, destacando-se a comunidade europeia, conforme apresentado no *benchmarking*. Nesse sentido, o Plano Nacional de Fertilizantes brasileiro deve ser o principal incentivador para a consolidação do aproveitamento de subprodutos na fertilização e/ou condicionamento de solos agrícolas.

As ações do PNF podem direcionar esforços públicos e privados que tenham foco na consolidação da cadeia, promover um marco regulatório que facilite o estabelecimento e desenvolvimento dos atores sociais envolvidos, estruturar a criação de base de dados necessária para o crescimento da cadeia, incentivar o uso de recursos de P&D no tema e principalmente promover políticas públicas que estimulem o setor.

Os principais atores envolvidos são: (i) os geradores de resíduos e efluentes para reúso com potencial agrícola, sejam públicos ou privados (prefeituras e indústrias, por exemplo); (ii) empresas produtoras de fertilizante que já usem ou queiram utilizar resíduos como matéria-prima, com destaque para organominerais; (iii) produtores rurais consumidores dos insumos produzidos de forma regionalizada; (iv) órgãos normatizadores e fiscalizadores da produção e uso de fertilizantes; (v) elaboradores de políticas públicas.

Com base na experiência de outros países, as variáveis determinantes para o crescimento da cadeia de subprodutos estão ligadas a políticas públicas, especialmente no que se refere a resíduos sólidos urbanos. Ações que beneficiem empresas ou grupos sociais, como os catadores de materiais recicláveis, que promovam a reciclagem de nutrientes oriundos de resíduos, sejam as geradoras, sejam as que os transformam em subprodutos, no caso fertilizantes, sejam os consumidores (produtores rurais), são essenciais para alteração do presente cenário. É claro que o aumento da demanda interna, o aumento de preço de fertilizantes convencionais e o aumento da oferta de fertilizantes à base de subprodutos são fatores que influenciam o setor, mas sem políticas públicas específicas de incentivo à reciclagem, especialmente as que viabilizem a coleta seletiva dos resíduos orgânicos, dificilmente o cenário alvo será alcançado.

Procedeu-se, então, o estabelecimento de três cenários: o presente, que retrata a situação atual; o cenário ideal, semelhante ao que ocorre em outros países, e o cenário alvo, exequível mediante a ocorrência de determinados eventos ou parte desses, apresentados a seguir.

Tabela 3 - Visão de futuro baseada em três cenários e apresentadas em função da porcentagem do total de resíduo produzido

Cenário	Presente (%)	Alvo (%)	Ideal (%)
Resíduos de agroindústrias e indústrias alimentícias	Abordados em orgânicos e organominerais		
Composto de resíduo sólido urbano	1	30	60
Lodo de esgoto ou biossólido	0,5	30	70

Para que o cenário alvo seja uma realidade, os eventos listados abaixo devem ocorrer, ou pelo menos uma parte desses.

- ✓ Elaboração de estudo sobre resíduos orgânicos compostáveis no Brasil com mapeamento de soluções, estratégias e diretrizes como base para construção de uma estratégia nacional de reciclagem e compostagem de resíduos orgânicos, a partir de consultas aos principais atores e organizações do setor de compostagem do Brasil;
- ✓ Definição de critérios e procedimentos, em âmbito nacional, para aprovação de subprodutos a serem utilizados na agricultura e para o licenciamento ambiental,

- quando aplicável, da atividade de produção de fertilizantes a partir de subprodutos/resíduos com potencial de uso agronômico, consultando previamente o Mapa;
- ✓ Publicação de regulamentações específicas ou inserção nas regulamentações em vigor de subprodutos não considerados na legislação atual;
- ✓ Fomentar crédito e reduzir tributação para indústrias que gerem subprodutos destinados à agricultura ou que produzam fertilizantes a partir desses subprodutos que favoreçam o balanço de carbono (semelhante ao Plano ABC), assim como para as atividades de compostagem de resíduos orgânicos urbanos; e
- ✓ Fomentar o mercado para fertilizantes obtidos a partir de subprodutos, tanto sob o ponto de vista agronômico como ambiental.

- ✓ Regime tributário e linhas de financiamento que valorizem os benefícios ambientais, climáticos e, consequentemente, econômicos, do aproveitamento agrícola de subprodutos/resíduos;
- ✓ Incentivo fiscal ou linhas de financiamento diferenciados para indústrias que destinarem seus resíduos para reciclagem como fertilizante, proporcional à quantidade de resíduos destinada;
- ✓ Incentivo fiscal ou linhas de financiamentos diferenciados para empresas que produzam fertilizantes utilizando subprodutos/resíduos, destacando-se os investimentos iniciais, proporcional à quantidade de fertilizantes produzida;
- ✓ Incentivo à nacionalização de equipamentos utilizados na adequação de subprodutos ao uso agrícola e produção de fertilizantes a partir dos subprodutos e à sua aplicação no campo;
- ✓ Isenção/redução de impostos para importação de equipamentos ligados à reciclagem de subprodutos/resíduos;
- ✓ Incentivo aos munícipios para destinarem o lodo de esgoto tratado (biossólido) produzido nas ETEs para a agricultura;
- ✓ Incentivo aos municípios para realização da coleta seletiva diferenciada dos resíduos em, no mínimo, três frações (orgânicos, recicláveis e rejeitos), com a inclusão prioritária de catadores de materiais recicláveis na prestação desses serviços, e destinação da fração orgânica dos resíduos urbanos para a compostagem de acordo com as metas estabelecidas no Plano Nacional de Resíduos Sólidos:
- ✓ Incentivo aos municípios para adoção de estratégias variadas de reciclagem dos resíduos orgânicos, por meio do estímulo a iniciativas descentralizadas, bem como a partir de soluções consorciadas entre municípios de pequeno e médio

- porte, sempre priorizando a coleta seletiva diferenciada dos resíduos orgânicos, para potencializar a produção de fertilizantes orgânicos de qualidade;
- ✓ Publicação de regulamentações específicas ou inserção nas regulamentações em vigor de subprodutos não considerados na legislação atual, como efluentes, resíduos de mineração etc.;
- ✓ Renovação de regulamentações ainda pouco abrangentes quanto a algumas classes de insumos, como condicionadores do solo.

- ✓ Consolidação do mercado em função da oferta de fertilizantes (com subprodutos em sua composição) de qualidade;
- ✓ Reavaliação do inventário nacional de resíduos em função de novas tecnologias de produção de fertilizantes a partir dos resíduos;
- ✓ Limitar o aterramento de subprodutos e resíduos que atendam aos requisitos para uso agrícola, de forma escalonada (prazo diferenciado dependendo das características do setor gerador).

2050

✓ Limitar o aterramento de subprodutos e resíduos que atendam aos requisitos para uso agrícola, de forma escalonada (prazo diferenciado dependendo das características do setor gerador).

Conforme levantado na fase de *benchmarking* e diagnóstico no setor de bioinsumos voltados a nutrição de plantas, a demanda por esses produtos está numa escala crescente na maioria das regiões do globo. Estimativas por consultorias internacionais indicam que as taxas de crescimento de venda de biofertilizantes (chamados *inoculantes* no País) estão em um ritmo de crescimento de cerca de 5% ao ano e devem permanecer assim ao menos até 2025.

Curiosamente, apesar de ser visível um aquecimento do mercado de inoculantes no País, internacionalmente considera-se que a América Latina ainda tenha uma taxa de crescimento de uso de bioinsumos pequena em comparação à Europa e América do Norte. A oferta de bioprodutos para a agricultura orgânica, nos mais diversos segmentos, parece ser a força motora para esse cenário lá fora. A título de exemplo, informações da CropLife indicam que 80% dos produtos biológicos destinados ao biocontrole na agricultura mundial se destinam a produção olerícola, frutas, nisto incluindo a agricultura orgânica.

No Brasil, o número de empresas e registros de produtos biológicos, de uma forma geral, vem sendo ampliados grandemente nos últimos anos. O número de empresas com registro de estabelecimento produtor saltou de algumas dezenas para mais de 150 em 10 anos.

O mercado de inoculantes contendo bactérias diazotróficas é um "sensor" que indica a evolução do mercado de bioinsumos no Brasil. Segundo dados da Associação dos Produtores e Importadores de Inoculantes (ANPII), a venda de doses de produtos amentou em mais de duas vezes nos últimos 10 anos. Hoje, estima-se que são utilizados cerca de 90 milhões de doses de inoculantes em algo próximo a 45 milhões de ha. Assim, o Brasil é exemplo de uso de inoculantes para o mundo, sendo aportado de 7 a 8 milhões de toneladas de N na cultura da soja, o que é extremamente relevante dentro de um plano de fornecimento de nutrientes no País. Contudo, precisa ser enfatizado que a maior parte desse mercado se direciona à soja, deixando descobertas outras culturas, como o milho.

Além disso, existe todo um mercado de reaproveitamento de resíduos orgânicos da agropecuária e da geração de novos produtos, seja ele formal ou até mesmo informal, relacionados aos bioinsumos, de que se conhece pouco, devido aos poucos dados estatísticos. Numa visão de ciclagem de nutrientes e circularidade nesses mercados emergentes, essas novas iniciativas precisam ser consideradas.

A seguir, apontam-se tendências e situações imagináveis a partir do momento de mercado e da pesquisa e que compõem um cenário para as próximas décadas.

2025

- ✓ O marco regulatório do desenvolvimento e uso de bioinsumos é revisado, sendo estabelecidos critérios de qualidade e biossegurança dos produtos, inclusive para a produção nas fazendas;
- ✓ O mercado de bioinsumos voltados à nutrição de plantas continuará crescendo, principalmente por demanda e interesse dos produtores rurais;
- ✓ Haverá maior número de registro de produtos, porém terão como base microrganismos já conhecidos;
- ✓ Investimentos em PD&I serão cruciais para a geração de novos conhecimentos e tecnologias.

- ✓ O uso de bioinsumos será uma prática rotineira em todos os segmentos da agricultura, ou seja, em termos de área ou culturas, a expansão de uso entrará em estagnação;
- ✓ Esgotamento do desenvolvimento de novos produtos com base nas tecnologias hoje disponíveis, ou seja, novos produtos demandarão novas tecnologias;
- ✓ Novas tecnologias disponibilizadas abrangendo novas culturas, microrganismos, moléculas, produtos específicos para cada região etc.;
- ✓ Resíduos orgânicos da agropecuária mapeados, potencial para geração de novos bioinsumos determinada e protocolos de produção e registro estabelecidos.

- ✓ Produtos biológicos serão fundamentais para a adaptação vegetal às condições adversas de temperatura e deficit hídrico;
- ✓ Investimentos em PD&I serão cruciais para a geração de cultivares vegetais mais responsivos a interação com microrganismos;
- ✓ Produtos baseados em microrganismos multifuncionais e/ou comunidades microbianas serão realidade no campo, não apenas pensando em nutrição vegetal, mas também adaptação das plantas às condições de clima;
- ✓ Produtos baseados em moléculas bioestimulantes serão uma realidade, sobretudo, para melhor desenvolvimento radicular vegetal;
- ✓ Reaproveitamento de resíduos agroindustriais na forma de bioinsumos permitirá redução da dependência de fertilizantes industrializados.

2050

- ✓ Investimentos em PD&I permitirão o desenvolvimento de plantas altamente responsivas aos bioinsumos, incluindo plantas transgênicas ou geneticamente editadas;
- ✓ Haverá significativa redução da dependência de N-fertilizante sintético, sobretudo, em culturas como o milho, que serão beneficiadas pela fixação biológica de nitrogênio.

A agricultura é historicamente o setor mais estável e importante que, ao longo de vários séculos, foi responsável pelo fornecimento de matérias-primas para as indústrias de alimentos e rações. Com a Revolução Verde de 1960, o suprimento global de alimentos aumentou enormemente, porque a agricultura se beneficiou de uma diversidade de inovações tecnológicas introduzidas pelos setores de biotecnologia e produtos químicos. No entanto, mesmo com todos esses avanços, existe uma crescente necessidade em atender às demandas nutricionais da população mundial que se encontra em rápido crescimento. Nessa perspetiva, o consumo mundial de fertilizantes químicos tem crescido significativamente, com vistas a atingir aumentos expressivos de produtividade, porém os usos excessivos desses insumos criam desequilíbrios nos conteúdos minerais, afetam a microbiota dos solos e causam impactos ambientais. Além disso, estima-se que cerca de 40% a 70% do nitrogênio, 80% a 90% do fósforo e 50% a 90% do potássio não são utilizados pela planta.

De acordo com o ANDA (Associação Nacional para Difusão de Adubos), o Brasil importou 85% (36 milhões de toneladas) do fertilizante consumido em 2020, embora seja um dos maiores exportadores agrícolas do mundo. Essa grande dependência de produtos importados é conhecida há décadas e vem se acentuando nos últimos anos devido ao aumento da demanda por fertilizantes em contraste ao declínio da produção

nacional. Esse cenário coloca os agricultores brasileiros como reféns das oscilações cambiais e da dinâmica de oferta e demanda internacional.

Nesse sentido, a nanotecnologia emerge como uma alternativa promissora para impulsionar a nova revolução agrotecnológica brasileira, pois os fertilizantes produzidos em escala nanométrica podem atuar fornecendo agentes agroquímicos por meio de mecanismos de entrega mais eficientes. Esses aspetos contribuem para aumentar a produtividade de diversas culturas, aumentar a eficiência de uso de nutrientes pelas culturas, melhorar a qualidade nutricional do alimento e reduzir quantidade de insumos utilizados. Atualmente, alguns dos nanofertilizantes comerciais vem sendo produzidos pelos seguintes fabricantes:

- Nano Calcium (AC International Network Co., Ltd., Alemanha);
- Nano-Micro Nutrient (Shan Maw Myae Trading Co., Ltd., Índia);
- Nano Green (Nano Green Sciences, Inc., Índia);
- Biozar Nano-Fertilizer (Fanavar Nano-PazhooheshMarkazi Company, Irã);
- Arbolina (Krilltech Nano Agtech SA, Brasil).

Diversos estudos têm demonstrado que os nanofertilizantes também reduzem o período do ciclo e aumentam o rendimento da cultura. Por exemplo, a aplicação de nanopartículas contendo NPK em trigo mostraram aumentos nos rendimentos de grãos e reduções significativas no ciclo produtivo da cultura. Resultados similares têm sido observados em hortaliças, milho e cana. Em outro exemplo, nanoformulações à base de fósforo resultam em uma economia de 50% da quantidade de fósforo acompanhada com aumento de produtividade da cana-de-açúcar.

Como a alta dependência de adubos importados gera diversos riscos ao sistema produtivo nacional, inovações nesse mercado a partir da nanotecnologia possibilita ao Brasil avançar como modelos produtivos de alta eficiência, resultando numa agricultura altamente produtiva e sustentável. Nanofertilizantes produzidos nacionalmente contribuirão para uso mais eficiente de nutrientes na agricultura e com redução na dependência externa. É importante salientar que, para o Brasil alcançar os objetivos descritos acima, serão necessárias ações integradas entre os setores público e privado que viabilizem a modernização e contribuam para a inserção da inovação dentro das cadeias produtivas nacionais de fertilizantes. Essas iniciativas visam criar ambiente salutar para que o Brasil possa reduzir as importações de insumos agrícolas básicos, bem como condições favoráveis para que o País avance de forma contínua e sustentável rumo ao cenário desejável no horizonte deste plano, conforme descrito na sequência para os marcos temporais do PNF:

- ✓ Reativação de políticas de investimentos em pesquisa aplicada para o desenvolvimento de nanofertilizantes, envolvendo Embrapa, universidades e institutos de pesquisas nacionais;
- ✓ Institui-se novo marco regulatório para nanotecnologia Agro, com nova definição mais ampla, com o estabelecimento de diretrizes quanto a garantias mínimas, mecanismos de ação e proteção ao meio ambiente;
- ✓ O Brasil moderniza mecanismos que favorecem uma maior integração entre a pesquisa científica e a indústria nacional de fertilizantes;
- ✓ O Brasil institui políticas de estímulo à inovação na indústria nacional de fertilizantes;
- ✓ O Brasil institui política para viabilizar os investimentos para produção em larga escala de nanofertilizantes gerados por entidades de pesquisa;
- ✓ As demandas e ofertas internacionais de fertilizantes continuam a oscilar, causando insegurança e alta de preços de insumos para os consumidores brasileiros;
- ✓ A produção nacional de alimentos continua em crescimento, estimulando a ampliação nacional de fertilizantes;
- ✓ O Governo brasileiro cria inventivos aos produtores a utilizarem fertilizantes mais eficientes e com menores impactos ambientais;
- ✓ O Brasil inicia as adequações regulatórias sobre nanofertilizantes com objetivo de instituir normas alinhadas às boas-práticas internacionais. Esta atividade é fundamental para criar ambiente juridicamente seguro para novos negócios e investidores.

- ✓ O desenvolvimento de tecnologias de entrega mais eficientes de macronutrientes com base em nanotecnologia viabiliza a redução significativa (70% a 90%) das quantidades requeridas pelas lavouras. Reduções nesses níveis em relação ao fósforo e potássio podem tornar o País autossuficiente em relação a esses nutrientes;
- ✓ A indústria nacional inicia a adoção dessas novas tecnologias visando à produção em larga escala de fertilizantes baseados em nanotecnologia. A adesão desse tipo de tecnologia favorece a redução gradual da dependência de NPK importados.
- ✓ Aumento da eficiência dos fertilizantes minerais e novas tecnologias existentes como os de organominerais;
- ✓ Formulações completas de fertilizantes com nanotecnologia embarcada oferta todos os nutrientes necessários à nutrição de plantas (all-in-one), aumentando

- em 20% a eficiência de uso pelas culturas e a produtividade de grãos em pelo menos 5%;
- ✓ Fortalecimento de economia circular a partir da recuperação de materiais de descarte para síntese de nanofertilizantes contendo micronutrientes (ex.: metais recuperados de galvanização para produção de nanofertilizantes etc.) reduz a dependência por matéria-prima em pelo menos 15%;
- ✓ Rotas mais eficientes de produção de nanofertilizantes por meio da incorporação de materiais biodegradáveis, como nanopartículas de origem vegetal (ex.: nanocelulose), para redução de resíduos em campo;
- ✓ Com a política instituída e avanços em PD&I, o País avança para a produção e utilização de nanofertilizantes em larga escala, suprindo parte da demanda nacional;
- ✓ A indústria brasileira de fertilizantes se torna mais competitiva e inicia a exportação de parte de sua produção para mercados consumidores.

- ✓ Com a entrada de novos investidores no mercado, a indústria brasileira de nanofertilizantes inicia a construção de unidades produtivas em outros países;
- ✓ Com a melhora do ambiente de negócios, a crescente demanda e a evolução do conhecimento do território nacional, o País atrai novos investidores, intensificando as pesquisas, o que reduz em 50% a dependência internacional;
- ✓ O Brasil apresenta melhora contínua nos rankings da OCDE, o que, juntamente com a crescente produção nacional de alimentos, atrai mais investidores para a cadeia produtiva nacional de fertilizantes fosfatados;
- ✓ O Brasil possui uma cadeia produtiva de nanofertilizantes consolidada, tornandose referência global no tema.

2050

- ✓ Os crescentes investimentos em PD&I permitem ao País desenvolver novas tecnologias tornando atrativas jazidas de outros nutrientes antes consideradas economicamente inviáveis;
- ✓ Com um mercado nacional consolidado e competitivo, as empresas investem cada vez mais em PD&I aumentando a produtividade da indústria nacional de nanofertilizantes;
- ✓ Com a consolidação da cadeia produtiva, o Brasil diminui de forma significativa a dependência pela importação de fertilizantes convencionais.

O cenário futuro para o agronegócio indica uma expansão acelerada de boas práticas de uso eficiente de fertilizantes e insumos para a nutrição de plantas a partir de

aplicação de conhecimento técnico-científico sistemático e de adoção de novas tecnologias, de maior controle e precisão dos sistemas de produção pela utilização de equipamentos agrícolas inteligentes, impulsionado tanto pelas *startups* (Agritechs), como, também, pelas grandes multinacionais. Devido ao custo decrescente das tecnologias, dispositivos associados à microeletrônica tem se tornado cada vez mais utilizados e acessíveis ao público em geral em máquinas e equipamentos agrícolas, voltados para os empreendimentos tanto da pequena, como da grande propriedade, modificando o cenário atual para a expansão tecnológica na agricultura.

Os desafios e limitações atuais de uso dessa alta tecnologia para o manejo dos sistemas de produção, em tempo real, estão gerando dificuldades para a sua implementação a uma taxa maior, por falta de mão de obra treinada, tanto da parte técnica, com especialistas agronômicos e de tecnologia da informação, como das áreas de eletrônica para transformar dados em informações e programar os equipamentos com os mapas de aplicação, como também para os operadores, na rotina de aplicação dos insumos com os novos equipamentos.

A aplicação de alta tecnologia na agricultura permite que as operações de campo das diferentes culturas sejam realizadas com maior precisão. E, ano a ano, com o armazenamento dos mapas georreferenciados de produtividade e de propriedades do solo, o manejo temporal das culturas permitirá uma melhor adequação dos campos de produção para alcançar o potencial máximo de cada campo, na otimização de uso dos insumos, no acompanhamento dos campos de produção por imagens, durante o desenvolvimento da cultura, visando maior lucratividade e menor impacto ambiental.

O poder que a computação pode oferecer e a tímida adoção desses sistemas inteligentes pelos agricultores serão contornados com o uso eficaz dessas tecnologias com sistemas mais amigáveis de fácil manejo, proporcionando uma ampla transformação digital da agricultura.

Atualmente, o cenário indica as seguintes situações e, por conseguinte, ações que precisam ser implementadas de forma mais rápida visando aproveitar a grande oferta de tecnologia disponível no mercado brasileiro:

- Falta de um programa nacional de difusão de boas práticas de uso eficiente de fertilizantes e insumos para a nutrição de plantas em âmbito nacional;
- Falta de capacitação da mão de obra no campo para operar e desenvolver soluções tecnológicas, máquinas e equipamentos;
- Necessidade de provimento de linhas de financiamento;
- Melhorar a conectividade no campo;
- Necessidade de protocolos de padrões abertos para interoperabilidade dos dados e para comunicação entre os equipamentos;

- Melhorar a precisão e segurança dos dados coletados e dos sistemas de comunicação;
- Estabelecimento de uma política de propriedade e segurança dos dados coletados;
- Necessidade de ampliar a cooperação entre os setores público e privado no estabelecimento de políticas para o setor.

- ✓ Diminuição de custos ao produtor rural (por meio do aumento da eficiência de uso de fertilizantes e insumos para a nutrição de plantas) e a agricultura digital devem viabilizar o surgimento de tecnologias mais acessíveis para os pequenos e médios agricultores;
- ✓ Maior oferta de energia elétrica com uso crescente de fontes alternativas (solar, eólica etc.) para mitigar problemas de comunicação;
- ✓ Ampliação do acesso à informação para pequenos e médios agricultores por meio da ampliação da conectividade na área rural;
- ✓ O avanço na tecnologia de comunicação nas propriedades rurais possibilita acesso do produtor à assistência técnica e consultoria;
- ✓ Ampliação do uso de Vants, estações meteorológicas, GPS de precisão e câmeras espectrais, e sensores diversos interconectados;
- ✓ Ampliação de inteligência embarcada em máquinas e equipamentos, e do uso da tecnologia de taxa variável (VRT);
- ✓ Automação de rede de sensores locais para mapeamento de solos, monitoramento de pragas e doenças e de variáveis meteorológicas;
- ✓ Consolidação e incremento da IoT para coleta de dados por meio de máquinas, equipamentos e sensores convencionais conectados, e por meio de plataformas colaborativas ou mídias sociais;
- ✓ Sistemas IA no suporte à decisão para diagnóstico, otimização de uso de insumos, modelagem e simulação possibilitaram maiores rendimentos, maior qualidade e menor impacto ambiental da produção agropecuária;
- ✓ Consolidação dos sistemas de predição de safra e riscos agrícolas;
- ✓ Fortalecimento e crescimento de startups (Agritechs) com tecnologias de suporte a decisão, softwares para gestão, agricultura de precisão, equipamentos inteligentes com geração de novos empregos e contribuindo para a qualificação da mão de obra;

- ✓ Novos Vants, estações meteorológicas, GPS de precisão e câmeras especiais interconectadas poderão captar informações, indicar níveis de produtividade e necessidade de manejos específicos nos talhões;
- Rápidos desenvolvimentos na internet das coisas (IoT), big data e a computação em nuvem;
- ✓ Aumento da capacidade de processados e análise de dados de forma adequada e em tempo hábil para gerar informações e conhecimentos.

- ✓ Ambiente digital mais seguro;
- ✓ Ampliação das plataformas de dados abertos e nas nuvens, com intensificação do uso de arquiteturas big data e de ferramentas de mineração de dados;
- ✓ As ciências de dados e a de computação tornam-se protagonistas da transformação digital no agronegócio;
- ✓ Novas máquinas, equipamentos e sensores associados à computação móvel e à visão computacional e IA;
- ✓ Redes neurais treinadas serão alimentadas por máquinas, equipamentos e sensores autônomos que permitirão a automação de parte do processo de produção agropecuária;
- ✓ Ampliação do cenário regulatório, com exigências internas e externas para rastreabilidade de produtos em todos os níveis, irá acelerar a adoção de tecnologias digitais no ambiente rural;
- ✓ Incremento da impressão 3D com potencial para o produtor rural criar suas próprias peças para equipamentos e agilizar assistência técnica de fabricantes, diminuindo o tempo de manutenção de máquinas, equipamentos e sensores;
- ✓ Prestação de serviços por realidade aumentada, com informações contextualizadas no ambiente real, e orientando, de forma audiovisual, as medidas a serem tomadas;
- ✓ Ampliação dos sistemas de armazenamento de dados e métodos de processamento devido ao grande acúmulo de dados.

- ✓ Inteligência artificial estará presente em todas as fases da produção agrícola tecnificada e de escala;
- ✓ Crescente convergência tecnológica com a evolução dos sistemas de realidade virtual e a inteligência artificial com possibilidade de simulação de diversos fenômenos naturais acelerará a pesquisa agrícola;

- ✓ Ampliação do compartilhamento de dados, informações e conhecimentos entre os atores das cadeias produtivas;
- ✓ Geração de algoritmos cada vez mais robustos e inteligentes que poderão ser utilizados por agentes públicos e privados para identificar tendências, novos nichos de mercado e demandas dos diversos elos da cadeia;
- ✓ Máquinas autônomas para aplicação de insumos.

Dentro das cadeias de insumos emergentes, os remineralizadores (REM) constituem um grande potencial para suprir a agricultura na forma de agrominerais regionais, complementares e em sinergia com todos os outros insumos já utilizados.

As grandes vantagens da cadeia dos REM são as seguintes: elevada disponibilidade de matérias-primas (disponibilidade potencial de fontes a menos de 300 km de qualquer área agrícola); facilidade de produção (processo de beneficiamento apenas de cominuição); demanda crescente (1 milhão de toneladas atuais e com tendência de crescimento contínuo).

As grandes fragilidades da cadeia dos REM são as seguintes: morosidade do desenvolvimento de produtos devidamente registrados no Mapa e na ANM (tempo médio de 3 anos); necessidade de investimento para a produção de finos pela mineração (R\$ 10 milhões a R\$ 20 milhões por unidade produtiva); e necessidade de pesquisa de longo prazo para o manejo regional e integrado com outros insumos (mínimo de 10 anos).

Nesse sentido, o País precisa investir em um Programa de Desenvolvimento de Remineralizadores, que envolve a pesquisa mineral, a pesquisa agronômica e o financiamento de processos de beneficiamento. As instituições de pesquisa agropecuária e mineral, capitaneadas pela Embrapa e SGB/CPRM, devem liderar os estudos básicos regionais para o desenvolvimento dos REM.

A mineração de pequeno porte atualmente representada por mais de 9 mil pedreiras com potencial para desenvolver REM apresenta uma excelente distribuição espacial e próxima às áreas agrícolas, especialmente na região Centro-Sul do País. A mineração de pequeno porte e com potencial para o desenvolvimento de REM é uma oportunidade para aproveitar uma atividade já existente e desenvolver coprodutos com diminuição da necessidade de abertura de novas minas e de investimentos. Por outro lado, a cultura dessa mineração está voltada atualmente para a produção de agregados para a construção civil e não tem conhecimento sobre as necessidades e demandas da agricultura.

Por outro lado, determinadas mineradoras de médio e grande portes podem apresentar o potencial para o desenvolvimento de coprodutos como REM de baixo custo e de elevado retorno socioambiental para essa atividade. Ao mesmo tempo, diversos empreendedores já investem na abertura de novas jazidas para o desenvolvimento

exclusivo de REM. Dos 30 produtos registrados hoje, 5 são derivados de mineração exclusiva para o desenvolvimento de REM, e o restante são coprodutos.

As mineradoras de todos os portes e que apresentam o potencial para o desenvolvimento de REM podem constituir excelentes parceiras para esse processo de criação de coprodutos regionais. Uma política pública de investimento em pesquisa mineral e agronômica pode contribuir de forma significativa na aceleração desse processo.

O esforço pode criar condições favoráveis para que o País avance de forma contínua e sustentável rumo ao cenário desejável no horizonte do PNF, conforme descrito na sequência para os marcos temporais:

2025

- ✓ O SGB/CPRM lidera as pesquisas agrogeológicas para a definição de zonas produtoras potenciais de REM prioritárias em função das demandas das zonas de consumo de agrominerais;
- ✓ A Embrapa lidera pesquisa de longo prazo para desenvolvimento regional do manejo e integração de REM com outros insumos;
- ✓ ANM define regulamentação sobre pesquisa mineral de REM;
- ✓ A produção nacional de alimentos continua em crescimento, o que aumenta a demanda de REM a 2 milhões de t/ano:
- ✓ O Brasil institui política para viabilizar os investimentos em PD&I e produção regional de REM, o que contribui para o desenvolvimento de 100 produtos registrados.

- ✓ Com a demanda crescente de agrominerais regionais, o avanço da pesquisa agrogeológica permanece na agenda política do Governo Federal e mantém o País no desenvolvimento do conhecimento contínuo sobre o tema;
- ✓ Com a adequação regulatória propiciando maior segurança jurídica, os investimentos privados são intensificados, e o mercado brasileiro começa a contar com mais mineradoras de todos os portes na produção de REM, o que contribui para o desenvolvimento de 300 produtos registrados;
- ✓ O País conta com fontes de recursos consolidadas para o financiamento em PD&I na pesquisa mineral e agronômica sobre REM em função da demanda crescente no mercado mundial de alimentos, o que favorece a produção nacional de 3 milhões de t/ano;
- ✓ As pesquisas reconhecem o potencial dos REM como um insumo que contribui para o sequestro do carbono líquido em solos agrícolas;

✓ Com a política instituída e avanços em PD&I, o País avança para a produção e manejo regionais adequados de REM.

2040

- ✓ O avanço do conhecimento agrogeológico permite o desenvolvimento de um portfólio de agrominerais regionais derivados de REM e outros insumos;
- ✓ Com a melhoria do ambiente de negócios, a crescente demanda, e a evolução do conhecimento agrogeológico e agronômico contínuo, o País desenvolve 5 mil produtos registrados de REM, e uma produção total de 9 milhões de t/ano;
- ✓ As pesquisas mostram que o manejo de REM sequestra 2 milhões de toneladas de CO2 equivalente líquido em solos agrícolas.

2050

- ✓ O avanço do conhecimento agrogeológico e da melhoria logística permite um incremento significativo no portfólio de agrominerais regionais derivados de REM e outros insumos;
- ✓ Com a evolução do conhecimento agrogeológico e agronômico contínuo, o País desenvolve 10 mil produtos registrados, e uma produção total de 18 milhões de t/ano:
- ✓ As pesquisas mostram que o manejo de REM sequestra 4 milhões de toneladas de CO2 equivalente em solos agrícolas;
- ✓ Com o incremento do uso de REM e de agrominerais regionais, o Brasil aumenta a eficiência no uso de nutrientes e na melhoria da qualidade de produção dos alimentos.

1.5.CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Benchmarking Internacional

A indústria mundial de fertilizantes enfrenta um desafio contínuo de melhorar seus produtos para aumentar a eficiência e minimizar os possíveis impactos ambientais. Esses objetivos podem ser alcançados por meio de melhorias de fertilizantes já em uso ou através do desenvolvimento de novos tipos de fertilizantes.

O mercado mundial de fertilizantes em 2019 foi estimado em US\$ 155,80 bilhões, com perspectivas de que registre um crescimento de 3,8% ao ano, durante o período 2020-2025. A partir de 2021, espera-se que as principais inovações tecnológicas do setor, junto com a crescente demanda por fertilizantes de base biológica e micronutrientes, impulsionem o mercado.

Os tradicionais produtos que representam os compostos NPK (Nitrogênio, Fósforo e Potássio) ainda dominam os números do setor em volume, mas novas tecnologias, nos mais diversos elos da cadeia produtiva, se mostram promissoras para entrega de valor nos próximos anos.

Em 2020, a Organização das Nações Unidas para Agricultura e a Alimentação (FAO) e OCDE apresentam projeções baseadas em estimativas sobre os custos de produção agrícola, que incluem custos de sementes, energia, fertilizantes e vários insumos. O aumento de produtividade virá de um uso mais intensivo de insumos agrícolas, com destaque para os fertilizantes.

A preocupação com a sustentabilidade também tem tido papel importante no desenvolvimento das políticas voltadas para o setor de fertilizantes. Como exemplo dessa tendência, podemos citar a atuação da FAO em promover ao mesmo tempo a segurança alimentar e o uso seguro de fertilizantes. A FAO espera que "O Código Internacional de Conduta Para o Uso e Gestão Sustentável de Fertilizantes", publicado em 2019, incentive os profissionais da indústria de fertilizantes a tomarem decisões, que minimizem os efeitos ambientais dos fertilizantes, ao mesmo tempo em que maximizam os benefícios que podem proporcionar em termos de saúde do solo, produção agrícola e valor nutricional. Na mesma linha, a Associação Internacional de Fertilizantes (IFA), em publicação recente, destaca que os nutrientes das plantas são muito mais do que insumos agrícolas, eles são responsáveis também pela nutrição e saúde humanas.

Nesse sentido, uma visão mais detalhada sobre o estado da arte da ciência, tecnologia e inovação (CTI) na cadeia mundial de fertilizantes e nutrição de plantas é essencial para o desenvolvimento de políticas públicas para o setor. No caso dos fertilizantes, o foco deve estar, ao mesmo tempo, na produção em larga escala e na inovação tecnológica. Esses são apontados como fatores de competitividade internacional para a geração de produtos inovadores e adequados aos sistemas de produção agropecuária cada vez mais sustentáveis.

No cenário internacional, além de necessidade de aumentar a eficiência nos processos de produção e uso dos fertilizantes tradicionais (NPK), há oportunidades importantes em torno de novos fertilizantes, fontes alternativas de nutrientes e condicionadores de solos. Além deles, no cenário da inovação merecem destaque produtos promotores da produtividade (estimulantes vegetais), como os organominerais, agrominerais silicáticos, bioestimulantes, microrganismos promotores de crescimento vegetal, entre outros.

Diante desse cenário, as principais tendências mundiais em ciência, tecnologia e inovação na cadeia de fertilizantes e nutrição de plantas seguem as inclinações de mercado, buscando novos fertilizantes com foco na eficiência, ao mesmo tempo em que cresce a preocupação com a sustentabilidade ambiental e social. Podemos agrupá-las em quatro grandes áreas: (a) Novos fertilizantes e fertilizantes mais eficientes; (b)

Fertilizantes Organominerais; (c) Sustentabilidade ambiental e (d) Indústria 4.0 e plataformas tecnológicas. Nesse sentido, podemos destacar os seguintes temas estratégicos: biofertilizantes, nanoargilas, fertilizantes de liberação controlada (controled release), amônia verde, adjuvantes e aplicação por drones, economia circular de rejeitos minerais, química de solos, regeneração e condicionamento de solos e outros.

Em relação às políticas públicas para fertilizantes, em nível internacional, pode-se destacar que as estratégias de países líderes em inovação tecnológica em fertilizantes estão voltadas da matéria-prima aos produtos finais, a produtividade no campo e ao impacto ambiental.

Os países líderes na produção dos fertilizantes NPK finais (EUA, Canadá, Rússia, China, por exemplo) não são necessariamente os líderes na produção das matérias-primas originais (rochas potássicas, fosfáticas, enxofre, petróleo etc.) e vice-versa. A produtividade focada nos elos iniciais da cadeia inclui políticas públicas direcionadas para o financiamento da expansão e produtividade da geração de matérias-primas em países em desenvolvimento.

As dez maiores empresas de fertilizantes do mundo são: 1. Agrium (Canadá); 2. Yara (Noruega); 3. Mosaic (EUA); 4. Potash (Canadá); 5. Indústrias CF (EUA); 6. Sinofert (China); 7. ICL (Israel); 8. PhosAgro (Rússia); 9. Uralkali (Rússia); e 10. K+S (Alemanha) e estão entre os países líderes em Inovação tecnológica em fertilizantes. Desse grupo, a única estatal é a chinesa Sinofert.

Em uma análise das patentes relacionadas à produção de amônia, observou-se que uma alternativa muito promissora para a produção de amônia no horizonte de longo prazo é a amônia verde, que utiliza fontes de energia renovável para produzir o hidrogênio necessário à cadeia de fertilizantes nitrogenados. Destacam-se as tecnologias oriundas da China, EUA, Alemanha, Suíça e Japão e de empresas como Siemens, Haldor Topsoe, Saudi, ThyssenKrup e Casale. Também foi destacado o papel da amônia azul, modalidade em que há a adição de tecnologias de captura e armazenamento de carbono à cadeia da amônia.

Em se tratando dos fertilizantes nitrogenados, os países que mais geraram patentes foram China, EUA, Alemanha e Holanda, e as principais empresas foram a Yara, Basf, Koch e Rhodia. Destacam-se as tecnologias relativas a reguladores de nitrificação e urease no solo, assim como a reguladores de taxa de solubilidade.

Já em relação aos fertilizantes fosfatados (e sua produção), as principais empresas depositantes de patentes estão localizadas na China. Excluídas tais empresas, destacaram-se empresas como a Mosaic e Yara. Destacaram-se tecnologias de produção de fosfatados a partir de fontes orgânicas como os resíduos animais, lodo de esgoto, turfa e resíduos da cadeia sucroalcooleira. Em termos de tecnologia de produto, devemse ressaltar as tecnologias relativas a reguladores de solubilidade.

Para os potássicos, as principais empresas depositantes de patentes também estão localizadas na China. Excluídas tais empresas, destacam-se a Israel Chemicals, K+S e Mosaic. Dentre as tecnologias mais verificadas, encontra-se a produção de fertilizantes potássicos associados a: fertilizantes orgânicos (resíduos da cadeia sucroalcooleira); produção convencional de K₂O (cloretos, sulfatos, sais mistos); fertilizantes potássicos produzidos a partir de rochas ígneas; e processos térmicos associados à produção de fosfatados.

Os maiores centros de inovação em fertilizantes incluem organizações especializadas, centros de PD&I e redes de indústrias, associações e consórcios envolvidos na cadeia de CTI em fertilizantes e nutrição de plantas. Dessa forma, o mapa global dos centros de inovação inclui: International Fertilizer Association (IFA), Fertilizers Europe, Yara International, International Fertilizer Development Center (IFDC), REFLOW e SUSFERT, Fertiliser Technology Research Centre (FTRC); Food and Fertilizer Technology Center (FFTC); Sea2land, Essex Plant Innovation Center (EPIC) e Bio Based Industries Consortium, dentre outros.

Estratégias de cooperação e alianças para PD&I em fertilizantes devem incluir empresas do setor, universidades, instituições de P&D (setores público e privado), dentre outros atores. Os arranjos para obter inovações devem incluir acordos entre universidades e laboratórios governamentais de pesquisas e departamentos de pesquisa de empresas privadas dentro e fora da indústria de fertilizantes.

No panorama global da CTI, os recursos financeiros gastos com PD&I da indústria de fertilizantes são relativamente baixos em relação ao faturamento total dessas empresas. Alguns dos maiores desafios de nosso tempo requerem transformações significativas dentro da indústria de fertilizantes, que incluem maiores investimentos na área de P&D, estreita colaboração com parceiros em toda a cadeia para impulsionar o desenvolvimento sustentável na agricultura e economia mundial.

Diagnóstico

O agronegócio brasileiro é um dos setores mais dinâmicos do País. A despeito da queda do Produto Interno Bruto de 4,1% experimentado em 2020, o agro fechou com uma expansão recorde de 24,31%, na comparação com 2019.

Contando com mais de 300 milhões de hectares (Mha) de terras agricultáveis, Brasil já ocupa a 3ª posição como produtor mundial de alimentos, depois de China e Estados Unidos. Contudo, como uma potência agrícola, o País é o quarto maior consumidor de nitrogênio, o terceiro de fósforo e o segundo maior de potássio. O Brasil importou US\$ 41,4 bilhões em produtos químicos em 2020, sendo os intermediários para fertilizantes o principal item da pauta de importação do setor, com compras de praticamente US\$ 7,2 bilhões, em 2020, equivalentes a 61,7% das compras externas de produtos químicos.

Para mudar esse cenário de dependência externa, é necessário criar um ambiente para atrair investimentos para PD&I na indústria de fertilizantes brasileira.

Analisando os pedidos de patente depositados no Brasil entre 2010 e 2021, que somaram um total de 369 documentos no campo tecnológico de fertilizantes nitrogenados, verifica-se que os depositantes desses pedidos de patente são oriundos de EUA, Brasil, Alemanha, Holanda, Noruega, Canadá e França. Entre os principais depositantes, destacam-se as empesas Yara, Basf, Koch e Rhodia. Em um aspecto mais geral, verificou-se que ocorrem mais frequentemente os campos tecnológicos relativos a: fertilizantes contendo ureia (o fertilizante mais consumido no Brasil), compostos e aditivos para regular a urease e a nitrificação no solo, fertilizantes contendo sais de amônia ou a própria amônia (como o nitrato de amônia) e misturas de fertilizantes. Em caráter mais aprofundado (leitura e análise de cada pedido de patente), verificaram-se pedidos de patente relacionados a composições de fertilizantes nitrogenados contendo aditivos, incluindo condicionadores de solo, biocidas e estabilizadores. Dentre as composições fertilizantes estabilizadas, têm mais relevo as composições com inibidores de urease, em especial os compostos triamida, e de nitrificação.

Entre os fertilizantes nitrogenados, há relevante presença de componentes orgânicos. A presença de enxofre nas composições também é frequente, bem como de micronutrientes como cobre, boro, zinco. Quanto ao desenvolvimento de tecnologias voltadas para a forma de apresentação dos fertilizantes, há predominância dos fertilizantes sólidos, seja na forma granular, em pó ou pellet, e também a utilização de revestimento, laminação e encapsulamento. Nota-se também depósito de pedidos no campo dos fertilizantes líquidos. Ainda, merecem destaque as tecnologias de anti-dusting destinadas a evitar perdas antes da aplicação do fertilizante no solo e também as composições fertilizantes com controle de liberação dos nutrientes no solo.

Para os fosfatados (270 pedidos de patentes depositados entre 2010 e 2021) e potássicos (141 pedidos de patentes depositados entre 2010 e 2021), a principal busca tecnológica no setor ocorre em termos de tecnologias relativas a revestimento e encapsulamento, à presença de enxofre na composição, à presença de micronutrientes (como cobre, zinco e boro), fertilizantes líquidos, polifosfatos, tecnologia em polímeros, presença de ácidos húmicos e fúlvicos, zeólitas, micronização e outros. Ainda, foram verificadas patentes relativas a processos térmicos. Boa parte dos depósitos não se refere a produtos desenvolvidos especificamente para as condições da agricultura tropical brasileira. Dentre os depositantes nacionais, foi verificado um grande número de pessoas físicas e universidades em detrimento às empresas.

Um levantamento realizado durante a fase de diagnóstico para a elaboração do PNF permitiu identificar a existência de apenas três empresas produtoras de fertilizantes que atuam em PD&I atualmente no País, a saber: Compass Minerals (Iracemápolis, SP), Heringer (CEPEC, CEMAP e CEAGRO - Centros de Excelência da Heringer) e Yara Knowledge Grows Center (Sumaré, SP).

Além dessas empresas, outras 77 instituições privadas de pesquisa cadastradas junto ao Mapa estariam aptas para atuarem em PD&I para fertilizantes. É preciso incentivá-las a investir em inovação, incentivar a criação de um ambiente com segurança jurídica visando promover parcerias público-privadas, capazes de aproveitar a capacidade já instalada em ambos.

Esse esforço depende de um robusto Sistema Nacional de Ciência e Tecnologia orientado para a promoção da Inovação. Orientar o esforço de CT&I para o suporte ao desenvolvimento nacional é um dos desafios a ser enfrentado.

Considerando a baixa disponibilidade instalada de produção das principais fontes de fertilizantes, é fundamental que sejam desenvolvidas estratégias de crescimento da produção nacional e, por outro lado, sejam criadas estratégias de CT&I que não apenas promovam políticas de incentivo às inovações tecnológicas em fertilizantes de maior eficiência agronômica e mais adequados ao solo brasileiro, mas também promovam o desenvolvimento de tecnologias alternativas para nutrição de solos, a sustentabilidade ambiental e a economia circular, reduzindo a carga de carbono no agronegócio brasileiro.

Cumpre destacar ainda o potencial de redução do uso de fertilizantes/hectare através da aplicação das tecnologias da indústria 4.0 para impulsionar a agricultura de precisão. Contudo, essas oportunidades somente podem ser atingidas com políticas pragmáticas que removam barreiras como fechar as lacunas da banda larga rural.

Neste Plano Nacional de Fertilizantes (PNF), ressalta-se que devem estar contemplados novos processos (químicos, físicos e biológicos) e matérias-primas (minerais, orgânicas, incluindo resíduos) para produção industrial de insumos fertilizantes como fontes de nutrientes ou condicionadores de solo.

O modelo de Agricultura Tropical Sustentável baseado em ciência e desenvolvido ao longo das últimas cinco décadas transformou o Brasil de país importador de alimentos, na década de 1970, para um dos maiores players do agronegócio mundial. Em vários aspectos, a agricultura brasileira é modelo de agricultura tropical para o mundo, e tecnologias para nutrição de plantas com foco na sustentabilidade como o uso de microrganismos, vêm ganhando cada vez mais destaque. Um caso de sucesso é a fixação biológica de nitrogênio (FBN), que hoje é a principal fonte de nitrogênio da agricultura brasileira, contribuindo para diminuir a importação de fertilizantes. Na produção de cana-de-açúcar, destaca-se o uso de bactérias diazotróficas e de fungos micorrízicos, além de bactérias promotoras de tolerância à seca. Além disso, há tendência crescente do uso de microrganismos associados a plantas por seu potencial na recuperação de áreas degradadas, na redução da emissão de GEE, na diminuição de riscos de contaminação do solo e da água e no uso racional de insumos.

Entre os grandes desafios da nossa agricultura hoje, está o desenvolvimento de sistemas de produção agropecuária, considerando características regionais, o uso

racional e os novos cenários climáticos. Aqui, mais uma vez, aparecem os insumos biológicos. O desenvolvimento de uma ampla gama desses insumos tem potencial de otimização ou substituição do uso de fertilizantes. A natureza circular dos insumos biológicos (inoculantes e biofertilizantes) aumenta a eficiência dos recursos e reduz as perdas de nutrientes. Além disso, podem promover a tolerância a estresses abióticos, melhorando a resiliência dos agroecossistemas diante das mudanças do clima.

Outro aspecto relevante em relação ao uso racional de fertilizantes é o mapeamento das reais necessidades dos solos agricultáveis no País. Ao longo das últimas décadas, os sistemas de produção agrícola, com uso intensivo de tecnologia na adubação e na correção de solo contínuas, ampliaram a fertilidade do solo nas principais regiões produtoras do País. Atualmente, essas mesmas áreas poderiam até mesmo dispensar o uso de fertilizantes em algumas safras. Nesse sentido, percebe-se uma área de atuação de PD&I que pode trazer informações relevantes para definir recomendações, seguindo os princípios de uso racional para esses solos.

Ainda nesse sentido, há necessidade do desenvolvimento de máquinas, equipamentos e processos de automação para empreendimentos de pequena e média escala, com especial ênfase em aumento de eficiência na utilização de fertilizantes. Tecnologias e plataformas digitais para uso na agricultura associados à melhoria do uso de nutrientes também devem estar contemplados.

A transferência dessas novas tecnologias é outro aspecto importante. A difusão de ferramentas para treinamento presencial e virtual sobre técnicas e boas práticas para uso racional de fertilizantes e novos fertilizantes são de fundamental importância para a implementação dessas práticas.

Entretanto, para que as temáticas elencadas acima se desenvolvam no Brasil, atenção deve ser dada à formação de capital humano no setor de fertilizantes e nutrição de plantas. Embora não haja dados estatísticos que envolvam todos os cursos de Agronomia do País, um levantamento preliminar realizado em universidades brasileiras constatou que a maioria das iniciativas nesse sentido são ainda muito pontuais e, predominantemente, concentradas nas regiões Sul e Sudeste do País. Desse modo, evidencia-se a necessidade de criação de um programa de formação de RH que abarque todas as regiões/estados brasileiros.

Essa deficiência constatada em relação à formação de RH também se reflete na produção bibliográfica e tecnológica sobre fertilizantes no Brasil. Recentemente, a Embrapa Solos realizou um levantamento bibliométrico com o objetivo de verificar a quantidade de artigos científicos envolvendo fertilizantes que foram publicados entre os anos de 2010 e 2020 no Brasil e no mundo. Esse trabalho mostrou que houve crescimento nas pesquisas realizadas no setor e, portanto, na publicação de artigos científicos. Porém, segundo o estudo, os artigos publicados sobre fertilizantes NPK no Brasil representaram aproximadamente 8% dos artigos de todo o mundo.

A capacitação contínua de todos os atores envolvidos no setor de fertilizantes e nutrição de plantas é um tema de fundamental importância para alavancar o setor no Brasil e deve ser considerada ação prioritária dentro do Plano Nacional de Fertilizantes (PNF 2050). Para isso, devem ser estudados/abordados temas relevantes envolvendo desde a prospecção de recursos minerais (convencionais e alternativos) usados como matérias-primas para produção dos fertilizantes e as inovações em tecnologias de produção em si, com foco primordial em tecnologias disruptivas, até o uso eficiente, seguro e sustentável desses produtos fornecedores de nutrientes, nas áreas agrícolas. O estímulo a investimentos em PD&I por meio de fontes de financiamentos diversas é de importância urgente e estratégica e, nesse contexto, devem ser levadas em consideração ações que: promovam e estimulem a inovação nas ITCs no País; Incentivem a construção de redes de pesquisa, alianças e projetos internacionais de PD&I, parques e polos tecnológicos; e fomentem, principalmente, a formação e capacitação de recursos humanos qualificados na área de fertilizantes/nutrição de cultivos.

O Brasil apresenta pesquisa de qualidade em várias das áreas do setor de fertilizantes, provenientes das Universidades, da Embrapa e de outras instituições. O marco diferencial da CT&I em Fertilizantes e Insumos para a nutrição de plantas no Brasil foi a criação da Rede FertBrasil em 2009.

A Rede FertBrasil foi uma iniciativa liderada pela Embrapa em 2008 que, por meio de um projeto nacional, com recursos próprios, governamentais e privados, organizou a primeira rede nacional de C&T dedicada exclusivamente aos desafios de inovação tecnológica e organizacional da cadeia de fertilizantes e insumos para a nutrição de plantas no Brasil. Ela tem como missão: desenvolver, avaliar, validar e transferir tecnologias em fertilizantes adaptadas aos agroecossistemas tropicais, que contribuam para o aumento de eficiência e para a introdução de novas fontes de nutrientes na agricultura brasileira. Entre 2009 e 2018, a Rede FertBrasil contou com a participação de mais de 350 especialistas, de mais de 25 instituições de ciência e tecnologia (ICTs) nacionais e internacionais, em 21 projetos, que mobilizaram recursos financeiros e não financeiros da ordem de 50 milhões de reais. A rede contou com uma estrutura de governança que era composta por um comitê assessor interno, tático-operacional, composto por pesquisadores líderes dos projetos em rede, e de um comitê assessor externo, estratégico, composto por experts no assunto da cadeia de fertilizantes.

A Rede FertBrasil, a partir de seus resultados, mudou o cenário tecnológico da cadeia de fertilizantes no Brasil, onde foram formados dezenas de novos doutores em tecnologia em fertilizantes, bem como houve uma inicial melhoria da capacidade instalada das instituições públicas e um investimento privado inédito na inovação no setor. Exemplo disso é o salto da oferta de fertilizantes organominerais no Brasil que, na última década, cresceu a taxas superiores a 5%, alcançando, em alguns anos, dois dígitos de crescimento. Outro exemplo importante do impacto das ações da rede no mercado de fertilizantes no País foi através da forte demanda do setor por fertilizantes de

eficiência aumentada. A adoção de produtos com tecnologia agregada para controle da liberação de nutrientes foi maciça e ocupa hoje uma boa parte das entregas de fertilizantes NPK, que responde pelo registro e/ou comercialização de mais de 200 produtos no mercado brasileiro atualmente. Por fim, um exemplo importante é a produção de insumos biológicos solubilizadores de nutrientes no Brasil. O solubilizador de fosfatos no solo, um produto lançado pela Embrapa, no âmbito da rede, tem gerado sozinho economia de mais de 10% de fertilizantes pelo agricultor.

Os resultados da Rede FertBrasil alcançaram impacto no mercado brasileiro de forma consistente, porque todos as tecnologias desenvolvidas foram testadas em campo, na rede de ensaios agronômicos da rede. Essa rede aplica protocolos validados cientificamente, usa métodos analíticos padronizados, com experimentos cujo desenho experimental é validado entre os pares, e conta com um alto nível de consultores ad hoc para a avaliação dos relatórios.

Atualmente, a Rede FertBrasil necessita de aporte de recursos financeiros para voltar a gerar resultados de alto impacto ao setor no Brasil e ser referência para a América Latina e África. Nesse sentido, é necessário um esforço coordenado multi-institucional, unindo os setores público e privado, para promover PD&I em fertilizantes no Brasil. Esse esforço deve focar em iniciativas mais abrangentes e convergentes, com o objetivo de diminuir drasticamente o déficit da balança comercial do setor.

Uma indicação clara do setor privado, com aderência dos ICTs no diagnóstico de CT&I, foi a necessidade da criação de um Centro de Excelência em Fertilizantes, liderado pela Embrapa, em uma estrutura própria, público privada, que contemple a maior lacuna para a inovação em produtos e processos em novos fertilizantes e insumos para a nutrição de plantas no Brasil. Essa estrutura seria composta por laboratórios especializados em estudos de processos químicos, físicos e biológicos de transformação de matérias-primas para a indústria, e, principalmente, uma estrutura de aumento de escala (*scale up*) para que os produtos e processos sejam finalizados para serem produzidos em escala industrial. Na prática, sem uma estrutura que ofereça especialistas em tecnologias em fertilizantes, as ICTs inventam os produtos e processos de forma ativa, validam em escala de bancada e em campo agrícola, levando a escala de maturação tecnológica até os níveis 3 a 5 (validação em ambiente experimental de laboratórios), em uma escala até o nível 9 na escala TRL/MRL (sendo este o uso do produto em todo seu alcance e quantidade, e produção estabelecida).

Visão de Futuro

A agropecuária destaca-se como um dos setores mais dinâmicos da economia do País. Contudo, no século XXI, serão muitos os desafios a serem superados pelo setor: uso racional de recursos naturais; mudanças climáticas; descarbonização da economia;

sistemas integrados para aumentar eficiência; urbanização gerando demanda por automação; sistemas que permitam usar insumos de forma inteligente e, por fim, a necessidade de aumentar a produção de alimentos de forma sustentável para atender ao crescimento da população mundial.

Nesse cenário, destacam-se os fertilizantes como os insumos agrícolas de maior impacto na produtividade. A produção nacional de fertilizantes é historicamente muito inferior à demanda interna e não tem apresentado crescimento similar ao da demanda. Em razão disso, a dependência em relação às importações vem aumentando ano após ano. Até 2050, a tendência é de aumento constante da demanda por fertilizantes no País. Dessa forma, o grande desafio a ser superado com a ajuda de uma estratégia robusta de PD&I nos próximos 28 anos será reduzir a dependência externa por fertilizantes.

Para alcançar esse objetivo, no âmbito do Eixo Estratégico Transversal de Ciência, Tecnologia e Inovação para a Cadeia de Fertilizantes e Nutrição de Plantas do Plano Nacional de Fertilizantes 2022-2050, é necessário ampliar os investimentos em Ciência, Tecnologia & Inovação e fomentar a criação de programas integrados de PD&I para sustentar a capacidade competitiva e garantir a liderança do agronegócio brasileiro por meio de: aumento da eficiência do uso de fertilizantes e consequente diminuição de sua participação nos custos de produção agropecuária; desenvolvimento de novas tecnologias, produtos e processos para o ambiente tropical e subtropical; desenvolvimento de fontes alternativas de nutrientes; e diminuição do impacto ambiental do uso de fertilizantes.

Tecnologias capazes de atender à demanda interna crescente nas próximas décadas, ainda que parcialmente, como bioinsumos, devem ser estimuladas e analisadas pela ótica técnico-econômica, social e ambiental.

Ações nesse sentido podem ampliar a competitividade e a resiliência da agropecuária brasileira frente à oscilação de rumos e volatilidade de mercados internacionais.

Dessa forma, a estratégia adotada no âmbito do PNF 2050 busca fazer com que o País avance de forma contínua e sustentável rumo ao cenário desejável no horizonte deste plano, conforme descrito na sequência de cenários para os marcos temporais do Plano:

2025

Com a Criação do Centro de Excelência em Fertilizantes de forma virtual, a Rede FertBrasil ganha amplitude para a inovação, o Brasil amplia sua produção de patentes e propriedades industriais, com aumento da adoção pelas indústrias, produtores rurais e empresas de soluções ambientais das tecnologias desenvolvidas na última década no Brasil. As parcerias público-privadas se consolidam em torno das metas do PNF;

- ✓ Liberação de recursos do Fundo Nacional de Desenvolvimento Científico e Tecnológico (FNDCT) abre a possibilidade de que recursos de fundos como o CT-Agronegócio, CT-Biotecnologia, CT-Mineral e CT-Verde e Amarelo possam ser utilizados para custear parte das ações necessárias de forma sistemática para o enfrentamento da fragilidade brasileira no fornecimento de insumos para a nutrição de solos;
- ✓ Com o estabelecimento da "PronaSolos: Rede para o avanço científico e tecnológico aplicado às múltiplas funcionalidades do solo para o desenvolvimento agroambiental do Brasil", o Brasil avança rapidamente no mapeamento dos solos do País;
- ✓ Com o apoio e a consolidação da "Rede FertBrasil Governança e Soluções Tecnológicas para o aumento da eficiência agronômica dos fertilizantes, da oferta e diversificação de matéria-prima de nutrientes, de novos processos de transformação mineral e sustentabilidade ambiental", o País avança no conhecimento das bases tecnológicas em fertilizantes, envolvendo uma equipe multidisciplinar e multi-institucional, pública e privada;
- ✓ Criação no âmbito do Ministério da Ciência, Tecnologia, Inovações (MCTI), do
 Comitê de Especialistas em Ciências do Solo e Nutrição de Plantas. O Comitê será
 um fórum de assessoramento científico de caráter consultivo e terá como
 objetivo subsidiar o Ministério na promoção da integração dos esforços de
 pesquisa científica e desenvolvimento tecnológico nessas temáticas;
- ✓ Lançamento do PNF 2050 cria ambiente favorável para atração de investimentos em PD&I no setor de fertilizantes;
- ✓ Consolidação de um programa nacional de difusão de boas práticas e tecnologias para o aumento da eficiência do uso dos fertilizantes e insumos para nutrição de plantas em âmbito nacional, com estratégias regionais, frutos dos trabalhos das redes PronaSolos e FertBrasil. Esse programa gera caravanas pelo Brasil que impactarão em diminuição dos custos de produção e aumento da produtividade com o manejo dos fertilizantes e insumos par a nutrição de plantas Caravana FertBrasil.

✓ Com a criação do Centro de Excelência em Fertilizantes no Brasil, em uma sede física e especializada com laboratórios especializados em aumento de escala, prototipagem e validação tecnológica industrial de novos insumos e processos, o País passa a ser uma liderança na produção industrial de novos fertilizantes e insumos para a nutrição de plantas adequados ao ambiente tropical de produção agropecuária, ampliando sua atuação para os países da América do Sul, por meio de parcerias com ICTs desses países;

- ✓ O País aumenta de forma marcante a produção de patentes, com diminuição da importação de tecnologias e novos produtos;
- ✓ O Brasil ocupa a posição entre os cinco países mais inovadores na cadeia de produção e consumo de fertilizantes e insumos para a nutrição de plantas, sendo o primeiro em tecnologia tropical;
- ✓ O País amplia os investimentos em Ciência, Tecnologia & Inovação e fomenta programas integrados de PD&I em fertilizantes para sustentar a capacidade competitiva e garantir a liderança do agronegócio;
- ✓ Com a demanda de fertilizantes crescente, as questões relacionadas ao mapeamento dos solos do País e as soluções tecnológicas para o aumento da eficiência agronômica dos fertilizantes permanecem na agenda política do Governo Federal, o que faz com que o País evolua nessas atividades;
- ✓ A intensificação da produção sustentável emerge claramente como uma necessidade premente e uma oportunidade para manter a posição estratégica do País como líder na produção de alimentos;
- ✓ O País tem um sistema nacional de informação tecnológica e de recomendação de uso de fertilizantes, corretivos e insumos para a nutrição de plantas;
- ✓ São desenvolvidas tecnologias para o aumento da eficiência de uso dos fertilizantes no campo, novos materiais e tecnologias industriais para o controle da liberação de NPK dos fertilizantes no solo e na água;
- ✓ São desenvolvidas tecnologias para que seja transferido/otimizado o processo de fixação biológica de nitrogênio para sistemas biológicos pouco eficientes. O País avança no desenvolvimento de inoculantes de fungos micorrízicos, e de bactérias promotoras de tolerância à seca e do crescimento vegetal.

- ✓ O investimento coordenado em pesquisa de setores-chave da agricultura brasileira tem sido vantajoso para o País, e mais esforços precisam ser feitos para a manutenção dos ganhos de produtividade;
- ✓ O Brasil está se tornando referência no desenvolvimento de fontes alternativas de nutrientes e bioinsumos para o ambiente tropical e subtropical;
- ✓ Com a consolidação do arcabouço de políticas públicas que concilia a conservação ambiental e a produção agrícola sustentável, o País cria um roteiro que permite avaliar impactos e resultados do desenvolvimento sustentável da agropecuária e projetar ações e respostas para os desafios futuros, dentro da estrutura da Economia Verde;
- ✓ Com a melhora do ambiente de negócios, a crescente demanda e a evolução do conhecimento do território nacional, o País atrai novos investidores.

- ✓ A população mundial é de 9,4 bilhões de pessoas em 2050, e é necessário um incremento de 60% na produção agrícola (em relação a 2020) para suprir a demanda por alimentos, fibras e energia, e o Brasil tem papel de destaque nesse cenário;
- ✓ Os avanços em PD&I desde a criação do PNF levam ao aumento da eficiência do uso de fertilizantes e à diminuição do impacto ambiental da atividade agrícola brasileira;
- ✓ As novas tecnologias auxiliam o País a diminuir significativamente a dependência em relação às importações de fertilizantes;
- ✓ O Brasil desenvolve um arcabouço de produtos e processos que o torna referência em Agropecuária Sustentável.

1.6. SUSTENTABILIDADE AMBIENTAL

Benchmarking Internacional

O uso de fertilizantes tem contribuído para o atendimento às demandas por alimentos, fibras, bioenergia e uma série de outras matérias-primas agropecuárias, fundamentais para sustentar o crescimento da população mundial e o desenvolvimento econômico global. Mudanças no perfil de consumo da população, questões ambientais emergentes e a necessidade de maior eficiência dos sistemas de produção têm levado o setor de fertilizantes a uma movimentação no sentido da sustentabilidade, em sintonia com o Plano Nacional de Crescimento Verde, lançado em 25 de outubro de 2021.

Em relação às reservas finitas de nutrientes minerais, a gestão do fósforo e do potássio na agricultura é reconhecida como estratégica desde a década de 1980. Recentemente, a Comissão Europeia considerou crítica a questão do P, tendo em vista sua importância econômica e o risco de descontinuidade de fornecimento. O potássio não foi considerado crítico no relatório da Comissão Europeia, mas em função da elevada exigência pelas culturas e do restrito número de países/empresas que concentram o mercado produtor. Para a agricultura, sua situação também pode ser considerada crítica.

O nitrogênio (N) é o outro macronutriente muito demandado na nutrição mineral das culturas e fornecido via fertilização. Em contraponto ao P e o K, seu reservatório global (N₂ atmosférico) não preocupa. Os desafios para a sustentabilidade do setor de fertilizantes nitrogenados estão principalmente relacionados à necessidade de inovação na rota de produção (indústria), com redução de emissões de gases de efeito estufa (GEE) e aumento da eficiência de uso de N pelas plantas (tecnologia de fertilizantes e manejo da fertilização).

Destaca-se que o Brasil importa mais de 80% do N, P e K utilizados no agronegócio nacional. Abordagens mais recentes apresentam soluções de sustentabilidade alinhadas ao conceito de economia circular, que têm como base a recuperação e reutilização de materiais. Assim, o modelo de crescimento linear, baseado em "extrair, transformar e descartar", que gerou desenvolvimento industrial sem precedentes em nossa história recente, deve ser substituído por sistemas produtivos restaurativos e regenerativos com foco na reinserção de produtos, materiais e redução da demanda energética.

A valorização de biomassas residuais de processos agroindustriais, industriais e/ou urbanos é fortemente indicada como alternativa viável para compor o setor de fertilizantes, reciclando nutrientes, ampliando as fontes e regionalizando as soluções. Também o reúso de efluentes em sistemas de fertirrigação e a mineração urbana se mostra como tendências mundiais para recuperação de elementos ou compostos, a partir de efluentes, aterros sanitários, resíduos de incineração, efluentes, resíduos eletroeletrônicos e resíduos de demolição e construção civil.

Relatório elaborado para países europeus defende a redução de impostos quando a matéria-prima tem origem secundária, o que é importante medida para viabilizar empreendimentos de produção mais sustentáveis. De fato, a harmonização regulatória é aspecto-chave na viabilização e implementação de soluções para a produção mais sustentável de fertilizantes.

Não somente o setor de fertilizantes tem incorporado novas forças motrizes para as mudanças. Ficou claro, a partir do primeiro quarto do século XX, que alterações antrópicas na estrutura e função dos sistemas naturais são ameaças à continuidade da vida no planeta, pelo menos da forma que conhecemos. Desde então, os riscos associados aos padrões de produção e consumo foram gradativamente trabalhados pela ciência e pelo desenvolvimento tecnológico, passando às esferas políticas e regulatórias, que emergiram na forma de conceitos de ESG (Environmental, Social and Governance) e similares (Corporate Social Responsibility – CSR; Socially Responsible Investment – SRI; Principles for Responsible Investment - PRI), para reconfiguração do ecossistema de negócios e mapeamento dos investimentos.

O ESG e instrumentos correlatos partem da ideia de investimento que extrapola o retorno econômico direto, ou seja, que gera benefícios a toda a cadeia de produtos e serviços criados, incluindo os trabalhadores e as comunidades envolvidas. Atualmente os investimentos ESG representam parte crescente do mercado de capitais, com valores globais da ordem de US\$ 30 trilhões em ativos gerenciados por fundos de estratégia sustentável.

Entre as principais empresas produtoras de fertilizantes no mundo, a Nutrien e a PhosAgro apresentam relatórios ESG; a Mosaic, a Yara, a Australian Potash Internacional apresentam, em suas páginas on-line, os relatórios de sustentabilidade. No Brasil, os relatórios de sustentabilidade já são oferecidos por fornecedores de fertilizantes, principalmente os de NPK para grandes cadeias do agronegócio (cana-de-açúcar, grãos, citros e floresta – de 33% a 41% das empresas) e fornecedores de micronutrientes (67% das empresas). Entretanto, cabe destacar que, até o presente momento, as iniciativas ambientais dessas empresas estão voltadas para atendimento de exigências relacionadas aos licenciamentos e minimização de impactos pela construção e uso de estruturas, com discussões iniciais envolvendo outros tipos de impactos.

A preocupação com o desafio climático global e o interesse nos conceitos de economia circular e ESG já estão na pauta das grandes corporações do setor de fertilizantes. A Política Comum para a Agricultura (CAP) da União Europeia está estruturada no que se chama *Green Deal* (Pacto Verde), que prevê a transição para modelos sustentáveis de produção e para atender aos objetivos no combate às mudanças climáticas estabelecidos para o bloco.

De forma geral, fertilizantes respondem por cerca de 2,5% do total de emissões de gases de efeito estufa (GEE) para atmosfera, resultantes do gasto de energia fóssil para síntese, processamento e transporte dos fertilizantes; e de reações no solo após utilização. Boas práticas de uso de fertilizantes na agricultura permitem maior eficiência produtiva, ao mesmo tempo que reduzem a pressão ambiental pela abertura de novas áreas e conduzem a elevados aportes de material orgânico no solo, via resíduos culturais, que incrementam o estoque de carbono no solo. O efeito poupa terra do incremento da produtividade, em contraposição à abertura de novas áreas, é importante globalmente, uma vez que a expansão da fronteira agrícola representa cerca de 10% das emissões de GEE. Estima-se, a partir de dados de produção das culturas, de área plantada e das quantidades médias de N, P e K para o Brasil, que o uso de tecnologias, dentre elas a fertilização, para aumento da produtividade de soja, cana-de-açúcar, milho, arroz, feijão e algodão, tenha resultado num efeito poupa terra superior a 50 milhões de hectares entre os anos de 1990 e 2018, além de emissões evitadas da ordem de alguns bilhões de toneladas de CO₂.

O uso correto e equilibrado de fertilizantes para suprir nutrientes para as plantas está alinhado com o que a FAO (*Food and Agriculture Organization*) define como *Climate-Smart Agriculture*. Em outras palavras, compreendem práticas que trazem benefícios para a produção, enquanto reduzem os impactos no clima do planeta. Além disso, estão em sintonia com outra ação mais específica da própria FAO, no que tange ao Código Internacional de Conduta para o Uso Sustentável e Gestão de Fertilizantes (Código de Fertilizantes), que define papéis, responsabilidades e ações para prevenir o uso indevido de fertilizantes e seus potenciais impactos sobre a saúde humana e o meio ambiente.

A tecnologia de fertilizantes nitrogenados com uso de inibidores de processos biológicos no solo (urease e nitrificação) e/ou de liberação lenta após aplicação e/ou revestidos com biopolímero é aliada na busca por balanços mais favoráveis de C no sistema produtivo, na medida em que permite a aplicação de dose de N mais ajustada à demanda da planta (evita excessos) e resulta em menor emissão de N₂O a partir do fertilizante aplicado no solo, comparativamente às fontes tradicionais de nutrientes. Há ainda necessidade de reduzir os custos dessas tecnologias para aumentar a adoção pelos produtores. A expansão desses fertilizantes dependerá também da incorporação desses fertilizantes de eficiência aumentada às misturas comerciais.

Outra questão é o crescimento de bioinsumos para a maior eficiência de uso dos nutrientes e promoção de tolerância a estresses abióticos. De acordo com o "*The European Biostimulants Industry Council* (EBIC)", composto por uma comunidade que atualmente conta com 62 empresas ativas na Europa, a natureza circular dos insumos biológicos (inoculantes e biofertilizantes) aumenta a eficiência dos recursos e reduz as perdas de nutrientes. Empresas globais, como a Yara Internacional, propõem abordagem para a *Climate-Smart Agriculture* que envolve, além do aumento da eficiência de uso de N pelas plantas, a redução de emissões de GEE na fabricação de fertilizantes. A sustentabilidade do setor de fertilizantes requer, portanto, uma visão agregada.

A União Europeia já reduziu em 21% as emissões de GEE pela agricultura entre os anos 1990 e 2014 com a aplicação de menores doses de fertilizantes e aumentos de produtividade. Concomitantemente, houve a simplificação de regras e medidas de incentivo para a adoção de modelos produtivos mais eficientes, bem como a promoção de inovação (*Eco-Innovation*) em fertilizantes. Recentemente, foi publicada a estratégia *Farm to Fork* (com objetivos declarados de 50% de redução no uso de fertilizantes minerais e pesticidas sintéticos).

Nos EUA, a recente Agenda de Inovação Agrícola (AIA) propõe aumentar a produção em 40%, enquanto reduz sua pegada ambiental pela metade até 2050. Entre os diversos caminhos para se atingir esses objetivos, estão incluídos o desenvolvimento e a promoção de novas tecnologias e práticas para melhorar o manejo de fertilizantes minerais e orgânicos.

A Política Nacional de Biocombustíveis, a RenovaBio – Lei nº 13.576, de 26 de dezembro de 2017 (Brasil, 2017), por sua vez, já traz na contabilidade de C a dose de fertilizante nitrogenado utilizada (usada na estimativa de emissão de N₂O após a aplicação) e o tipo de fertilizante (usado para as emissões de GEE na rota de produção da fonte nitrogenada). A transparência dessa contabilidade e a adesão massiva dos produtores de biocombustíveis à RenovaBio e ao mercado de CBIOs direcionaram a atenção para o uso de fertilizantes nitrogenados nas culturas energéticas, estimulando a busca por fontes mais eficientes e com menor impacto em termos de emissões de GEE, além de abrir maior espaço para o uso de resíduos agroindustriais e bioinsumos.

As iniciativas mundiais e os exemplos de políticas brasileiras citados indicam, claramente, que a competitividade das cadeias produtivas está cada vez mais dependente não só da sua eficiência produtiva, mas também do seu desempenho ambiental e social. O setor de fertilizantes, como parte essencial e indispensável dessas cadeias, tem buscado se adaptar aos novos desafios. Essa evolução pode ser potencializada com sinais claros de apoio e direcionamento por parte dos gestores governamentais, como a inserção da discussão a respeito da sustentabilidade ambiental no Plano Nacional de Fertilizantes.

Diagnóstico

De forma semelhante ao que ocorre nos diversos setores da economia brasileira, a indústria de fertilizantes tem se ajustado às demandas globais, com mudanças no modelo de produção e no portfólio de produtos, alinhadas à sustentabilidade, preservação ambiental e eficiência. Na visão de entidades públicas e privadas, é um processo contínuo, que exige rápida resposta em função das mudanças esperadas nos perfis de mercado e consumo. Há ainda uma expectativa especial com relação ao papel do Brasil, uma vez que a participação da agropecuária nacional no atendimento às demandas globais crescentes por alimentos, fibras, energias e demais matérias-primas é fundamental, além do papel na preservação da vegetação natural e da biodiversidade.

Exigências de mercado e do próprio consumidor quanto à sustentabilidade ambiental e social dos sistemas produtivos, são tendências atuais que impulsionam a economia e, consequentemente, o aproveitamento racional e responsável dos recursos. A aplicação do conceito de economia circular no setor de fertilizantes, no sentido de recuperar e reciclar subprodutos e resíduos, deve ampliar as fontes de nutrientes nacionais, reduzindo a dependência internacional e os custos com a aquisição de insumos importados. O fortalecimento de cadeias emergentes, viabilizando o uso de subprodutos e resíduos como solução alternativa regionalizada aos fertilizantes convencionais, minimiza custos e soluciona dificuldades de logística. Um dos aspectos para aumentar a participação de insumos alternativos na produção de fertilizantes, ou mesmo para uso direto na adubação das culturas, é a disponibilização de um inventário nacional de subprodutos/resíduos com potencial de uso agrícola, indicando possíveis benefícios e destacando aspectos de segurança ambiental. O referido inventário serviria de base para a identificação dos materiais, para a realização de estimativas de volumes gerados e sazonalidade, e para a elaboração de planos de negócio no setor de fertilizantes, considerando especificidades regionais.

A necessidade de equipamentos importados e de custo relativamente elevados, incluindo taxas de importação, também é um desafio para alavancar o reaproveitamento de subprodutos e resíduos. Tanto incentivos fiscais para que indústrias nacionais produzam equipamentos similares, como a redução de taxas de importação são pontos

de atenção. Ainda na linha de incentivo fiscal/financeiro, linhas de financiamento para empreendimentos mais sustentáveis e redução da carga tributária podem ser cruciais para os empreendimentos de pequeno porte, comuns na atuação regional para esse tipo de produção. Há um nicho especificamente importante para subprodutos e resíduos na agricultura nacional. Em geral, os sistemas de produção orgânica de alimentos se adequam à lógica circular por funcionarem dependentes da diversidade de espécies na forma de consórcios, rotações e integrações diversas, e no aproveitamento de resíduos para condicionar o sistema e fornecer nutrientes para as plantas. No entanto, a cadeia de produtos orgânicos tem lacunas restritivas quanto à disponibilidade de insumos para fertilização e condicionamento do solo. Ressalta-se que pode haver certa competição entre o direcionamento de subprodutos/resíduos para a fertilização (indústria ou uso direto) e a destinação para recuperação energética via queima ou a disposição em aterros sanitários. Em ambos os casos, há espaço para o aprimoramento de políticas públicas nacionais e estaduais sobre a disposição de resíduos e criação de mecanismos fiscais e de financiamento para instalação e operação de plantas de produção de fertilizantes, com reaproveitamento de subprodutos e resíduos.

O Plano Nacional de Resíduos Sólidos (PNRS) não recomenda, mas não proíbe, que resíduos com potencial de reutilização ou reciclagem sejam aterrados. Muitos países têm sido mais rígidos nesse sentido, estabelecendo regulamentações com a proibição do aterramento. Na União Europeia, a Diretiva 1999/31/CE de 26 de abril de 1999, alterada pela Diretiva 2018/850/CE de 04/07/2018, relativa à disposição de resíduos em aterros, apresenta os mecanismos e esforços para os estados-membros. A política de resíduos nesse caso estabelece que, até 2035, a quantidade de resíduos urbanos dispostos em aterros seja igual ou menor a 10% do total gerado; e, a partir de 2030, todos os resíduos com viabilidade de reciclagem ou outro tipo de valorização não sejam recebidos nos aterros, exceção feita àqueles cuja disposição conduza aos melhores resultados ambientais.

A utilização de resíduos de mineração (muitas vezes um passivo ambiental) como fonte de nutrientes para a agricultura é outro aspecto relevante na lógica circular. Podese, no entanto, necessitar de transformação industrial para a viabilização de uso desses materiais na agricultura. Fosfatos de baixa concentração, como os fosfatos secundários, e os minerais alternativos com baixa concentração de potássio, são exemplos de necessidade de transformação na indústria, função da baixa competitividade logística de utilização agrícola. O investimento em CTI pela indústria, pelas agências públicas de fomento (pesquisas em universidades e instituições de pesquisas) e via parcerias público-privadas é o melhor caminho para o estabelecimento de estratégia de aproveitamento desses passivos ambientais. Essa conversão também ajuda a indústria minerária a superar os problemas de passivos ambientais e eventualmente viabilizar fontes alternativas de nutrientes estratégicos. Sinergia pode ser obtida com atividades geradoras de resíduos

orgânicos, como dejetos de animais, possibilitando a obtenção de produto com formulação de carbono e minerais adequadas à agricultura.

Para resíduos sólidos urbanos (RSU) a situação não é diferente. O potencial de produção de fertilizante a partir da fração orgânica de RSU ainda está inexplorado. Menos de 2% desses resíduos são atualmente compostados, sendo que a maior parte é destinada para aterros sanitários e lixões, onde se tornam problema ambiental pela geração de chorume, emissão de gases do efeito estufa evitáveis e proliferação de vetores de doenças. Apesar de o potencial ser pequeno comparado com a produção de fertilizantes industriais, é uma quantidade expressiva sob a lógica sistêmica (múltiplos benefícios conjugados), ambiental e de circuitos curtos de produção e consumo: o composto da fração orgânica de RSU pode ser produzido de forma distribuída em municípios de qualquer porte, podendo desempenhar papel importante na produção urbana e periurbana de alimentos das cidades brasileiras.

A eficiência dos fertilizantes minerais é outro aspecto-chave para o setor da indústria, de forma a sustentar produtividades nacionais competitivas e melhorar o desempenho ambiental dos produtos agrícolas. Há oportunidades de desenvolvimento e inovação com produtos diferenciados, incorporando tecnologias avançadas como "coating", inibidores da urease e nitrificação, nanotecnologia etc., para aumentar a eficiência de uso do nutriente pela planta. Esses produtos inovadores levam a ganhos agronômicos e ambientais. Os bioinsumos, com destague para microrganismos fixadores de N₂ atmosférico e que promovem melhor uso de nutrientes pelas plantas, também representam oportunidades mais sustentáveis no setor de fertilizantes. A emissão de óxido nitroso (N₂O) a partir de fertilizantes nitrogenados, aplicados no solo, é um dos impactos negativos ao ambiente que merecem destaque. Isso porque a contabilidade de carbono em sistemas de produção e/ou na rotulagem ambiental de produtos é hoje importante no acesso a mercados consumidores e na diferenciação de preço. A busca pela neutralidade em carbono no setor agropecuário é, de fato, importante força motriz para a incorporação da sustentabilidade no setor de fertilizantes. Além de exercitar a economia circular e oferecer produtos inovadores de maior eficiência agronômica e menor impacto ambiental negativo, o setor de fertilizantes deve também melhorar as rotas de produção industrial e explorar fontes de energia mais limpas, de forma alinhada a uma nova economia verde.

O conhecimento dos fluxos de material e de energia no processo industrial é fundamental para identificar gargalos e otimizar a produção. Tecnologias mais limpas na produção proporcionaram importantes avanços quanto ao controle nas emissões de SOx e NOx pelo sistema de exaustão de plantas sulfúricas, nítricas, de amônia, fosfatos e nitrofosfatos. No entanto, a pegada de carbono na produção de fontes nitrogenadas deve ser foco da ciência e tecnologia, para geração de inovação no setor, visando reduzir o impacto atual de 4,5 kg CO₂ por kg de N entregue ao produtor. Uma opção é rota da

amônia verde, que implica drástica redução das emissões fósseis de CO₂, pois o hidrogênio necessário para a síntese de amônia pelo processo Haber-Bosch vem da eletrólise da água utilizando energia renovável.

A própria disponibilidade de fontes alternativas de energia para produção dos fertilizantes, como por exemplo, parques eólicos, representa melhores balanços de carbono no processo industrial, com reflexos no desempenho ambiental dos produtos agrícolas. Não exatamente associado ao processo industrial, mas como parte do processo de disponibilização do produto, deve-se também considerar o uso de energia limpa nas etapas de transporte.

Visão de Futuro

Momento atual

- ✓ O Brasil é destaque mundial pela expansão da produção agrícola, com uma das maiores taxas de aumento da produtividade na agricultura nos últimos 40 anos.
 O uso de tecnologia respondeu pela maior parte desse crescimento;
- ✓ A intensificação produtiva é direcionada por forças estruturantes, que incluem o crescimento populacional, o aumento da renda e do consumo mundial de alimentos, fibras e energia; a limitação de áreas para expansão da fronteira agrícola e valorização da terra; a redução da disponibilidade e o aumento do custo da mão de obra rural; a necessidade de preservação dos recursos naturais solo e água e as políticas agrícolas e legislações ambientais e florestais mais restritivas;
- ✓ As projeções apontam que a trajetória do Brasil como grande exportador continuará nos próximos anos, e estimativas da Organização das Nações Unidas para a Alimentação e Agricultura (FAO) indicam que o Brasil desempenhará papel importante no atendimento à crescente demanda global por alimentos e produtos agrícolas, que deverá aumentar em 50% até 2050;
- √ Há o aumento da demanda por Agricultura de Baixo Carbono e por alimentos saudáveis;
- ✓ Aumenta a compreensão que os sistemas alimentares são emissores de GEE, mas também vulneráveis às mudanças climáticas;
- ✓ O Brasil já conta com sistemas de produção e tecnologias sustentáveis, para elevada produtividade, que também resultam no efeito poupa-terra, com destaque para: ILPF; sistemas agroflorestais; sistema plantio direto (SPD) e agricultura orgânica; fixação biológica de nitrogênio (FBN); controle biológico de pragas e doenças; florestas plantadas; recuperação de áreas degradadas;

- tratamento de dejetos animais; recuperação, restauração e adequação de pastagens;
- ✓ Políticas públicas já estão em curso no País, direcionando tanto a preservação/conservação dos recursos naturais (como o Código Florestal e seus instrumentos − CAR e PRA, Lei nº 12.651, de 25 de maio de 2012), quanto a produção sustentável de alimentos e bioenergia, como o Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para a Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura (Plano ABC, elaborado de acordo com o artigo 3° do Decreto n° 7.390/2010), Zoneamento de Risco Climático (ZARC, Decreto no 9.841 de 18 de junho de 2019), Política Nacional de Biocombustíveis (RenovaBio, Lei nº 13.576, de 26 de dezembro de 2017), Política Nacional de Solos (Pronasolos, Decreto nº 9.414, de 19 de junho de 2018) e o Plano Nacional de Bioinsumos (Decreto no 10.375, de 26 de maio de 2020), dentre outros:
- ✓ Economia brasileira sofre efeitos do desmatamento ilegal, com efeito nas negociações internacionais sobre clima e biodiversidade. Setor empresarial começa a se mobilizar para exigir o combate ao desmatamento ilegal;
- ✓ O setor de produção de fertilizantes pouco mobilizado e organizado para financiamento de ações para implementação de práticas e processos para redução das emissões de GEE. Ainda há pouco investimento do setor em ações da cadeia de distribuição e incentivo do produtor a menores emissões de GEE. As ações do setor têm se restringido ao desenvolvimento de fertilizantes especiais de eficiência aumentada e menor potencial de perdas, incluindo emissões de N2O:
- ✓ O setor nacional de fertilizantes, assim como outros setores da economia, estão se alinhando às mudanças impostas pelo cenário global, no que se refere à sustentabilidade. Formalmente não há comprometimento do setor de fertilizantes com metas de redução de emissões, e sua participação é indireta, considerando, nesse caso, os compromissos de estado ou voluntários relacionados ao setor agropecuário;
- ✓ A compreensão sobre economia circular ainda é difusa. Modelos de produção e consumo são lineares e de curto prazo, e incentivos são insuficientes para setor empresarial e consumidores se engajarem;
- ✓ Discussão e preocupação com o alinhamento das ações por critérios ESG ainda em fase inicial.

- ✓ Aumenta-se a pressão para atingir os compromissos e metas firmados na NDC (Contribuições Nacionalmente Determinadas). Agricultura, o uso da terra e florestas são um dos principais focos para o cumprimento da NDC do País ao ampliar a adoção de melhores práticas e tecnologias de baixo carbono;
- ✓ O Acordo de Paris torna urgente a adoção de iniciativas e políticas relacionadas às mudanças climáticas, acelerando a busca por investimentos desse mercado, especialmente aqueles ligados à infraestrutura verde;
- √ Há restrições no uso de água na agricultura e na indústria;
- ✓ Exigências ESG passam a ser a regra para investimentos e para o comércio internacional:
- ✓ Empresas investem em P&D em soluções baseadas na natureza, em reduzir seus impactos e restaurar ecossistemas, com foco no aproveitamento da biodiversidade e na harmonia entre produzir e preservar. Investimento em tecnologias e regulamentação aumentam a escala de produção e acesso a alimentos saudáveis e sustentáveis. Avanços em tecnologia e soluções baseadas na natureza reduzem emissões e aumentam resiliência;
- ✓ Empresas de todas as cadeias produtivas estabelecem metas de neutralidade de carbono, pressionando a indústria de suprimentos e insumos para atender aos critérios de sustentabilidade. A escolha de fornecedores passa a ser aspecto fundamental em protocolos para estruturação de menores emissões na cadeia de produção e no rótulo ambiental de produtos;
- ✓ Políticas públicas incentivam e viabilizam modelos circulares na economia. Design circular é praticado desde a concepção do produto ou serviço, com investimento contínuo em infraestrutura, inovação, educação, coleta/destinação correta de resíduos;
- ✓ A indústria de fertilizantes promove diversificação das fontes de matéria-prima, com a intensificação do uso de resíduos e coprodutos agroindustriais e urbanos. Há significativa redução (>50%) no uso de energias fósseis na produção e transporte de fertilizantes;
- ✓ Considerando a geração regional de resíduos orgânicos e subprodutos e a maior participação como insumos da indústria de fertilizantes, benefícios ambientais (menor distância de transporte, com redução de emissões associadas), econômicos (redução de custos na produção de fertilizantes) e sociais (geração de emprego e renda verdes associados às plantas de produção e distribuição de fertilizantes) serão conquistados. Entretanto, também se visualiza uma competição entre setores pelo uso da biomassa, que tem potencial de uso em processos de geração de energia e bioprodutos pela chamada química verde;

- ✓ A implantação e operação de empreendimentos para produção regional de fertilizantes orgânicos e organominerais será incentivada por meio de incentivos fiscais e redução da carga tributária, além do desenvolvimento de equipamentos e maquinários nacionais de menor custo de aquisição. Os incentivos fiscais e desoneração tributária serão uma forma de modular a competição com o uso de biomassas para outras finalidades;
- ✓ No tocante a logística de transporte e distribuição de fertilizantes, a intermodalidade prevista para 2035 no Plano Nacional de Logística possibilitará o maior acesso a modais hidro e ferroviários, que aumentarão a sustentabilidade do setor de fertilizantes pela redução no consumo de combustíveis fósseis por unidade de nutriente, em contraposição ao praticamente exclusivo transporte rodoviário:
- ✓ A perspectiva de uma recuperação pós-Covid mais sustentável, em direção a um futuro de baixo carbono, leva a uma escassez de investimentos na área de petróleo e gás, que termina na escassez de oferta no período, uma vez que a indústria petroquímica continua sendo um pilar de crescimento durante o período de previsão;
- ✓ O setor de fertilizantes adota melhorias no processo de produção para minimizar emissões, ampliar o acesso (número de produtos e custo) a fertilizantes especiais de maior eficiência e início de ações na cadeia produtiva para fomentar atividades de sequestro de carbono, visando neutralizar suas próprias emissões;
- ✓ O desenvolvimento e adoção das melhorias bem como a contabilidade de carbono dos processos são viabilizadas por meio de parcerias entre o setor organizado (ANDA, ABISOLO etc.) e instituições de pesquisa para inovação na produção e atualização de seu perfil ambiental da produção;
- ✓ Há aquisição de créditos de carbono no mercado financeiro para neutralização de emissões do setor de fertilizantes e seus parceiros organizados na cadeia produtiva, iniciando pelas cadeias dos principais produtos de exportação;
- ✓ Começam a surgir exigências de rotulagem ambiental e certificação de produção de insumos usados na agricultura;
- ✓ A demanda e competição por energia renovável e fontes de biomassas aumenta com a necessidade de atendimento às metas de neutralidade:
- ✓ O Brasil se firma como um dos mercados com maior potencial de crescimento dos títulos verdes no setor agrícola. Novas oportunidades serão identificadas e promovidas, incluindo os tipos de ativos e projetos que podem ser classificados como aptos para financiamento verde;

- ✓ Estimativa de oportunidades de investimentos verdes na cadeia brasileira de suprimentos agrícola atingem a ordem de R\$ 700 bilhões (CBI, 2020), incluindo a implementação do Programa de Regularização Ambiental (PRA), expansão das práticas do Plano ABC, investimentos em bioinsumos (biodefensivos e biofertilizantes) e em energia renovável de biomassa;
- ✓ Os instrumentos financeiros e de mercado de capitais do Brasil, em especial mercado verde, estão prontos para alavancar as oportunidades existentes no investimento na agropecuária sustentável, e atrair capital de longo prazo (setor privado) em um momento em que os recursos públicos se tornarão menos abundantes e serão direcionados para ações obrigatórias do estado;
- ✓ Os preços agrícolas reais da maioria das commodities devem cair, pressionado a margem de lucro dos produtores rurais. Concorrências externas com expansão da produção de grãos principalmente, na América Latina, seguida da África Subsaariana, onde espera-se que o crescimento da produção venha de sementes melhoradas e aumento do uso de fertilizantes e pesticidas, bem como aumento da mecanização e do uso de serviços de extensão.

2040

- ✓ Com a consolidação do arcabouço de políticas públicas que concilia a conservação ambiental e a produção agrícola sustentável, o País cria um roteiro que permite avaliar impactos e resultados do desenvolvimento sustentável da agropecuária e projetar ações e respostas para os desafios futuros, dentro da estrutura da economia verde;
- ✓ Inoculantes biológicos para manejo da fixação biológica de nitrogênio em grandes culturas (milho, cana-de-açúcar, culturas forrageiras etc.), além da soja, reduzirão em 50% a necessidade de fontes nitrogenadas minerais em relação a 2020, com impactos profundos na contabilidade ambiental da agricultura brasileira e rotulagens de produtos;
- ✓ O setor de fertilizantes alcança balanço zero de carbono por meio de ações de redução de emissões e financiamento de atividades na cadeia de produção agropecuária para sequestro de carbono;
- ✓ Exigência crescente para processos industriais limpos na cadeia de suprimentos do agro;
- ✓ As cadeias agropecuárias no Brasil adotam padrões internacionais e programas de certificação em toda a cadeia de suprimentos agrícolas (incluindo fertilizantes), que promovem a sustentabilidade, e podem ser usados para alavancar as finanças verdes. Nesse cenário, o Brasil tem o potencial de servir como exemplo global de

como a crescente demanda por produtos verdes pode impulsionar a produção agrícola sustentável.

2050

- ✓ Sistemas de produção mais complexos, sistêmicos, resilientes, rastreáveis, tecnológicos, inclusivos e de baixa emissão de gases de efeito estufa (GEE) serão adotados em larga escala no Brasil;
- Captação de recursos externos multissetoriais e intergovernamentais pelo setor nacional de fertilizantes, agora organizado e com ampla capilaridade nas cadeias de produção, para ampliar investimentos em economia verde e responsabilidade social;
- ✓ Constante desenvolvimento e aplicação de novas tecnologias adaptadas às condições tropicais será demandado para permitir o uso eficiente e sustentável de recursos naturais pelo setor de agronegócios;
- ✓ Viabilização da amônia verde para a produção de fertilizante nitrogenado no Brasil, de forma complementar aos avanços em sustentabilidade relacionados a nutrição mineral nitrogenada conquistados na década anterior, com a fixação biológica;
- ✓ A certificação e rotulagem ambiental dos insumos agropecuários será exigência para todas as cadeias produtivas;
- ✓ Brasil fortalece sua vantagem competitiva com a sociobiodiversidade e se consolida como potência internacional em bioeconomia;
- ✓ Economia circular no centro de tomada de decisão de negócios e se tornam regra e não exceção.

1.7.TEMAS TRANSVERSAIS PARA A CADEIA DE FERTILIZANTES E NUTRIÇÃO DE PLANTAS

Financiamento

Nesta seção, são apresentados instrumentos de financiamento disponíveis para suportar investimentos destinados à produção de fertilizantes, abrangendo seus diversos produtos (nitrogenados, fosfato, potássio, produtos NPK e outros condicionadores de solo).

Resumo de instrumentos relacionados aos diversos produtos:

• Captação direta via mercado de capitais, por meio de fundos de investimento em participação (FIPs), fundos de investimento em direitos creditórios (FIDCs),

emissão de debêntures, bonds ou captação em bolsas no Brasil e no exterior, via processos de abertura de capital e follow on;

- Produtos e linhas de crédito bancário privado;
- Produtos e linhas para crédito de longo prazo do BNDES, contemplando, entre outros, o BNDES Finem Crédito para projetos Direto, com prazo total de financiamento de até 20 anos, definido em função da capacidade de pagamento, BNDES Finame Direto, limite de crédito para financiamento a máquinas, equipamentos, veículos, sistemas industriais e outros materiais industrializados, BNDES Debêntures Sustentáveis e de Infraestrutura, apoio a investimentos sociais, verdes e em infraestrutura por meio da aquisição de debêntures simples, BNDES Garantias, garantia fidejussória a obrigações pecuniárias assumidas pelos clientes junto a credores nacionais ou estrangeiros;
- Instrumentos de financiamento à inovação da Finep, capazes de apoiar todo o ciclo de desenvolvimento de Fertilizantes e outras soluções inovadoras para nutrição de plantas, contemplando: investimento direto e indireto para o fortalecimento da estrutura de capital de empresas inovadoras (Fundo de Investimento em Participações (FIP) proprietário, Programa Finep Startup Aporte de capital via contrato de opção de compra de ações, e Investimento em fundos de terceiros); Financiamento reembolsável para atividades inovadoras das empresas, com recursos originados do FNDCT, do FUNTELL, além da própria Finep; recursos não reembolsáveis para empresas, subvenção econômica à inovação, concessão de recursos financeiros do FNDCT às empresas para a realização de atividades de PD&I que envolvam risco tecnológico e oportunidades de mercado sem necessidade de retorno ao órgão governamental concedente, Finep Tecnova, para subvenção descentralizada a micro e pequenas empresas, e Centelha, para a criação de empreendimentos inovadores, operado em parceiro com parceiros estaduais.
- Apoio n\u00e3o reembols\u00e1vel a projetos de PD&I realizados em parceria com unidades de compet\u00e9ncia da Embrapii.

Em relação a empreendimentos em setores intensivos em capital como a mineração, gás natural e fertilizantes, os capitais privados internacionais são importantes fontes de recursos, na forma de financiamento ou investimento direto, quando o investidor estrangeiro adquire participação no negócio. Nesse sentido, o Governo Federal, por intermédio do Ministério das Relações Exteriores, da Apex-Brasil e dos Ministérios realiza usualmente ações para a atração de investimentos externos, sejam empresariais ou fundos.

Seguem abaixo algumas especificidades quanto aos diferentes produtos e cadeias de produção.

PRODUÇÃO DE NITROGENADOS

Caracterizada por unidades industriais de grande escala e intensivas em capital, demandam soluções financeiras estruturadas especificamente para a viabilização do projeto, com integração de diversas fontes de recursos, entre pool de bancos comerciais, captações diretas em mercado de capitais, bancos públicos, agências de crédito à exportação e bancos multilaterais.

Considerando a essencialidade da cadeia de fertilizantes, alguns países adotam instrumentos como financiamento livre de juros, concessão de garantias e investimento direto de governo via fundos de capital ou empresas estatais, principalmente produtoras de gás natural.

Seguem dois exemplos de soluções financeiras negociadas para projetos de expansão ou retomada de capacidade produtiva em nível mundial nos últimos anos.

- Financiamento de conjunto de bancos russos acordado no ano de 2021 para financiamento de projeto de expansão da EuroChem, incluindo diversos bancos comerciais e a VEB.RF, agência de desenvolvimento do governo russo dedicada ao financiamento de projetos de larga escala para desenvolvimento de infraestrutura e produção industrial; e
- Concessão de crédito livre de juros acordado no ano de 2020 entre o Departamento de Fertilizantes da Índia e a empresa Hindustan Urvarak & Rasayan Limited (HURL), para retomada de três projetos de produção de fertilizantes.

No Brasil, os investimentos passados foram realizados majoritariamente por subsidiárias da Petrobras, única fornecedora de gás natural no período. Com o processo em curso de abertura do mercado de gás natural, espera-se que o setor privado lidere o novo ciclo de investimentos, que deverá contar com os diversos mecanismos de financiamento aqui apresentados entre outros que poderão decorrer desse plano.

MINERAÇÃO DE FOSFATO E POTÁSSIO

No caso de investimentos em mineração, é importante reforçar as oportunidades de captação de recursos destinados a projetos de mineração e exploração mineral via bolsas de valores, fundos de capital e empresas de participação.

Diferentemente de outros países com rica tradição mineral, como Canadá e Austrália, não há forte presença das mineradoras entre as empresas listadas na bolsa brasileira. No Canadá (Toronto Stock Exchange – TSX) e na Austrália (Australian Stock Exchange – ASX), onde o sistema de *funding* para o setor no mercado financeiro encontra-se desenvolvido, os lançamentos de ações (IPOs), principalmente das *junior*

companies, atraem investidores de todo o mundo. No Brasil, as mineradoras de menor porte necessitam buscar financiamento em bolsas no exterior.

Os fundos de capital e empresas de participação dedicados a projetos de mineração também são uma importante fonte de captação, cabendo destacar a atuação de fundos focados no financiamento a projetos em estágios iniciais de pesquisa mineral ou desenvolvimento de mina. Além do financiamento via participação no capital das empresas e crédito tradicional, esses agentes contam em geral com financiamento via contratos de royalties e de streaming.

Os acordos de royalties proporcionam aos investidores uma participação no faturamento ou no lucro de uma mina, ao longo da vida útil, mediante um aporte inicial. Já por meio dos acordos de streaming, investidores e empresas de mineração negociam a compra e venda de produção mineral futura considerando aporte antecipado dos recursos pelos investidores, a fim de suportar os investimentos.

Apesar de comuns em mercados financeiros mais desenvolvidos para financiamento ao setor de mineração, a atuação via fundos bem como a utilização de instrumentos de royalties e streaming ainda precisam ser fortalecidos no Brasil.

Cabe ressaltar também a iniciativa do governo federal (ANM e SGM/MME) para viabilizar a utilização efetiva de direitos minerários em garantias de financiamentos, com intuito de facilitar a contratação de financiamentos no setor.

FERTILIZANTES ORGANOMINERAIS

Os produtores rurais contam com instrumentos de financiamento incentivados, via mercado de capitais, como por exemplo a emissão de Certificado de Recebíveis do Agronegócio (CRA). Também encontram um conjunto de linhas de financiamento com taxas incentivadas, contemplando projetos de tratamento de resíduos da agroindústria com foco na produção de biogás e biofertilizantes, por exemplo no âmbito do Fundo Clima ou apoiadas pelo Plano Safra.

Vale destacar também as linhas de crédito voltadas para o Programa Nacional de Bioinsumos, linhas de crédito rural para aquisição de bioinsumos ou investimento para montagem de biofábricas *on farm*. São linhas previstas no âmbito do Inovagro e do Prodecoop, destinadas a produtores rurais e cooperativas. Além disso, os empreendedores, que não sejam produtores rurais ou cooperativas, podem financiar seus investimentos na linha do BNDES denominada BNDES Agro.

REMINERALIZADORES

Para projetos de mineração, cabe destacar a existência de linhas de financiamento aplicadas a pequenas e médias empresas que poderiam atender a projetos de mineração de fertilizantes naturais, como por exemplo a linha BNDES Crédito Pequenas Empresas. Trata-se de linha de financiamento indireto por meio de agentes financeiros, cuja

destinação a esse tipo de projeto poderia ser positivamente impactada por esforços de especialização de alguns agentes em projetos de pequena e média mineração.

Deve-se ressaltar também os instrumentos de apoio à inovação destinados a projetos de recuperação de resíduos minerais e da cadeia de construção, para sua transformação em materiais remineralizadores de solo, como: linhas de apoio à inovação da Finep; realização de projetos em parceria com unidades Embrapii; crédito incentivado do BNDES para inovação e sustentabilidade, incluindo, entre outros, projetos para recuperação de áreas degradadas, mineradas ou contaminadas; e outras linhas bancárias, ou captações em mercado de capitais vinculados a indicadores ESG.

Por fim, considerando a estratégia de elaboração deste Plano Nacional de Fertilizantes com foco na redução da dependência externa, seguem algumas oportunidades de linhas de financiamento e programas de apoio que poderão ser avaliados:

- Emissão de debêntures incentivadas, nos termos do disposto na Lei nº 12.431, de 24 de junho de 2011, para de projetos de investimento em mineração, e em capacidade produtiva de fertilizantes e outros insumos básicos destinados ao agronegócio;
- Captações via Fundos de Investimento em Participação em Infraestrutura (FIP- IE) e Fundos de Investimento em Participação em Produção Econômica Intensiva em Pesquisa, Desenvolvimento e Inovação (FIP-PD&I).
- Linhas de crédito incentivadas voltadas a investimentos em expansão ou retomada de capacidade produtiva de fertilizantes; e
- Programas específicos para apoio à inovação nas cadeias de produção de fertilizantes, via crédito com condições incentivadas ou recursos não reembolsáveis.

Tributação

Os fertilizantes e seus insumos estão sujeitos à tributação em operações interestaduais e a tributos federais. A carga tributária do potássio chega a 41,6%, e a do fósforo atinge 30,08%. Apesar disso, vigoram alguns incentivos tributários previstos na legislação, principalmente quanto à isenção de tributos federais.

Quanto aos impostos incidentes sobre os fertilizantes, cabe destacar a assimetria do tratamento tributário, que atribui alíquota zero nas operações internas ao estado e de importação, mas tributava as saídas interestaduais às alíquotas nominais de 7% e 12%, com redução da base de cálculo de 30% a 60%. Essa distorção foi mitigada com a

prorrogação do Convênio ICMS n° 100/1997 (CONFAZ na sua 332ª Reunião Extraordinária, realizada em Brasília, DF, no dia 12 de março de 2021). A alteração visa unificar as alíquotas efetivas incidentes sobre a receita de comercialização de fertilizantes nas vendas internas, na importação e nas operações interestaduais. Nas vendas internas ao estado e nas importações, a alíquota zero deixa de vigorar, partindo de 1% em 2022, e sendo majorada em um ponto percentual a cada ano, até atingir 4% em 2025. Nas saídas interestaduais, a redução da base de cálculo será progressivamente alterada, até que a alíquota efetiva atinja 4% em 2025. O novo tratamento visa conferir isonomia tributária às vendas internas, interestaduais e na importação de fertilizantes, sendo que em qualquer caso incidirá a alíquota efetiva de 4%. Tal equiparação deve contribuir para a eficiência na alocação de ativos segundo a ótica da logística de distribuição, deixando de condicionar-se às distorções tributárias. Todavia, a continuidade da isonomia propiciada pela modificação no Convênio ICMS nº 100/1997 está vinculada ao aumento da produção nacional em 35% até o ano de 2025.

Segundo estudos da EPE, com base na paridade de importação, o preço viável do Gás Natural para o desenvolvimento da produção de amônia e ureia no Brasil deve estar limitado a um nível muito abaixo do praticado hoje. Para o consumo industrial, em muitos estados o preço do GN supera 12 US\$/MMBtu. Dessa forma, faz-se necessário que a política implementada pelo Novo Mercado de Gás Natural melhore a competitividade da oferta nacional de GN para a indústria de fertilizantes, uma vez que o gás natural importado tem se mostrado competitivo. O ICMS incidente na importação é recolhido para o estado em que estiver localizado o destinatário da mercadoria. No caso do gás originário do Brasil, nas operações interestaduais, entre contribuintes, o imposto será repartido entre os estados de origem e de destino, mas se o produto for destinado ao consumo (não contribuinte), o imposto caberá ao estado de origem. Entre os pontos de assimetria entre as legislações estaduais, destacam-se: a diversidade de alíquotas nas operações internas, a diferença de tratamento em razão de regimes especiais de tributação e em relação ao tratamento dos créditos tributários e à atribuição de responsabilidade por substituição tributária. Ao longo da etapa de diagnóstico, foi verificado junto às empresas produtoras de fertilizantes um potencial de acúmulo de créditos de ICMS, decorrentes da aquisição de gás natural em operações interestaduais e da dificuldade na efetiva utilização desses saldos credores, em razão do princípio da territorialidade do ICMS. Quanto ao IPI nas operações internas ou nas importações e ao imposto de importação, os fertilizantes e o gás natural não estão sujeitos à incidência desses tributos ou são beneficiados pela alíquota zero.

O adicional ao frete para a renovação da marinha mercante (AFRMM) consiste em uma contribuição de intervenção no domínio econômico que faz incidir um percentual de 25% sobre o valor do frete do transporte marítimo internacional de longo curso 10% na navegação de cabotagem entre portos brasileiros e 40% na navegação

fluvial e lacustre, quando do transporte de granéis líquidos nas regiões Norte e Nordeste. Entretanto, a movimentação de mercadorias com origem e/ou destino em portos das regiões Norte e Nordeste são respaldados pela não incidência do AFRMM, estabelecida na Lei nº 9.432/1997, com efeito prorrogado até 8 de janeiro de 2022.

A Lei nº 10.925/2004 reduz a zero as alíquotas da contribuição para o PIS/PASEP e da contribuição para o financiamento da seguridade social (COFINS) incidentes na importação e sobre a receita bruta de venda no mercado interno de adubos ou fertilizantes classificados no Capítulo 31 da TIPI, corretivos de solo de origem mineral classificados no Capítulo 25 e inoculantes classificados no código 3002.90.99 da TIPI. De acordo com a Lei nº 9.718/1998, os produtores e importadores do gás natural estão sujeitos à incidência monofásica das contribuições ao PIS/PASEP e COFINS, às alíquotas de 10,2% e 47,4%, respectivamente, sobre a receita bruta de venda. Alternativamente, podem ser aplicadas alíquotas especificas por tonelada conforme a Lei nº 10.865/2004.

Quanto à carga tributária nas fases de investimento (CAPEX) em novas plantas ou na expansão da capacidade instalada, no caso de bens de capital e equipamentos importados, é verificada a incidência de 14% em imposto de importação, 5% de IPI, 11,75% recuperáveis de PIS/COFINS, 25% de AFRMM, 17-18% de ICMS. Para os bens e equipamentos de origem nacional, os tributos estão estimados em 5% de IPI, 3,65% a 9,25% recuperáveis de PIS/COFINS, 17%-20% de ICMS. Nas regiões Nordeste e Norte, é verificada a isenção de AFRMM. Ainda na fase de CAPEX, os impostos que incidem sobre os serviços contratados no exterior são estimados em cerca de 15% a 25% de IRRF, 10% de CIDE, 9,25% de PIS/COFINS recuperáveis, 0,38% de IOF e 2%-5% de ISS. Os serviços oriundos de aquisição domésticas incidem em 3,65% a 9,25% recuperáveis de PIS/COFINS e 2%-5% de ISS.

O regime especial de incentivo ao desenvolvimento da infraestrutura da indústria de fertilizantes (REIF), instituído pela Lei n° 12.974/2013, vigorou por um prazo de 5 anos até 2017, quando expirou. O REIF visava incentivar a instalação e ampliação de novas plantas de fertilizantes por meio da suspensão do recolhimento do PIS/PASEP, da COFINS e do IPI incidentes na importação ou nas vendas internas de máquinas (ou locação), aparelhos, instrumentos e equipamentos novos e de materiais de construção para utilização no projeto. A suspensão seria convertida em isenção após a utilização ou incorporação do bem ou serviço ao projeto. Seriam beneficiárias do REIF as pessoas jurídicas sujeitas à tributação pelo lucro real com projetos de implantação ou ampliação de infraestrutura para a produção de fertilizantes. O REIF não foi implementado na prática e analistas afirmam que um grande empecilho foi a imposição de regras de conteúdo local

Uma eventual renovação do REIF, agora em condições isonômicas de tributação do ICMS entre as importações e as operações interestaduais, poderia favorecer a expansão da indústria nacional de fertilizantes.

A Compensação Financeira pela Exploração de Recursos Minerais (CFEM) é regida pela Lei nº 7.990/1990 e 8.001/1990 alteradas pela Lei nº 13.540/2017. A base de cálculo é a receita bruta de venda e as alíquotas variam de 1% a 3,5%, sendo que, para as substâncias utilizadas como fertilizantes (P, K, Mg, Ca), a alíquota é de 2%.

A Contribuição de Intervenção no Domínio Econômico Cide–Combustíveis, prevista na Lei nº 10.336/2001, incide na importação e na comercialização no mercado interno do gás natural, segundo alíquotas específicas estabelecidas por tonelada do produto. Entretanto, o Decreto nº 5.060/2004 reduziu a alíquota a zero, conforme autorizado na própria Lei.

Regulação

Os ajustes recentes na Legislação Mineral tiveram foco em um escopo mais regulador e incentivador de maior eficiência e competitividade do setor mineral. A criação da ANM teve por objetivo principal melhorar o setor mineral, por meio da gestão do patrimônio mineral brasileiro, tornando-o mais competitivo, inovador e sustentável. Sua atuação deve aumentar a segurança jurídica, trazendo investimentos, maior volume e melhor qualidade da produção, por meio de instrumentos de regulação em benefício da sociedade. As alterações promovidas pelo Decreto nº 9.406/2018 proporcionam condições favoráveis à competitividade no setor. Entre elas, destacam-se a possibilidade de os direitos minerários serem oferecidos em garantia para fins de financiamento e o procedimento de disponibilidade de área requerida. A Lei Federal nº 14.066/2020, que estabelece importantes alterações na legislação referente a barragens em geral, trouxe resultados positivos para o setor com a criação de uma política pública e um sistema de integração dos diversos órgãos e dos diversos entes federativos no intuito de assegurar a integridade das barragens.

A indústria do gás natural é uma típica indústria de rede, onde atividades competitivas são separadas por grandes infraestruturas, em geral com características de monopólio natural. Assim, é requisito básico para a formação de um mercado concorrencial que a legislação e a regulação coíbam situações que favoreçam práticas anticompetitivas, como a privação, ou restrição, de acesso às redes e aos recursos essenciais no setor. Em 2019, foi lançado o Programa Novo Mercado de Gás, programa do Governo Federal que visa à formação de um mercado de gás natural aberto, dinâmico e competitivo, promovendo condições para a redução do seu preço e, com isso, contribuir para o desenvolvimento econômico do País. O Programa tem como pilares a promoção da concorrência, a harmonização das regulações estaduais e federal, a integração do setor de gás com setores elétrico e industrial e a remoção de barreiras tributárias. São esperados os seguintes resultados do Programa:

- Melhorar aproveitamento do gás do pré-sal, da bacia de Sergipe e Alagoas e outras descobertas.
- Ampliar investimentos em infraestrutura de escoamento, processamento, transporte e distribuição de gás natural.
- Aumentar a competição na geração termelétrica a gás.
- Retomar competitividade da indústria em seus diversos segmentos, como celulose, fertilizantes, petroquímica, siderurgia, vidro, cerâmica e outros.

O Programa é sustentado pela Resolução CNPE nº 16, de 24 de junho de 2019, que estabeleceu diretrizes e aperfeiçoamentos de políticas energéticas voltadas à promoção da livre concorrência no mercado de gás natural. A Resolução foi bastante assertiva, definindo como deve ser a transição para um mercado concorrencial de gás natural e até estabelecendo como de interesse da Política Energética Nacional medidas estruturais e comportamentais a serem observadas pelo agente que ocupe posição dominante no setor de gás natural. Com base nessa Resolução CNPE, o Conselho Administrativo de Defesa Econômica (Cade) e a Petrobras firmaram Termo de Compromisso de Cessação de Prática (TCC), por meio do qual a estatal se comprometeu a vender ativos relacionados ao mercado de gás natural, com o objetivo de impedir a ocorrência futura de supostas condutas anticompetitivas que estavam sendo investigadas pelo Conselho e estimular a concorrência no setor. Em 8 de abril de 2021, foi sancionada a Lei nº 14.134/2021, também conhecida como a Nova Lei do Gás. O novo marco legal estabelece uma estrutura mais eficiente, dinâmica e atualizada para a indústria do gás natural, com base na experiência internacional, e consolida mudanças que já estavam ocorrendo no setor, de modo a atrair novos investimentos e promover a competição desse energético. A construção da Nova Lei do Gás envolveu agentes da indústria, especialistas, academia, sociedade civil, entre outros segmentos que integram o setor de gás natural brasileiro. Em linhas gerais, os principais avanços da lei são:

- Altera o regime de outorga das atividades de transporte e estocagem subterrânea de gás, de concessão para autorização – o regime de autorização é menos complexo comparado ao de concessão;
- Transforma a malha de gasodutos, de fato, num sistema de transporte de gás natural, na modalidade de entradas e saídas – nesse sistema, basta contratar a entrada ou a saída de gás do sistema para poder vender ou comprar gás, fazendo do sistema um grande Marketplace;
- Garante o acesso não discriminatório e negociado às infraestruturas essenciais objetivo é que não haja barreiras à utilização dessas infraestruturas por terceiros, devendo ser compartilhada com os interessados de forma transparente;

 Assegura a independência da atividade de transporte, de modo a garantir o acesso isonômico à malha de gasodutos, entre outros avanços.

Sobre a harmonização entre as regulações estaduais e federal, o mencionado decreto traz instrumentos para a articulação entre o governo federal e os estados e o Distrito Federal. Repisa-se que a indústria do gás natural é em parte regulada pela União e em parte pelos estados, de modo que, tratando-se de uma indústria de rede, seu bom funcionamento passa pela regulação harmônica dos elos que a compõem. Acerca das articulações, a norma infralegal apresenta um dos possíveis mecanismos à formação de "redes de conhecimento" entre a União, os entes federados e agentes da indústria, com o objetivo de gerar, compartilhar e disseminar conhecimento e experiências, bem como de formular propostas de padrões de políticas, guias e manuais. Outra possibilidade criada pelo Decreto é o "Pacto Nacional para o Desenvolvimento do Mercado de Gás Natural", que representa um compromisso voluntário nas esferas nacional e estadual para efetivação das medidas necessárias para a harmonização das regulações e o desenvolvimento da indústria do gás natural.

Como mencionado anteriormente, o novo Marco Legal tem como base a experiência internacional, principalmente da União Europeia e do Reino Unido, estabelecendo uma estrutura mais eficiente, dinâmica e atualizada para a indústria do gás natural brasileira. Sobre a experiência internacional, é importante ressaltar que a abertura do mercado Europeu foi caracterizada por um processo gradual. A Comunidade Europeia propôs três diretivas (Diretivas 30/1998/EC, 55/2003/EC e 2009/73/EC) ao longo de 10 anos com objetivo promover maior competição.

Ainda sobre a regulamentação da Nova Lei do Gás e acerca da transição da indústria brasileira do gás natural para o novo desenho de mercado, o Decreto estabelece que a transição deverá observar os princípios e diretrizes do CNPE. À ANP, permite a adoção de soluções individuais que visem ao atendimento do disposto na Lei, enquanto os processos de regulação não são concluídos, de modo a dar maior celeridade às ações necessárias durante o período de transição.

Em relação ao gás importado via gasodutos, referente à Bolívia, em razão do acordo com o CADE, a Petrobras reduziu o volume contratado com a YPFB de 30 para 20 MMm³/d, oportunizando que essa diferença de volume seja contratada por outras empresas. Sobre importação da Argentina, atualmente ela garante apenas o atendimento à térmica em Uruguaiana/RS. Para conexão da malha interligada brasileira, é necessária a construção do trecho II do gasoduto Uruguaiana-Porto Alegre, com aproximadamente 600 km de extensão. Atualmente, o Brasil possui cinco terminais de regaseificação de GNL, sendo dois privados, compondo complexos termelétricos e não conectados à malha de transporte. Reitere-se que, com o advento da Nova Lei do Gás, está assegurado o acesso não discriminatório e negociado às infraestruturas essenciais, como os terminais de GNL.

Com o amadurecimento do mercado, a expectativa é que a negociação do gás ocorra em pontos virtuais gerando competição entre o gás proveniente de diversas fontes, como o gás importado, inclusive GNL, e o gás do pré-sal.

No que toca à formação de preços do gás natural, suas parcelas podem ser separadas em: i) preço do gás natural em si (denominado normalmente de "molécula"); e ii) o custo da movimentação do gás até sua entrega (que pode ser separada em tarifas de transporte e de distribuição). Os preços do gás natural (da parcela da molécula) no Brasil são determinados livremente desde 2002, data na qual houve a liberação de preços dos combustíveis, incluindo o gás natural, conforme estabelecido pela Lei nº 9.478/1997. Entretanto, a liberação dos preços do gás natural não foi acompanhada da introdução da concorrência no mercado de gás natural.

Compete ao Mapa a inspeção e fiscalização da produção e do comércio de fertilizantes, corretivos, inoculantes, ou biofertilizantes, remineralizadores e substratos para plantas destinados à agricultura. A Lei nº 6.894, de 16 de Dezembro de 1980 é o instrumento que institui a inspeção e a fiscalização da produção e do comércio de fertilizantes e demais insumos, destinados à agricultura. A legislação atual está consolidada na Lei e no seu regulamento oficializado pelo Decreto nº 4.954, de 14 de Janeiro de 2004. Atos normativos internos do Mapa complementam o compêndio de instrumentos legais que regem a inspeção e a fiscalização da produção e do comércio desses produtos. Os estabelecimentos que produzem, comercializam, exportam ou importam fertilizantes ficam obrigados a se registrar no Mapa. Os fertilizantes e demais insumos constantes na Lei devem ser registrados pelos estabelecimentos produtores ou importadores. Esses produtos são enquadrados nos parâmetros da legislação específica, no que se refere às especificações de tipo, natureza e categoria, observadas as garantias mínimas exigidas.

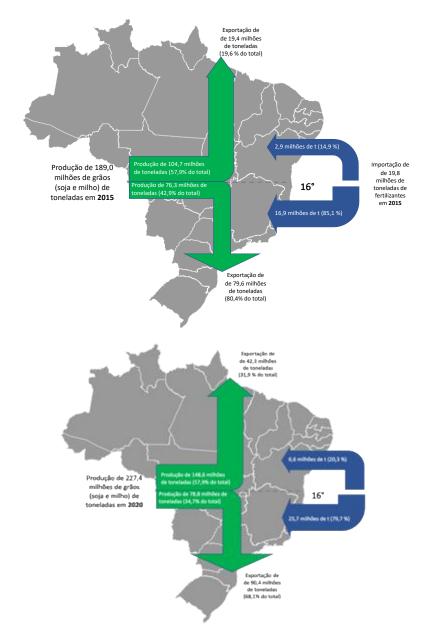
Em razão do dinamismo do setor e do surgimento de novas tecnologias e produtos, a modernização da legislação federal tornou-se uma necessidade imperiosa. Os conceitos e parâmetros relacionados às especificações técnicas, garantias, tolerâncias, formas de registros, processos de fabricação e de validação, mecanismos de identificação, rotulagem e propaganda, controle e rastreabilidade desses insumos produzidos, importados e comercializados no País, são revistos e ampliados constantemente, com vistas à adequação ao que hoje é praticado no mundo, de modo a garantir a oferta de insumos de qualidade para a agropecuária nacional. Os produtos sem antecedentes de uso e eficiência agronômica comprovada no País ou cujas especificações técnicas não estejam contempladas nas disposições vigentes necessitam de relatório técnico-científico conclusivo, emitido por órgão brasileiro de pesquisa oficial ou credenciado, que ateste a viabilidade e eficiência de seu uso agrícola. Dessa forma, a legislação permite ampliar o leque de produtos destinados ao mercado e absorver as

novidades e possibilita ao órgão de controle da administração pública manter procedimentos fiscais e administrativos eficientes.

Aumentar a competitividade dos produtos agrícolas brasileiros e a eficiência do setor privado na produção de insumos agrícolas de qualidade, bem como a eficiência do estado no combate às fraudes, piratarias, produtos não conformes ou contaminados que comprometem toda a cadeia produtiva de alimentos é o objetivo da fiscalização realizada pelo Mapa. O Brasil estabelece um controle das características, qualidade e sanidade dos fertilizantes produzidos ou importados, que deve ser executado por cada empresa, de acordo com as informações prestadas nos seus processos de registro do estabelecimento. Especial atenção é dada em relação a contaminantes, por isso o Mapa estabeleceu os limites de concentrações máximas admitidas para agentes fitotóxicos, patogênicos ao homem, animais e plantas, metais pesados tóxicos, pragas e ervas daninhas para produzir, importar ou comercializar fertilizantes, corretivos, inoculantes e biofertilizantes. No Brasil, o comércio internacional de fertilizantes deve obedecer aos critérios regulamentares e os procedimentos de fiscalização, de controle de qualidade e sistemas de análise de risco, fixados pelo Mapa, observadas as normas para registro no Sistema Integrado de Comércio Exterior (SISCOMEX).

Infraestrutura e logística

O governo federal, com o Plano Nacional de Fertilizantes para o País, está pensando no desenvolvimento do agronegócio como um todo. Buscar uma maior e melhor oferta de insumos para essas cadeias produtivas é um desafio, que tem também no transporte e na logística de distribuição/armazenagem pontos que merecem a nossa atenção. O Ministério da Infraestrutura está neste momento ultimando a publicação do Plano Nacional de Logística – PNL 2035, que tem como primeiro ciclo o planejamento de transportes tendo como horizonte o ano de 2035. Está prevista a sua constante atualização e, no próximo ciclo, esperado para estar concluído até 2024, o seu horizonte passará a ser sempre de 30 anos, e será revisto, a partir daí, sempre de 4 em 4 anos, buscando dar ao País um instrumento que possa balizar e subsidiar os investimentos nas infraestruturas de transporte. O cenário atual dos fertilizantes apresenta, em linhas gerais, uma dependência de mais de 90% no que se refere ao consumo, sendo que a importação desses fertilizantes em 2020 correspondeu a 32,3 milhões de toneladas.


Para se ter uma ideia de como estão sendo internalizados os fertilizantes no País, as figuras a seguir mostrarão a produção das maiores culturas (soja e milho), com uma divisão que é usada pelo agronegócio para demonstrar a força da produção acima do Paralelo 16. Essa divisão é utilizada informalmente pela CNA, como se fosse um divisor de águas para a produção e exportação referente à soja e milho, reforçando a ideia de

que o que é produzido acima desse paralelo tem melhores condições de ser exportado pelo chamado Arco Norte, considerando-se aí todos os portos da região Norte e Nordeste até Salvador/BA, por suas condições e vocação localização.

Na Figura 19, é possível verificar que, em 2010, foram produzidas 131,9 milhões de toneladas de soja e milho, sendo 68,1 milhões de toneladas do assim chamado Arco Norte com a exportação de 8,2 milhões de toneladas (14,1%), e 62,8 milhões de toneladas abaixo da linha do paralelo 16 com exportação de 50,1 milhões de toneladas (85,9%). A importação de fertilizantes teve a entrada de 11,8 milhões de toneladas em 2010, sendo 1,7 milhão de toneladas (14,7%) acima do Paralelo 16 e 10,1 milhões de toneladas (85,3%) abaixo do citado paralelo. Em 2015, foram produzidas 189,0 milhões de toneladas de soja e milho, sendo 104,7 milhões de toneladas do assim chamado Arco Norte com a exportação de 19,4 milhões de toneladas (19,6%), e 79,6 milhões de toneladas abaixo da linha do Paralelo 16 com exportação de 79,6 milhões de toneladas (80,4%). A importação de fertilizantes teve a entrada de 19,8 milhões de toneladas em 2015, sendo 2,9 milhões de toneladas (14,9%) acima do Paralelo 16 e 16,9 milhões de toneladas (85,1%) abaixo do citado paralelo. Em 2020, foram produzidas 227,4 milhões de toneladas de soja e milho, sendo 148,6 milhões de toneladas do assim chamado Arco Norte com a exportação de 42,3 milhões de toneladas (31,9%), e 78,8 abaixo da linha do Paralelo 16, com exportação de 90,4 milhões de toneladas (68,1%). A importação de fertilizantes teve a entrada de 32,3 milhões de toneladas em 2020, sendo 6,6 milhões de toneladas (20,3%) acima do Paralelo 16 e 25,7 milhões de toneladas (79,7%) abaixo do citado paralelo.

Figura 20 - Mapa de exportação (soja e milho) e de importação (fertilizantes) nos anos de 2010, 2015 e 2020.

Elaboração: Minfra Fonte: Agência Nacional de Transportes Aquaviários (2021).

No que se refere ao NCM com dois dígitos (31), referente a fertilizantes, levantando os últimos 10 anos, com a importação de 2010 a 2020, temos em 2010 a importação de cerca de 11,8 milhões de toneladas, chegando em 2020 a 32,3 milhões de toneladas. O crescimento no período foi de 273,7%, mostrando assim a importância desse setor para o agronegócio nacional (Figura 20).

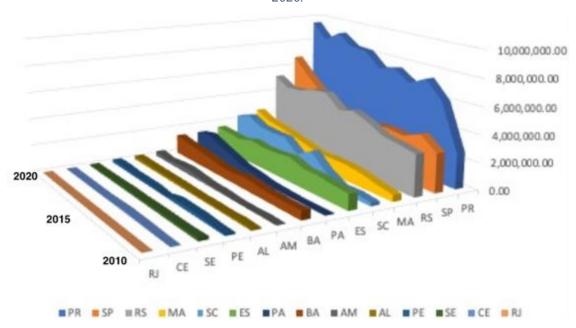


Figura 21 - Importação de fertilizantes (SH4-31) por estados da federação no Brasil entre 2010 e 2020.

Elaboração: Minfra Fonte: Agência Nacional de Transportes Aquaviários (2021).

A Figura 20 apresenta, por ano, a evolução das importações por estado, onde se destacam o Paraná, São Paulo, Rio grande do Sul, Maranhão e Santa Catarina. Essa série histórica mostra os estados que atualmente estão sendo utilizados pelas empresas para o recebimento destes produtos, vindos do exterior. Todos os estados que recebem maiores volumes têm acesso ferroviário aos portos. Percebe-se o uso cada vez maior do estado de São Paulo, pois com a melhoria das condições de acesso ao porto pela ferrovia e a intensificação de uso do Terminal TIPLAM, o seu incremento está sendo substancial.

É possível também, para novos entrantes no mercado ou para a sua expansão, a aquisição de novas áreas ou a utilização em conjunto das Estações de Transbordo de Carga (ETC) já em uso para a exportação de grãos, buscando a agregação e sinergia para o agronegócio, utilizando-se assim o retorno dos caminhões, chatas e vagões para a interiorização dos fertilizantes, como retorno às áreas de produção. Estão em pleno crescimento os portos localizados na região Norte e Nordeste, dos quais podemos citar os portos com saída de graneleiros de maior capacidade, das cidades de Itacoatiara/AM, Santarém/PA, Macapá/AP, Ilha de Santana/AP, Barcarena/PA, Itaqui/MA e em Aratu/BA. Esses portos são responsáveis pela exportação de grande parte da produção de grãos produzidos nos estados de Mato Grosso, Rondônia, Tocantins, Maranhão, Piauí e do oeste da Bahia. Pelo que foi visto na Figura 18, com as entradas de fertilizante para a distribuição interna, percebe-se a pouca participação dos portos do Arco Norte, o que demonstra um grande potencial para o crescimento do recebimento dos insumos por esses portos, já que a volta pelos modos de transporte que levam a carga agrícola pode ser utilizada para o retorno com os fertilizantes que serão utilizados nas áreas agrícolas

em cada estado de onde saíram tais produtos. Na Figura 19, podemos observar que existe uma maior concentração de carga nos portos de Santos/SP, Paranaguá/PR e Rio Grande/RS. Essa concentração deve ser atribuída à proximidade com as áreas de plantio, além da facilidade de acesso a meios de transporte de alta capacidade, de menor preço e mais sustentável, que são as ferrovias que chegam a esses portos, que passam a ter carga de retorno.

1.8. CENÁRIOS DE DEPENDÊNCIA DE IMPORTAÇÃO

A visão do PNF sobre a relação entre produção nacional e importação de fertilizantes no Brasil é que, sem a sua implementação, o País agravará a sua dependência em fertilizantes importados. A implantação das ações do PNF, por outro lado, poderá minimizar a dependência externa, e o País poderá depender de 51% do N, 5% do P e ser um dos grandes players globais do K.

As tabelas abaixo são baseadas nos seguintes cenários:

Cenários A: considera que o comportamento de baixa intensidade das variáveis motrizes resultará numa reduzida taxa de crescimento da demanda;

Cenários B: considera que o comportamento diferenciado das variáveis motrizes resultará numa combinação de efeitos de motricidade intermediária e, portanto, numa moderada taxa de crescimento da demanda;

Cenários C: considera que o comportamento de alta intensidade das variáveis motrizes resultará numa elevada taxa de crescimento da demanda.

Cenário I - Sem o PNF: não considera que a evolução da oferta futura seja fortemente potencializada por uma nova dinâmica expansão de investimentos;

Cenário II - Com o PNF: admite que a evolução da oferta será potencializada, a partir de 2035, por uma dinâmica virtuosa de expansão de reservas e de investimentos em PD&I, em empreendimentos específicos, mediante investimento em novos projetos e/ou melhorias tecnológicas e de gestão, com repercussões sobre a conversão de recursos em reservas, sob efeito, por exemplo, de melhorias de processos produtivos com redução de custos operacionais;

Cenário III - Com o PNF potencializado pela inovação tecnológica: admite que a mesma dinâmica virtuosa de expansão da produção e de investimentos em PD&I, que potencializa a evolução da oferta no cenário anterior, terá um alcance mais abrangente, envolvendo um número expressivo de empreendimentos.

Tais cenários foram construídos baseados nos documentos auxiliares que deram origem ao diagnóstico e visão de futuro das cadeias de NPK, os quais foram resumidos nos itens anteriores deste documento. Os dados cruzados foram a expectativa de

produção nacional de NPK de acordo com a adoção das ações e o alcance das metas estabelecidas no Programa, e a expectativa de aumento da demanda nacional em condições abaixo do crescimento da demanda nacional histórica dos últimos 20 anos, equivalente ou maior, dentro dos limites inferiores e superiores das projeções de consumo de NPK realizadas neste documento. Para caracterizar as possibilidades de demanda futura, foram selecionadas variáveis motrizes que condicionam essas demandas no âmbito do mercado doméstico (crescimento da população, crescimento do PIB nacional, melhoria da distribuição de renda, política de estímulos às energias renováveis, mercado de papel/celulose/siderurgia, incremento da produtividade) e no âmbito do mercado externo (crescimento regionalmente diferenciado da população, crescimento diferenciado do PIB mundial, melhoria diferenciada da distribuição de renda, oscilação nos preços do petróleo, aquecimento global, comércio internacional de grãos). Como pressuposto, seja ao nível global ou nacional, o crescimento do consumo de fertilizantes é intimamente relacionado à ampliação da população e ao aumento e distribuição da renda, principalmente nos países emergentes, cabendo assinalar que este último fator determina não apenas o crescimento da demanda de alimentos, como também do comércio internacional de grãos e de proteína animal, impulsionando a correspondente exportação brasileira, e consequentemente, a produção agrícola e a demanda nacional de fertilizantes.

Tabela 4 - Cenários de oferta e demanda para a cadeia de fertilizantes nitrogenados em 2030

Oferta/demanda 2030 de N	Cenários A: Baixa demanda	Cenários B: Média demanda	Cenários C: Alta demanda
Cenário I - Sem o PNF	Oferta (mil t): 1632 Demanda (mil t):5801 Dependência (%): 72	Oferta (mil t): 1632 Demanda (mil t):6370 Dependência (%): 74	Oferta (mil t): 1632 Demanda (mil t): 6940 Dependência (%): 76
Cenário II - Com o PNF	Oferta (mil t): 1935 Demanda (mil t):5801 Dependência (%):67	Oferta (mil t): 1935 Demanda (mil t):6370 Dependência (%): 69	Oferta (mil t): 1935 Demanda (mil t): 6940 Dependência (%): 72
Cenário III - Com o PNF potencializado por inovação tecnológica	Oferta (mil t): 2380 Demanda (mil t):5801 Dependência (%):59	Oferta (mil t):2380 Demanda (mil t):6370 Dependência (%): 63	Oferta (mil t): 2380 Demanda (mil t): 6940 Dependência (%): 66

Tabela 5 - Cenários de oferta e demanda para a cadeia de fertilizantes nitrogenados em 2050

Oferta/demanda 2050 Cenários A: Baixa demanda de N	Cenários B: Média demanda	Cenários C: Alta demanda
--	------------------------------	-----------------------------

Cenário I - Sem o PNF	Oferta (mil t): 2361 Demanda (mil t):7564 Dependência (%): 69	Oferta (mil t): 2361 Demanda (mil t):8554 Dependência (%): 72	Oferta (mil t): 2361 Demanda (mil t):9543 Dependência (%): 75
Cenário II - Com o PNF	Oferta (mil t): 2806 Demanda (mil t):7564 Dependência (%): 63	Oferta (mil t): 2806 Demanda (mil t):8554 Dependência (%): 67	Oferta (mil t): 2806 Demanda (mil t):9543 Dependência (%): 71
Cenário III - Com o PNF potencializado por inovação tecnológica	Oferta (mil t): 3695 Demanda (mil t):7564 Dependência (%): 51	Oferta (mil t): 3695 Demanda (mil t):8554 Dependência (%): 57	Oferta (mil t): 3695 Demanda (mil t):9543 Dependência (%): 61

Tabela 6 - Cenários de oferta e demanda para a cadeia de fertilizantes fosfatados em 2030

Oferta/demanda 2030 de P	Cenários A: Baixa demanda	Cenários B: Média demanda	Cenários C: Alta demanda
Cenário I - Sem o PNF	Oferta (mil t):4171 Demanda (mil t):6735 Dependência (%):38,1	Oferta (mil t):4171 Demanda (mil t):7108 Dependência (%):41,3	Oferta (mil t):4171 Demanda (mil t):7498 Dependência (%):44,4
Cenário II - Com o PNF	Oferta (mil t):4171 Demanda (mil t):6735 Dependência (%):38,1	Oferta (mil t):4171 Demanda (mil t):7108 Dependência (%):41,3	Oferta (mil t):4171 Demanda (mil t):7498 Dependência (%):44,4
Cenário III - Com o PNF potencializado por inovação tecnológic	Oferta (mil t):4171 Demanda (mil t):6735 Dependência (%):38,1	Oferta (mil t):4171 Demanda (mil t):7108 Dependência (%):41,3	Oferta (mil t):4171 Demanda (mil t):7498 Dependência (%):44,4

Tabela 7 - Cenários de oferta e demanda para a cadeia de fertilizantes fosfatados em 2050


Oferta/demanda 2050 de P	Cenários A: Baixa demanda	Cenários B: Média demanda	Cenários C: Alta demanda
Cenário I - Sem o PNF	Oferta (mil t):6455 Demanda (mil t):9718 Dependência (%):33,6	Oferta (mil t):6455 Demanda (mil t):10823 Dependência (%):40,4	Oferta (mil t):6455 Demanda (mil t):12226 Dependência (%):47,2
Cenário II - Com o PNF	Oferta (mil t): 8032 Demanda (mil t): 9718 Dependência (%): 17,4	Oferta (mil t): 8032 Demanda (mil t): 10823 Dependência (%): 25,8	Oferta (mil t): 8032 Demanda (mil t):12226 Dependência (%): 34,3

Cenário III - Com			
o PNF	Oferta (mil t): 9237	Oferta (mil t): 9237	Oferta (mil t): 9237
potencializado	Demanda (mil t): 9718	Demanda (mil t): 10823	Demanda (mil t):12226
por inovação tecnológica	Dependência (%): 5,0	Dependência (%): 14,7	Dependência (%): 24,5

Tabela 8 - Cenários de oferta e demanda para a cadeia de fertilizantes potássicos em 2030 e em 2050.

===:			
Oferta/demanda de K	Cenários A: Baixa demanda	Cenários B: Média demanda	Cenários C: Alta demanda
Cenário III 2030-			
Com o PNF	Oferta (mil t): 6.284	Oferta (mil t): 6.284	Oferta (mil t): 6.284
potencializado	Demanda (mil t):8.130	Demanda (mil t):9.854	Demanda (mil t):12.577
por inovação	Dependência (%):22,7	Dependência (%):36,2	Dependência (%):42,0
tecnológica			
Cenário III 2050 -			
Com o PNF	Oferta (mil t): 14.598	Oferta (mil t): 14.598	Oferta (mil t): 14.598
potencializado	Demanda (mil t):12.685	Demanda (mil t):21.071	Demanda (mil t):28.058
por inovação	Dependência (%): - 15,1	Dependência (%):30,7	Dependência (%):48,0
tecnológica			

2. DIRETRIZES, OBJETIVOS ESTRATÉGICOS, METAS E AÇÕES

PESQUISA MINERAL, EXPLORAÇÃO E TRANSFORMAÇÃO MINERAL DE P E K

Estimular e ampliar a pesquisa, exploração e transformação mineral no Brasil oferecendo fontes competitivas de P_2O_5 e K_2O para a agricultura nacional, visando reduzir a dependência de importação de fertilizantes.

AMPLIAR A COMPETIÇÃO NA OFERTA DE FERTILIZANTES AO PRODUTOR RURAL, VISANDO MERCADO CONCORRENCIAL E ESTIMATIVAS DE PREÇO

Possibilitar a competição de diferentes fontes e origens de matérias-primas, fertilizantes e nutrientes a serem ofertados à agropecuária nacional, visando à ampla concorrência e à possibilidade de desenvolvimento de instrumentos de estimativas de preços.

ATRAÇÃO DE INVESTIMENTOS

Contribuir com a construção de ambiente de negócios estável e longevo no País visando à atração de investimentos nacionais ou estrangeiros na exploração, transformação, desenvolvimento ou distribuição de fertilizantes no Brasil.

INFRAESTRUTURA E LOGÍSTICA

Contribuir na planificação para investimento público ou privado e otimização de infraestrutura e logística, além da atração de investimentos para a distribuição de fertilizantes no Brasil, de maneira convergente com o Plano Nacional de Logística.

TRIBUTAÇÃO

Monitorar e avaliar o cenário tributário dos fertilizantes e promover ações que assegurem tratamento equilibrado na aplicação de alíquotas, estimulando assim a competitividade da produção brasileira e a oferta de produtos com custos adequados à agropecuária.

GOVERNANÇA & RELAÇÕES INSTITUCIONAIS (NACIONAIS E INTERNACIONAIS)

Desenvolver modelo eficiente de governança para o Plano Nacional de Fertilizantes para o atingimento dos objetivos estratégicos e suas metas, além de manter um ambiente constante de negociação institucional entre os estados da Federação e entre os países com os quais o Brasil tem relações comerciais envolvendo fertilizantes.

REGULAÇÃO

Monitorar, avaliar, promover e/ou sugerir, quando necessário, ajustes regulatórios visando o alinhamento internacional, estabilidade do ambiente de negócios no Brasil e a atração de investimentos.

FOMENTO E FINANCIAMENTO

Monitorar, avaliar, promover ou ajustar, quando necessário, linhas de crédito e financiamento bem como recursos de investimento público, ou atração de investimento privado, para o desenvolvimento da indústria nacional de fertilizantes, com inovação em nutrição de plantas ou outras estratégias que promovam a competitividade do setor no País.

RECURSOS HUMANOS

Estimular e promover a capacitação de recursos humanos para atuar nas áreas de pesquisa, desenvolvimento, mineração, produção, transformação e outras relacionadas à nutrição de plantas contribuindo com a competitividade do Brasil no setor.

BOAS PRÁTICAS E NOVAS FONTES DE NUTRIENTES

Difundir e estimular a adoção de boas práticas de produção de fertilizantes e boas práticas agropecuárias na exploração sustentável do ecossistema e menor impacto ambiental, diversificando e promovendo o desenvolvimento de novas fontes de nutrientes para a agropecuária.

COMUNICAÇÃO E DIVULGAÇÃO - CIENTÍFICA & MERCADO

Estimular a ampla divulgação dos conceitos científicos do Plano Nacional de Fertilizantes para a oferta sustentável e competitiva de nutrientes para as plantas, de maneira continua e sistemática, visando à transparência com os setores da indústria, agricultura e consumidores brasileiros e internacionais.

ECONOMIA CIRCULAR - ESG - MERCADO DE CARBONO

Desenvolver modelos de adesão integral da indústria de nutrição de plantas do Brasil nos parâmetros ESG e assim estimular grande amplitude na aderência da agricultura em práticas de sustentabilidade, com adoção de conceitos de Economia circular e acesso ao mercado de carbono.

NOVOS PRODUTOS, TECNOLOGIAS EMERGENTES E FONTES ALTERNATIVAS

Estimular o ambiente de inovação para novos produtos e tecnologias visando novas fontes de nutrientes para as plantas de maneira diversa, competitiva e sustentável.

INTEGRAÇÃO COM CADEIAS GLOBAIS DE NPK

Avaliar os cenários internacionais de exploração mineral, oferta de matéria-prima e fertilizantes acabados, em relação a volumes disponíveis e valores comercializados, visando à integração da produção brasileira no cenário global.

INTEGRAÇÃO COM O NOVO MERCADO DE GN E H2

Monitorar e avaliar o cenário do mercado de gás natural e de H₂ no Brasil, visando contribuir com ações que promovam a utilização desses insumos, de maneira competitiva, na produção de fertilizantes nitrogenados no Brasil.

2.1.DIRETRIZ 1 – MODERNIZAÇAO, REATIVAÇÃO E AMPLIAÇÃO DAS PLANTAS INDUSTRIAIS E DOS PROJETOS DE FERTILIZANTES EXISTENTES NO PAÍS

Meta 1 - Ampliar a capacidade nacional de produção de fertilizantes nitrogenados para 1,7 milhão de tonelada de nitrogênio por ano até 2026; para 2,4 milhões de toneladas até 2030; para 2,8 milhões de toneladas até 2040; e alcançar uma capacidade de produção de 3,2 milhões de toneladas por ano até 2050

- Ação 1 Estímulo para obras de fábricas de fertilizantes nitrogenados;
- Ação 2 Atração de mais dois agentes produtores de nitrogênio fertilizante no Brasil até 2030 e mais quatro até 2050;
- Ação 3 Atração de US\$10 bi de recursos privados para a expansão da fabricação de fertilizantes nitrogenados (e matérias-primas) até 2030, e o mesmo valor a cada década até 2050:
- Ação 4 Conclusão de rotas de escoamento de gás natural para aumento da disponibilidade de gás natural;
- Ação 5 Adoção de mecanismos que incentivem a redução de reinjeção de gás mantendo as melhores práticas da indústria e a segurança jurídica;
- Ação 6 Redução de tarifas de transporte de gás natural no Brasil;
- Ação 7 Ampliação do uso de fontes de fertilizantes nitrogenados como o nitrato de amônio, o sulfato de amônio, MAP, DAP, ou de formulações com micronutrientes, produtos com menores perdas por volatilização e lixiviação;
- Ação 8 Harmonização das normas federais e estaduais sobre o setor de gás natural, buscando a uniformização dos critérios técnicos e regulatórios entre os entes federativos;
- Ação 09 Articulação para incremento dos modelos de contratação de gás natural; e Ação 10 Elaboração de estudo específico sobre o impacto da atual regulamentação de transporte e distribuição de gás natural matéria-prima e benchmarks internacionais para produção de fertilizantes nitrogenados;

Meta 2 - Atingir, em termos de capacidade instalada, 2,9 milhões de toneladas/ano em nutrientes de P2O5 contido em 2025; 4,2 milhões em 2030, 7,25 milhões em 2040; e 9,2 milhões em 2050

Ação 11 - Atração de investimentos para implantação de indústrias de fosfato, usando concentrado fosfático importado e ácido fosfórico, nos parques industriais acoplados às plantas de nitrogenados, promovendo a integração entre a indústria de nitrogenados e fosfatados;

- Ação 12 Intensificação de procedimentos de disponibilidade de áreas de produção de fosfato visando autorização de pesquisa ou concessão de lavra;
- Ação 13 Adoção de rotas tecnológicas e melhoria de processos que contribuam para a redução do passivo de resíduos do beneficiamento e dos rejeitos da atividade de mineração de fosfatos;
- Ação 14 Implementação de políticas públicas para o estímulo da exploração de rocha fosfática no Brasil;
- Ação 15 Promoção de estudos agronômicos e ambientais para identificação do potencial de uso de novas fontes de fosfatos naturais regionais para uso direto, alternativamente ao uso industrial para a produção de fertilizantes, em especial para pastagens, para abertura de novas áreas, para recuperação de solos degradados e também para a agricultura orgânica e/ou familiar; e
- Ação 16 Concretização da exploração das jazidas de fósforo em lavra por empresas privadas detentoras dos direitos de concessão em 20% até 2025.

Meta 3 - Atingir, em termos de capacidade instalada, 1,1 milhão de toneladas/ano em nutrientes de K2O contido em 2025; 6,3 milhões em 2030; 10,35 milhões em 2040; e 14,60 milhões em 2050

- Ação 17 Proposta de redação: "Intensificação de procedimentos de disponibilidade de áreas de produção de potássio visando autorização de pesquisa ou concessão de lavra; e
- Ação 18 Implementação de políticas públicas para a produção de K2O a partir de fontes alternativas eficientes agronomicamente.

Meta 4 - Aumentar a produção e oferta de fertilizantes orgânicos e organominerais em, pelo menos, 25% até 2025; 50% até 2030; 200% até 2040; e 500% até 2050

- Ação 19 Estímulo à ampliação de fábricas de fertilizantes organominerais FOM e sua distribuição geográfica no Centro Oeste e CentroNorte, como propulsores de seu mercado;
- Ação 20 Promoção da cadeia de FOM e fertilizantes orgânicos integrada com o PNRS e ODS12 (Produção e Consumo Sustentável) ao longo dos ciclos do PNF;
- Ação 21 Atração de investimentos para o setor de produção de fertilizantes orgânicos, organominerais e subprodutos com potencial de uso agrícola;
- Ação 22 Disponibilização no mercado de novas rotas tecnológicas de processamento e padronização de matéria-prima, transformação para produção de fertilizantes orgânicos e organominerais de alta eficiência agronômica;

Ação 23 - Criação de inventário nacional e mapeamento de matérias-primas e materiais para a produção de fertilizantes organominerais e orgânicos, disponibilizado em um painel do PNF até 2030; e

Ação 24 - Adequação das normas de licenças de operação para o setor de produção de fertilizantes orgânicos, organominerais e subprodutos com potencial de uso agrícola.

Meta 5 - Reaproveitar os resíduos sólidos e subprodutos com potencial de uso agrícola para a produção de fertilizantes e insumos agrícolas em, pelo menos, 10% da produção até 2030; 30% até 2040; e 70% até 2050

Ação 25 - Criação do protocolo nacional de critérios para aprovação de subprodutos a serem utilizados na agricultura e indústria de fertilizantes e insumos para nutrição de plantas, de acordo com as melhores práticas internacionais;

Ação 26 - Publicação do inventário nacional de resíduos da agropecuária, agroindústria, silvicultura e urbanos, entre outros, com potencial para uso na cadeia de fertilizantes e insumos para nutrição de plantas, conforme a Política Nacional de Resíduos Sólidos;

Ação 27 - Consecução de estratégia para a inclusão de estimativas de geração e reaproveitamento de resíduos com potencial de uso agrícola para a produção de fertilizantes e insumos agrícolas nas estatísticas oficiais anuais e no Censo Agropecuário; e

Ação 28 - Apoio a investigações sobre as características geoquímicas, mineralógicas, agronômicas e quantitativas de subprodutos e resíduos da mineração com potencial de se converterem em agrominerais silicáticos para fornecimento de fósforo e potássio nos solos agrícolas.

Meta 6 - Atingir, em termos de capacidade instalada, 5 milhões de toneladas/ano de remineralizadores a partir de produtos e coprodutos até 2025; 7,5 milhões até 2030; 12 milhões até 2040; e 16,5 milhões até 2050

Ação 29 - Promoção da viabilidade logística dos remineralizados por meio da integração de sua cadeia com outras cadeias (insumos agrícolas, mineração, distribuição e outros, assim como com outros planos governamentais);

Ação 30 - Identificação da relação de substâncias minerais para aplicação como agrominerais de solos para efeito de requerimento de pesquisa mineral, além da desburocratização, por ato normativo da ANM, dos trabalhos de pesquisa mineral, compatíveis com as características das respectivas substâncias minerais, visando a definição da jazida;

- Ação 31 Incentivo e articulação para organização setorial da cadeia de remineralizadores;
- Ação 32 Estímulo ao investimento e ao financiamento privado e público-privado nas unidades de produção para adequação do processo de beneficiamento de rochas para a produção de remineralizadores; e
- Ação 33 Definição de critérios e indicadores para avaliação de eventual potencial de sequestro de carbono pelo uso de remineralizadores em diversas condições regionais e de sistemas de produção.

Meta 7 - Reduzir o consumo de água/energia e aumentar o reúso nos processos de produção de fertilizantes e insumos para nutrição de plantas em pelo menos 10% até 2030, 20% até 2040, 30% até 2050

- Ação 34 Promoção de fóruns setoriais para viabilizar o tratamento de efluentes e o reúso da água em processos industriais de produção de fertilizantes, bem como para estimular o monitoramento e a redução das perdas de água e da geração de efluentes;
- Ação 35 Estímulo para empresas que realizem o reúso de efluentes em plantas industriais de fertilizantes, destacando-se os investimentos iniciais, proporcional à quantidade de efluentes a ser reusada; e
- Ação 36 Estímulo ao monitoramento e ao uso racional de energia em processos industriais de produção de fertilizantes.

2.2.DIRETRIZ 2 – A MELHORIA DO AMBIENTE DE NEGÓCIOS NO PAÍS COM VISTAS À ATRAÇÃO DE INVESTIMENTOS PARA A CADEIA DE PRODUÇÃO E DISTRIBUIÇÃO DE FERTILIZANTES E INSUMOS PARA NUTRIÇÃO DE PLANTAS

Meta 8 – Implementar, até 2025, um programa de fomento à indústria de fertilizantes no Brasil com o objetivo de garantir cumprimento dos cenários de produção e dependência externa estipulados no PNF

- Ação 37 Inserção na agenda internacional visando atrair investimentos para expansão da capacidade produtiva, incluindo infraestrutura;
- Ação 38 Desenvolvimento de um modelo de financiamento para a indústria mineral de fertilizantes;
- Ação 39 Estímulo ao uso de produtos e a linhas para crédito de longo prazo do BNDES;
- Ação 40 Estímulo à cadeia de fertilizantes e insumos para nutrição de plantas para a captação de investimentos diretamente (mercado de capitais, fundos de

investimento, debêntures, títulos de crédito ou captação em bolsas no Brasil e no exterior);

Ação 41 - Adoção de linhas de financiamento e incentivos específicos para a destinação de resíduos e subprodutos para reciclagem como fertilizantes e para produção de fertilizantes orgânicos, organominerais e subprodutos com potencial de uso agrícola;

Ação 42 - Adoção de linhas de financiamento e incentivos específicos para estimular o setor de produção de fertilizantes orgânicos, organominerais e subprodutos com potencial de uso agrícola;

Ação 43 - Estabelecimento do arcabouço legal com previsão de incentivos fiscais e desoneração de tributos para compra de equipamentos, estabelecimento e operação de empreendimentos para produção de fertilizantes à base de resíduos e subprodutos;

Ação 44 - Incentivo fiscal e/ou linhas de financiamentos diferenciados para empresas que produzam fertilizantes utilizando subprodutos/resíduos, destacando-se os investimentos iniciais, proporcional à quantidade de fertilizantes a ser produzida;

Ação 45 - Incentivo ao fortalecimento da indústria nacional de equipamentos utilizados na adequação de subprodutos ao uso agrícola e produção de fertilizantes a partir desses e à sua aplicação no campo;

Ação 46 - Incentivo à construção de fábricas de fertilizantes orgânicos, organominerais e insumos de base orgânica, regionalizados, por meio de linhas de financiamento específicas em parceria com os Estados e incentivo ao cooperativismo regional para criação de unidades de processamento de matéria-prima de larga escala, para fornecimento à indústria de fertilizantes;

Ação 47 - Criação de mecanismos de mitigação de riscos contra volatilidade dos preços internacionais;

Ação 48 - Estabelecimento de parcerias público-privadas (PPPs) para compartilhar riscos e alavancar investimentos em projetos inovadores e de capital intensivo;

Ação 49 - Criação de mecanismos de mitigação de riscos financeiros e operacionais associados a projetos inovadores e de capital intensivo;

Ação 50 - Criação de "fast-track" específico para o licenciamento ambiental de projetos nacionais de fertilizantes, simplificando e acelerando o processo;

Ação 51 - Revisão e atualização do arcabouço legal e regulatório, tornando-o mais transparente, previsível e eficaz; e

Ação 52 - Desenvolvimento de modelo de financiamento para a indústria de armazenagem e distribuição de fertilizantes.

Meta 9 - Promover ambiente tributário isonômico entre produtos nacionais e importados até 2025

- Ação 53 Criação de políticas para a indústria de fertilizantes com vistas a garantir a competitividade da indústria nacional, a isonomia entre produtos nacionais e importados e ao fortalecimento da produção e da distribuição de fertilizantes no país;
- Ação 54 Promoção de estudos técnicos acerca da política tributária federal para o setor de fertilizante e insumos para a nutrição de plantas;
- Ação 55 Promoção, junto aos governos dos estados e municípios, da harmonização das leis tributárias estaduais e municipais, de maneira a estimular os investimentos no setor de fertilizantes e insumos para nutrição de plantas;
- Ação 56 Inserção das rochas fosfáticas e enxofre destinadas à produção de fertilizantes na lista dos benefícios fiscais atribuídos aos fertilizantes importados classificados no Capítulo 31 da NCM;
- Ação 57 Proposta de regime especial de incentivo ao desenvolvimento da infraestrutura da indústria de fertilizantes; e
- Ação 58 Estudo de política nacional de incentivos fiscais relativas à aquisição de gás natural, biogás ou biometano (e outros insumos) para produção de fertilizantes.

Meta 10 - Promover a governança público privada do setor, por meio da realização de pelo menos duas reuniões anuais do Plenário do CONFERT e do fortalecimento da Secretaria Executiva e das Câmaras Técnicas do colegiado com o fornecimento de recursos humanos e orçamentários necessários ao seu funcionamento

- Ação 59 Promoção de ajustes na legislação para aprimoramento da pesquisa mineral e efetiva exploração mineral de reservas de fosfato e reservas de potássio;
- Ação 60 Adoção de medidas que viabilizem a utilização efetiva de direitos minerários em garantias de financiamento para expansão da capacidade instalada da mineração e transformação mineral de matérias-primas para indústria de fertilizantes e insumos para nutrição de plantas;
- Ação 61 Integração dos sistemas regulatórios de licenças para a pesquisa e exploração mineral, produção, registros de produtos e comercialização de fertilizantes e insumos para nutrição de plantas no Brasil;
- Ação 62 Estabelecimento de modelos de estimativas da demanda e oferta futura do mercado nacional e regional de fertilizantes e insumos para nutrição de plantas no Brasil;
- Ação 63 Implementação do "Congresso FertBrasil: Inovação e conhecimento em Fertilizantes e Insumos para a Nutrição de Plantas", como um evento bianual de debates técnico-científicos;
- Ação 64 Articulação de planos estaduais de fertilizantes para atração de investimentos:
- Ação 65 Capacitação e instrumentação dos órgãos envolvidos na regulação da cadeia de fertilizantes em Boas Práticas Regulatórias, segundo padrões internacionais;

Ação 66 - Produção de um diagnóstico internacional sobre o histórico de investimentos públicos e privados em PD&I na cadeia de fertilizantes e sua relação com o desenvolvimento econômico dos países;

Ação 67 - Intensificação e aprimoramento da fiscalização na cadeia de produção e distribuição de fertilizantes e insumos para nutrição de plantas, visando à melhoria constante da qualidade dos produtos oferecidos ao usuário; e

Ação 68 - Continuação e ampliação do número de estudos técnicos fomentados pelo governo federal para atualizar cada ciclo de revisão do PNF sobre disponibilidade de matéria prima, previsão de demanda regional, tecnologias de novos produtos e processos, produtos de eficiência aumentada e cadeias emergentes, prospecção e monitoramento tecnológico, aproveitamento de fosfatos secundários, processos aliados a química verde, tecnologias limpas ("Clean Technologies") e economia circular.

Meta 11 - Promover a competitividade dos misturadores de adubos e fertilizantes, em especial pequenos e médios, garantindo o abastecimento de matérias-primas a preços em condições comerciais transparentes e com políticas compatíveis e acessíveis ao mercado final do agronegócio

Ação 69 - Aprimoramento da presença de grupos econômicos nacionais e internacionais, de maneira a incentivar investimentos no território nacional para que a produção nacional seja maximizada em relação à capacidade instalada;

Ação 70 - Estabelecimento de parcerias público-privadas para promoção e desenvolvimento de novos parceiros e produtores de matérias-primas de macro e micronutrientes para melhor garantir a diversidade no suprimento de fertilizantes; e Ação 71 - Implementação de medidas de monitoramento com vistas às melhores práticas comerciais e concorrenciais de mercado, evitando que a verticalização do setor iniba a competitividade da cadeia de fertilizantes.

2.3. DIRETRIZ 3 – A PROMOÇÃO DE VANTAGENS COMPETITIVAS PARA O PAÍS NA CADEIA DE PRODUÇÃO MUNDIAL DE FERTILIZANTES

Meta 12 - Estimular e difundir boas práticas na produção e uso de fertilizantes e insumos para nutrição de plantas, nacionais e importados, que minimizem a emissão de GEE em pelo menos 10% até 2030, 20% até 2040, 30% até 2050

Ação 72 - Redução na emissão de GEE por meio da melhoria de processos e do reaproveitamento e reciclagem de resíduos orgânicos e de remineralizadores a partir de produtos e coprodutos;

- Ação 73 Realização da análise de ciclo de vida de carbono em fertilizantes e agrominerais silicáticos utilizados no Brasil e implementação da calculadora de intensidade de carbono;
- Ação 74 Promoção de arcabouço normativo e de estratégias integradas a estados e municípios que permitam melhor aproveitamento e reciclagem de subprodutos e resíduos com potencial de uso agrícola para a produção de fertilizantes e insumos para a nutrição de plantas, observada a Política Nacional de Resíduos Sólidos;
- Ação 75 Elaboração e implementação de uma Estratégia ESG para toda a cadeia de fertilizantes e insumos para nutrição de plantas no Brasil;
- Ação 76 Integração, em parceria com o setor privado, da cadeia de fertilizantes no Mercado de Carbono e Mercado de Sustentabilidade Ambiental (ESG);
- Ação 77 Elaboração de políticas públicas adequadas para o desenvolvimento sustentável do setor, em consonância com as exigências internacionais da OCDE;
- Ação 78 Criação de painel de indicadores de sustentabilidade agroambiental e de sustentabilidade econômica para a cadeia de fertilizantes e nutrição de plantas no Brasil;
- Ação 79 Produção de protocolos de avaliação da performance de empresas em ESG (índice de sustentabilidade da cadeia de fertilizantes);
- Ação 80 Integração com a Política Nacional do Clima, por meio de ações integradas com o Ministério do Meio Ambiente e Mudança do Clima para a mitigação das emissões de GEEs;
- Ação 81 Produção de protocolo de ISE para o setor de fertilizantes e nutrição de plantas;
- Ação 82 Atuação junto às representações setoriais da cadeia de fertilizantes e nutrição de plantas e no mercado financeiro para realizar ações que estimulem as empresas associadas ou de capital aberto no mercado financeiro para que tenham em seu planejamento projetos de inovação e sustentabilidade ambiental formalizados; e
- Ação 83 Construção de uma agenda programática de sustentabilidade ambiental a ser apresentada para a gestão do CONFERT.

Meta 13 - Garantir a oferta de fertilizantes por meio da diversificação de fornecedores internacionais, além do estímulo à indústria nacional até 2030

- Ação 84 Formalização de acordos bilaterais de fornecimento de fertilizantes para o mercado brasileiro que garantam diversidade de ofertantes;
- Ação 85 Promoção de governança regional (sul-americano) para o setor de fertilizantes;
- Ação 86 Ampliação regular da oferta de matéria-prima para fertilizantes na América do Sul, atendendo a demanda Brasileira;

Ação 87 - Fomento à formalização de parcerias com Argentina e Bolívia com vistas à exploração de potássio; e

Ação 88 - Integração regional do mercado de gás natural com os países vizinhos do Cone Sul, como a Bolívia, a Argentina, o Chile e o Uruguai, que possuem reservas e produção de gás natural.

Meta 14 - Ampliar conhecimento geológico e avaliar o potencial de insumos minerais de potássio e fosfato do Brasil por meio de 15 projetos regionais específicos de P e K que estimulem a pesquisa e a exploração mineral até 2030; 30 Projetos Regionais (P e K) até 2040; e 60 Projetos Regionais (P e K) até 2050

Ação 89 - Ampliação do conhecimento geológico por meio de mapeamento nas escalas de 1:250.000, 1:100.000 e 1:50.000 para atrair investimentos na exploração mineral de fosfato, potássio e outros nutrientes minerais no Brasil;

Ação 90 - Mapeamento geológico das unidades portadoras de agrominerais na escala de 1:250000 dos estados de Goiás, Tocantins, Bahia, Mato Grosso e Integração de dados do potencial agrogeológico na escala de 1:250000;

Ação 91 - Realização de zoneamento agrogeológico para identificar viabilidade logística de fontes regionais de agrominerais e estimular as cadeias regionais de novos fertilizantes e insumos para a nutrição de plantas;

Ação 92 - Realização de estudos prospectivos de fontes de financiamento alternativas para pesquisa mineral provenientes do setor privado, fundos internacionais etc;

Ação 93 - Ampliação e modernização da capacidade instalada e de recursos humanos especializados do Serviço Geológico do Brasil e do Centro de Tecnologia Mineral em pesquisa e transformação mineral para a cadeia de fosfato, potássio e enxofre;

Ação 94 - Fomento com recursos públicos de projetos de prospecção de fosfato e potássio, incluindo o foco em diferentes tipologias de depósitos de fosfatos; e

Ação 95 - Atração de investimentos, por meio de fontes privadas, em pelo menos cinco vezes a proporção dos valores públicos aplicados para incorporar a pesquisa mineral de fósforo/potássio ao longo dos ciclos do PNF.

2.4. DIRETRIZ 4 – A AMPLIAÇÃO DOS INVESTIMENTOS NAS ATIVIDADES EM PD&I E NO APERFEIÇOAMENTO DE PRODUÇÃO E DISTRIBUIÇÃO DE FERTILIZANTES E INSUMOS PARA NUTRIÇÃO DE PLANTAS DO PAÍS

Meta 15 - Aumentar a oferta de novos produtos oriundos das cadeias emergentes em pelo menos 20% para 2025, 50% para 2030, 100% para 2040 e 200% até 2050

Ação 96 - Criação de um protocolo para caracterização de nanoinsumos para novos produtos entrantes no mercado brasileiro;

Ação 97 - Lançamento de edital de estímulos às parcerias Empresas-ICTs para validação de tecnologias em cadeias emergentes e sustentabilidade ambiental;

Ação 98 - Proposta de inclusão de reciclagem/reaproveitamento de resíduos sólidos no Programa Federal de Pagamento por Serviços Ambientais (PFPSA) nas ações da Política Nacional de Pagamento por Serviços Ambientais (PNPSA), e na questão da conservação dos recursos hídricos;

Ação 99 - Elaboração e implementação de projeto de levantamento, processamento e interpretação de dados para criação do inventário de ciclo de vida de tecnologias modelo para as cadeias dos fertilizantes;

Ação 100 - Aumento da oferta de produtos e processos tecnológicos que promovam aumento da eficiência do uso agronômico de fertilizantes e novos insumos para a nutrição de plantas;

Ação 101 - Ampliação do número e da quantidade ofertada de produtos visando aumentar a eficiência e uso de nutrientes para culturas como milho, café e cana-de - açúcar;

Ação 102 - Aumento da eficiência agronômica do N, P e K nos solos brasileiros e da validação da eficiência agronômica de fontes alternativas, como remineralizadores, resíduos minerais e orgânicos que atendam às exigências ambientais e de registro;

Ação 103 - Diminuição das perdas gasosas de nitrogênio na agricultura; e

Ação 104 - Estudo de proposta de aumento da qualidade nutricional de alimentos base da alimentação nacional por meio da Biofortificação via fertilizantes.

Meta 16 - Incrementar a adoção de bioinsumos para a nutrição de plantas, visando melhorar a eficiência de uso de nutrientes e aumentar a adaptação dos vegetais a condições edafoclimáticas adversas para, pelo menos, 25% até 2030, 50% até 2040 e 75% até 2050, da área plantada no Brasil

Ação 105 - Aumento da área de adoção de inoculantes, em especial, na cultura do feijão;

Ação 106 - Bioprospecção novos bioinsumos em ambientes não usuais com base em NGS, bioinformática e bancos de dados de genes funcionais;

Ação 107 - Promoção de ações coordenadas voltadas para alinhamento de temas transversais a diferentes programas e/ou políticas públicas com foco em bioinsumos; e

Ação 108 - Elaboração de ações que incluam a agricultura familiar na produção de fertilizantes sustentáveis.

Meta 17 - Aumentar a contribuição da fixação biológica em pelo menos 35% até 2030, 50% até 2040 e 100% até 2050 em relação a contribuição da FBN na agricultura nacional

Ação 109 - Aumento da oferta de nitrogênio proveniente da FBN e de fontes orgânicas;

Ação 110 - Promoção de intercâmbio de tecnologia e conhecimento para aumentar a contribuição da FBN e de bioinsumos na América do Sul para nutrição de plantas;

Ação 111 - Redução do uso de nitrogênio em fertilizantes destinados à cultura da soja; e

Ação 112 - Articulação com os C&T e o setor privado para a superação das limitações tecnológicas para que a aplicação da FBN e dos bioinsumos seja ampliada no Brasil, reduzindo a dependência de fertilizante nitrogenados.

Meta 18 - Consolidar e ampliar a Rede FertBrasil como uma rede nacional de referência em PD&I na área de tecnologia de fertilizantes e insumos para a nutrição de plantas, com representação técnica e institucional de relevância e impacto dos ativos de inovação gerados até 2025

Ação 113 - Criação de grupos regionais de PD&I, associados à Rede FertBrasil, atuando em cursos de pós-graduação em cinco ICTs, sendo uma em cada região do País;

Ação 114 - Consolidação da Caravana Embrapa FertBrasil para difusão de boas práticas para o uso eficiente de fertilizantes e insumos para a nutrição de plantas no Brasil, por meio de parcerias entre as ICTs e Empresas privadas do Setor;

Ação 115 - Criação de programa nacional de boas práticas para o uso eficiente de corretivos e fertilizantes no país em plataforma digital de ensino em base gratuita;

Ação 116 - Criação de edital de projeto de Atualização de Manual de Recomendação de Correção e Adubação dos solos em plataforma digital e interativa; e

Ação 117 - Implementação de governança multidisciplinar e setorial para P&D&I na cadeia de fertilizantes e nutrição de plantas, para relacionamentos científicos e institucionais.

Meta 19 - Capacitar cerca de 30% dos agricultores familiares em manejo sustentável da fertilidade do solo e uso de bioinsumos até 2035

Ação 118 - Diagnóstico do perfil de uso de fertilizantes e bioinsumos pelos agricultores familiares com a finalidade de facilitar o acesso desses produtores à produtos de melhor eficiência;

Ação 119 - Capacitação dos agricultores familiares no manejo sustentável do solo; e Ação 120 - Capacitação dos agricultores familiares no uso de bioinsumos e divulgação do Manual de Boas Práticas.

Meta 20 - Criar o Centro de Excelência em Fertilizantes e Nutrição de Plantas estruturado de maneira virtual até 2025 e, de maneira física até 2030, com uma sede interligada em rede com unidades regionais especializadas em temas do PNF

Ação 121 - Criação do Centro de Excelência em Fertilizantes no Rio de Janeiro e mais cinco unidades regionais descentralizadas e com competências complementares no País, dentro de ICTs parceiras;

Ação 122 - Criação do Sistema Nacional de Informação de Fertilizantes e Nutrição de Plantas (SNIF), via acordos de cooperação interministeriais, em plataforma tecnológica, geoespacializada, aberta ao público, inclusive para divulgação e monitoramento do PNF;

Ação 123 - Divulgação de estatísticas oficiais da cadeia de fertilizantes e insumos para nutrição de plantas;

Ação 124 - Implementação de um painel com a composição dos preços dos fertilizantes nacionais e importados para a redução das assimetrias de informação no setor de fertilizantes:

Ação 125 - Implementação e estímulo de programas de comunicação e divulgação na mídia de informações baseadas em ciência sobre a relação dos fertilizantes, meio ambiente, sociedade e segurança alimentar ao longo dos ciclos do PNF;

Ação 126 - Criação de um observatório tecnológico para a Cadeia de Fertilizantes e Nutrição de Plantas com enfoque nas questões atuais e tendências futuras do mercado consumidor; e

Ação 127 - Criação de programa que disponibilize conhecimento técnico e aplicações advindas de inteligência artificial para uso apropriado e eficiente dos fertilizantes e insumos para nutrição de plantas.

Meta 21 - Reduzir as perdas no uso de fertilizantes em, pelo menos, 10% até 2025, 50% até 2030, 70% até 2050

Ação 128 - Promoção da produção, do uso e da aplicação da ureia com eficiência melhorada; e

Ação 129 - Formalização de medidas de estímulo à produção de fertilizantes de eficiência melhorada para os produtos sólidos e líquidos voltadas a minimizar as perdas (degradação) nas etapas de transporte, armazenamento e aplicação.

Meta 22 - Criação de mecanismos de fomento do mercado estimulando a diversificação de matérias-primas ("feedstocks") para a produção de fertilizantes nitrogenados, conectada à cadeia do hidrogênio verde e biometano, considerando um plano de adição de 5% em massa de "amônia verde equivalente" por ano a partir de 2027 e chegando a 20% em 2030

Ação 130 - Atração de investimentos para a instalação de unidades de nitrogenados baseadas em amônia verde/azul;

Ação 131 - Integração das Política Nacional de Gás Natural e de Hidrogênio com a cadeia de fertilizantes no Brasil;

Ação 132 - Fomento do desenvolvimento tecnológico para a implantação de plantas de nitrogenados baseadas em hidrogênio verde/azul; e

Ação 133 - Integração da cadeia de fertilizantes com soluções energéticas aproveitando o potencial de geração de energia limpa (potencial eólico / solar) para produção de hidrogênio / amônia verde, via rotas de eletrólise (ou processos correlatos).

Meta 23 - Promover o aumento do fomento, dentro da esfera de atribuições e competências e orçamento do governo federal, estadual e do setor privado, para projetos em PD&I em fertilizantes, insumos para a nutrição de plantas e sustentabilidade ambiental, (incluindo processos de melhoria da saúde do solo)

Ação 134 - Criação de linha de financiamento para a produção de fertilizantes no âmbito das cadeias emergentes (expansão da capacidade instalada), inclusive em relação a risco tecnológico;

Ação 135 - Promoção da inovação, por meio de aplicação de recursos públicos e captação de recursos privados, em processamento e transformação mineral, recuperação/reciclagem e uso eficiente de fontes alternativas de potássio;

Ação 136 - Incentivo da aplicação dos recursos financeiros captados pela CFEM da cadeia de fertilizantes e insumos para a nutrição de plantas previstos por lei, em projetos de PD&I, com ênfase nas metas do PNF, durante todos os ciclos do PNF;

Ação 137 - Viabilização de estudos científicos e tecnológicos em aproveitamento de fontes alternativas, como as de origem marinha, sedimentares e ígneas marginais, residual, coprodutos, orgânicos, associados a outros minerais, promovidos pelo Centro de Excelência em Fertilizantes e Nutrição de Plantas;

Ação 138 - Estímulo à colaboração entre as empresas e as Fundações Estaduais de Apoio à Pesquisa, objetivando desenvolver a competência local em PD&I;

Ação 139 - Ações de apoio não reembolsável a projetos de PD&I realizados em parceria com unidades de competência da Embrapii;

Ação 140 - Criação de fundo privado de fomento à inovação baseado na Lei de Inovação;

Ação 141 - Apoio a realização de diagnóstico dos investimentos em PD&I para fertilizantes e nutrição de plantas;

Ação 142 - Fomento de PD&I para prospecção e desenvolvimento de bioinsumos para a nutrição e crescimento vegetal, incluindo microrganismos multifuncionais com diferentes mecanismos de ação (FBN, solubilização de P, promoção do crescimento de raízes, controle biológico, fungos micorrízicos etc), inclusive para adequação ao cenário de mudanças climáticas;

Ação 143 - Investimentos em PD&I em tecnologias de fronteira como bionanotecnologia, biologia sintética, melhoramento genético (edição de genes e CRISPR) entre outras voltadas para o aumento da eficiência de uso de nutrientes; e

Ação 144 - Promoção de cooperação internacional entre as instituições de ciência e tecnologia do Brasil que atuam na área de fertilizantes e nutrição de plantas com os países que são referência no setor; e

Ação 145 – Publicação de editais específicos para fomento e financiamento de indústrias de base tecnológica, incluindo startups, para que sejam criadas indústrias no modelo proposto no Brasil.

Meta 24 - Promover o desenvolvimento de capital humano brasileiro na área de Ciências Agrárias focado na produção em ciência, tecnologia e inovação de fertilizantes e insumos para a nutrição de plantas, por meio do aumento na produção de teses e dissertações de mestrado e doutorado sobre o tema em 5% ao ano

Ação 146 - Capacitação de mestres e doutores especializados em pesquisa e transformação mineral, tecnologias de novos produtos fosfatados/potássicos, tecnologias para mitigação de impacto ambiental cadeia de fertilizantes e insumos para a nutrição de plantas e sustentabilidade ambiental, em centros de pesquisa referenciados no Brasil e no exterior;

Ação 147 - Promoção da formação de profissionais, especialistas técnicos, em centros de pesquisa referenciados no exterior, financiados pelo CNPq e Capes;

Ação 148 - Criação de programa de apoio a bolsas para estudantes e pesquisadores em fertilizantes e nutrição de plantas;

Ação 149 - Estabelecimento, junto ao comitê de especialistas do PNF, de linhas prioritárias de PD&I para lançamento de programas de bolsas de pós-graduação;

Ação 150 - Criação de mecanismos para aproximar o setor privado de agências de fomento com o objetivo de lançamento de editais para jovens doutores empreendedores, aproveitando as iniciativas já existentes nos estados; e

Ação 151 - Fortalecimento das disciplinas de fertilizantes e nutrição de plantas nos cursos de Ciências Agrárias e Biológicas.

Meta 25 - Aumentar o número de patentes brasileiras referentes a fertilizantes e insumos para nutrição de plantas em 36% por década para que o Brasil figure entre os cinco países com mais ativos de propriedade intelectual no setor

Ação 152 - Estímulo ao uso do sistema de propriedade intelectual, de maneira a promover a criação e comercialização de ativos tecnológicos por parte das instituições públicas e empresas privadas, para que o Brasil figure entre os cinco países mais inovadores no mundo na cadeia de fertilizantes e insumos para nutrição de plantas; e

Ação 153 - Promoção das garantias seguradas pela Lei de Propriedade Industrial ao setor de fertilizantes e insumos para a nutrição de plantas ao longo dos ciclos do PNF, trazendo segurança jurídica para as indústrias investirem no desenvolvimento de novos produtos.

2.5. DIRETRIZ 5 – A ADEQUAÇÃO DA INFRAESTRUTURA PARA INTEGRAÇÃO DE POLOS LOGÍSTICOS E A VIABILIZAÇÃO DE NOVOS EMPREENDIMENTOS

Meta 26 - Reduzir os custos de transporte em 15% até 2030, 30% até 2040 e 50% até 2050, incentivando a multimodalidade e a interiorização logística

Ação 154 - Integração do PNF com o Plano Nacional de Logística 2035 – PNL-2035, nos Planos Setoriais de Transporte para os diversos modos, aquaviário (fluvial e marítimo) e terrestre (rodoviário e ferroviário), e dutoviário, com incentivo para aumentar o uso dos modais de alta capacidade no transporte de fertilizantes e seus insumos, e, assim, contribuir para a diminuição dos custos de transporte;

Ação 155 - Produção de estudos estratégicos e mapas de infraestrutura e logística, identificando as principais áreas produtoras/consumidoras de fertilizantes fosfatados

para orientar os planos de ações de investimentos, bem como possíveis oportunidades em portos com capacidade ociosa a fim de promover a expansão da capacidade instalada de nitrogenados associada a fosfatados por meio do uso de matéria-prima importada e nacional (GNL, rocha fosfática e enxofre), dentro do conceito porto-Indústria;

Ação 156 - Incentivo à criação de estratégias logísticas para acoplar a cadeia de fertilizantes e nutrição de plantas com a de mineração, de resíduos sólidos e subprodutos;

Ação 157 - Definição da malha logística intermodal otimizada para investimento em escoamento de rochas fosfáticas, fertilizantes básicos e fertilizantes secundários;

Ação 158 - Execução de projetos de integração de modais ferroviários, fluviais e/ou marítimos para a produção e distribuição de fertilizantes e insumos para a nutrição de plantas no Brasil, de maneira a reduzir os gargalos logísticos;

Ação 159 - Integração intermodal e das cadeias para diminuição dos custos de frete, considerando as questões de impostos interestaduais e vantagens competitivas de escala para indústrias de fertilizantes com atuação em escala regional;

Ação 160 - Incentivo à cabotagem marítima por meio da rodovia do mar para portos do Norte e Nordeste com diminuição nos custos finais dos fertilizantes;

Ação 161 - Adequação da regulação sobre as operações com enxofre e nitrato de amônio para os níveis internacionais, até 2030; e

Ação 162 - Identificação de polos para o desenvolvimento do mercado de fertilizantes que poderiam ser alvo de investimento em infraestrutura.

Meta 27 - Estimular a criação de estruturas centrais de armazenamento e distribuição de fertilizantes em regiões estratégicas para diminuir o custo final dos fertilizantes em, pelo menos, 3% até 2025, 10% até 2030, 15% até 2040 e 20% até 2050

Ação 163 - Promoção da desburocratização e de investimentos em espaços dedicados para transporte e armazenamento de enxofre e nitrato de amônio no Brasil;

Ação 164 - Diagnósticos das regiões estratégicas com base em critérios climáticos, de solo, de fertilidade e de produção;

Ação 165 - Diagnóstico das regiões prioritárias para acomodar estruturas centrais de armazenamento e distribuição com base no consumo e na produção de produtos agrícolas e de insumos;

Ação 166 - Coordenação nacional de planos subnacionais de estruturação de centrais de armazenamento e distribuição;

Ação 167 - Priorização das infraestruturas de armazenagem que consolide o modelo multimodal para transporte e distribuição de fertilizantes; e

Ação 168 - Realização de assistência técnica rural para promoção do uso de galpões flexíveis na armazenagem de fertilizantes dentro da porteira.

3. IMPLEMENTAÇÃO, EXECUÇÃO E MONITORAMENTO DO PNF

Para além de um texto enunciativo, o PNF se propõe a ser um instrumento de planejamento que reflita a ampla discussão técnica e política sobre as prioridades e desafios do setor de fertilizantes e nutrição de plantas no âmbito nacional e internacional.

Tão importante quanto definir os resultados estratégicos que se pretende alcançar até 2050 é estipular como serão a gestão e a governança do Plano, obedecendo à dinâmica da administração federal e a complexidade e transversalidade do setor, atentando-se aos prazos estabelecidos e aos subsídios gerados pelos demais instrumentos de gestão e de controle.

A gestão do PNF será orientada para a adoção de um processo de monitoramento no decorrer de sua vigência. Para tal monitoramento, dois documentos serão de suma relevância: a Carteira de Indicadores e a Carteira de Projetos. A primeira, vai informar a gestão das metas do PNF: um indicador para cada meta. A segunda, vai apoiar o acompanhamento da realização das ações do PNF: um ou mais projetos por ação. Ambas serão acompanhadas pelos comitês técnicos do CONFERT, que informarão ao Conselho o desempenho da execução do Plano nas reuniões ordinárias.

É de se destacar a relevância das carteiras: elas representam um modelo parametrizado de gestão. Os indicadores serão detalhados em vários aspectos – métricas, fórmulas, recorrência, fenômenos mensurados – e vão permitir acompanhar o atingimento dos marcos do PNF. Os projetos vão indicar aos órgãos públicos o que deve ser feito, quando, como, por quem e com quantos recursos. Essas informações serão consolidadas e servirão para a produção de índices de execução. Com essas informações o Conselho terá insumos para decidir sobre correções de trajeto, priorização de ações e otimização de esforços.

Essa dinâmica de operação começou a ser implantada a partir da publicação do Decreto 10.991, de 11 de março de 2022, alterado pelo Decreto 11.518 de 04 de maio de 2023. Este Decreto representou a retomada das questões relacionadas a fertilizantes como assunto de interesse nacional. Nesse ano o CONFERT, que é o cerne do modelo de governança do PNF, voltou a operar e, entre seus primeiros atos, determinou a revisão do Plano.

Este é o Plano que agora se apresenta e que se faz acompanhar por Resolução do CONFERT que estabelece a forma de gestão e do acompanhamento da execução. O PNF foi estabelecido pelo Decreto 10.991, que também instituiu o PNF. As competências do Conselho estão estabelecidas no art. 6º e a sua composição no art. 8º.

Para a governança do PNF são importantes as competências de aprovar e rever o Plano (art. 6°, I e X); editar normas para sua execução (art. 6°, II), articulá-lo com outros

planos governamentais (art. 6º III); propor medidas regulatórias e normativas (art. 6º, IV e V) e enfim zelar pela sua implementação (art. 6º, XIII).

O modelo de governança está calcado na premissa de que, uma vez definido o plano, o seu principal órgão receba informações adequadas para o desempenho de suas competências. Assim

O CONFERT será composto por representantes do governo federal e atores relevantes para o setor de modo a promover a pluralidade de visões para a tomada de decisão:

1. Governo Federal

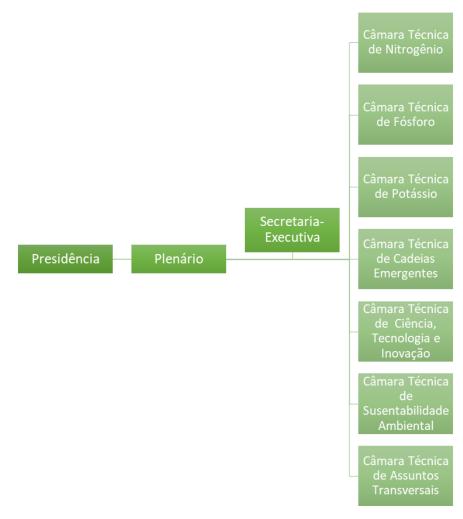
- I o Ministro de Estado do Desenvolvimento, Indústria, Comércio e Serviços, que o presidirá;
- II o Ministro de Estado da Agricultura e Pecuária;
- III o Ministro de Estado da Ciência, Tecnologia e Inovação;
- IV o Ministro de Estado do Desenvolvimento Agrário e Agricultura Familiar;
- V o Ministro de Estado da Fazenda;
- VI o Ministro de Estado do Meio Ambiente e Mudança do Clima;

VII - o Ministro de Estado de Minas e Energia;

1. Atores do setor

- VIII o Presidente da Empresa Brasileira de Pesquisa Agropecuária -Embrapa;
- IX o Presidente da Confederação da Agricultura e Pecuária do Brasil;
- X o Presidente da Confederação Nacional da Indústria; e
- XI o Presidente da Petróleo Brasileiro S.A. - Petrobras.

Cada conselheiro terá direito a um voto e, em caso de empate, o presidente do Conselho Nacional de Fertilizantes, ou o seu substituto, exercerá o direito do voto de qualidade.


Para o tratamento dos assuntos cotidianos do Conselho e para que o plano seja mantido em movimento, o CONFERT conta com uma Secretaria-Executiva (art. 9°), função que é desempenhada pela Secretaria de Desenvolvimento Industrial, Inovação, Comércio e Serviços do Ministério do Desenvolvimento, Indústria, Comércio e Serviços.

Para apoiar o Conselho no trato de questões técnicas e para o acompanhamento mais próximo da execução foram criadas a câmaras técnicas, com competências temáticas específicas. São elas (art. 11): I - Câmara Técnica de Produção de Fertilizantes Nitrogenados, Fosfáticos e Potássicos;

II - Câmara Técnica de Uso e Aplicação de Fertilizantes Nitrogenados, Fosfáticos e
 Potássicos; III - Câmara Técnica de Assuntos Agrícolas; Câmara Técnica de Cadeias
 Emergentes; V - Câmara Técnica de Ciência, Tecnologia e Inovação e Sustentabilidade

Ambiental; e VI - Câmara Técnica de Assuntos Regulatórios, Econômicos, de Infraestrutura e Logística.

Com isso a configuração do CONFERT e de suas instâncias de governança é a seguinte:

BIBLIOGRAFIA CONSULTADA DE ÓRGÃOS E ENTIDADES

AGÊNCIA NACIONAL DE TRANSPORTES AQUAVIÁRIOS (Brasil). **Anuário estatístico aquaviário**. Brasília, DF: Antaq, 2021. Disponível em: https://www.gov.br/antaq/pt-br. Acesso em: 5 nov. 2021.

ARAGÃO, A.; CONTINI, E. **O** agro no Brasil e no mundo: uma síntese do período de 2000 a 2020. Brasília, DF: Embrapa, Secretaria de Inteligência e Relações Estratégicas, 2020. Disponível em: https://www.embrapa.br/documents/10180/62618376/O+AGRO+NO+BRASIL+E+NO+MUNDO.pdf/41e2 0155-5cd9-f4ad-7119-945e147396cb. Acesso em: 27 jun. 2021.

ASSOCIAÇÃO NACIONAL PARA DIFUSÃO DE ADUBOS (Brasil). **Principais indicadores do setor de fertilizantes**: janeiro de 2021. São Paulo: Anda, 2021. Disponível em: https://anda.org.br/wpcontent/uploads/2021/06/Principais_Indicadores_2021.pdf. Acesso em: 28 jun. 2021.

BARROS, G. S. C.; CASTRO, N. R.; MACHADO, G. C.; ALMEIDA, F. M. S.; ALMEIDA, A. N. **Boletim mercado de trabalho do agronegócio brasileiro**. Piracicaba: Cepea, 2021. 4º trimestre 2020. Disponível em: https://www.cepea.esalq.usp.br/upload/kceditor/files/4tri2020_MT_Cepea.pdf. Acesso em: 28 jun. 2021.

BOLETIM LOGÍSTICO. Brasília, DF: Conab, ano 5, abr. 2021. Disponível em: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/boletim-logistico/item/download/37307_3037108c4e1d127665d9c6ec29b18239. Acesso em: 4 nov. 2021.

BRASIL. **Decreto nº 4.954, de 14 de Janeiro de 2004**. Altera o Anexo ao Decreto nº 4.954, de 14 de janeiro de 2004, que aprova o Regulamento da Lei no 6.894, de 16 de dezembro de 1980, que dispõe sobre a inspeção e fiscalização da produção e do comércio de fertilizantes, corretivos, inoculantes, ou biofertilizantes, remineralizadores e substratos para plantas destinados à agricultura. (Redação dada pelo Decreto nº 8.384, de 2014). Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/decreto/d4954.htm. Acesso em: 4 nov. 2021.

BRASIL. Lei nº 13.576, de 26 de dezembro de 2017. Dispõe sobre a Política Nacional de Biocombustíveis (RenovaBio) e dá outras providências. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/lei/l13576.htm. Acesso em: 4 nov. 2021.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. **Projeções do agronegócio**: Brasil 2019/20 a 2029/30: projeções de longo prazo. Brasília, DF: Mapa, 2020. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/noticias/ao-completar-160-anos-ministerio-da-agricultura-preve-crescimento-de-27-na-producao-de-graos-do-pais-na-proxima-decada/ProjecoesdoAgronegocio2019_20202029_2030.pdf. Acesso em: 27 jun. 2021.

CAPDEVILLE, G. de; ALVES, A. A.; BRASIL, B. dos S. A. F. **Modelo de inovação e negócios da Embrapa Agroenergia**: gestão estratégica integrada de P&D e TT. Brasília, DF: Embrapa Agroenergia, 2017. 73 p. (Embrapa Agroenergia. Documentos, 24). Disponível em: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/173992/1/DOC-24-CNPAE.pdf. Acesso em: 4 nov. 2021.

CENTRO DE ESTUDOS AVANÇADOS EM ECONOMIA APLICADA. **PIB do agronegócio brasileiro**. Piracicaba: Cepea, 2021. Disponível em: https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx. Acesso em: 25 jun. 2021.

CUNHA, J. F. da; FRANCISCO, E. A. B.; CASARIN, V.; PROCHNOW, L. I. **Balanço de Nutrientes na Agricultura Brasileira - 2009 a 2012**. Informações Agronômicas (BRASIL) Número 145, Março 2014.

DIAS, V. P.; FERNANDES, E. Fertilizantes: uma visão global sintética. **BNDES Setorial**, n. 24, p. 97-138, set. 2006. Disponível em:

https://web.bndes.gov.br/bib/jspui/bitstream/1408/2657/1/BS%2024%20Fertilizantes_Uma%20Vis%C3%A3o%20Global%20Sint%C3%A9tica_P.pdf. Acesso em: 10 jun. 2021.

EMBRAPA. **Nota técnica sobre o Plano Nacional de Fertilizantes**: pontos críticos: maio de 2020. Brasília, DF, 2020.

EMPRESA DE PESQUISA ENERGÉTICA. **Publicações.** Rio de Janeiro: EPE, 2020. Disponível em: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes. Acesso em: 4 nov. 2021.

EMPRESA DE PESQUISA ENERGÉTICA. **Zoneamento nacional de recursos de óleo e gás: ciclo 2017-2019.** Brasília, DF: EPE, 2019. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-435/EPE_DPG_ZNMT_2017-2019_18dez2019.pdf. Acesso em: 4 nov. 2021.

FARIAS, P. I. V. et al. Food assurance in Brazil. Fertilizer Focus, v. 38, n. 1, p. 52-54, Jan./Feb. 2021.

FINCK, A. In: World fertilizer use manual. IFA, Paris. 1992

GLOBALFERT. NPK. In: GLOBALFERT. **Outlook Globalfert 2021**. 2021a. Disponível em: https://globalfert.com.br/ogf-dinamico/parte2/cap08. Acesso em: 25 jun. 2021.

GLOBALFERT. Outlook GlobalFert 2021. 2021b. Disponível em:

https://www.globalfert.com.br/OGFposEvento/arquivo/Outlook-GlobalFert-2021.pdf. Acesso em: 25 jun. 2021.

GLOBALFERT. **Principais empresas produtoras de fertilizantes no mundo**. 2019. Disponível em: https://www.globalfert.com.br/boletins/principais-empresas-produtoras-de-fertilizantes-no-mundo. Acesso em: 29 jun. 2021.

GONÇALVES, J. S.; FERREIRA, C. R. R. P. T.; SOUZA, S. A. M. Produção nacional de fertilizantes, processo de desconcentração regional e maior dependência externa. **Informações Econômicas**, v. 38, n. 8, ago. 2008. Disponível em: http://www.iea.sp.gov.br/ftpiea/publicacoes/tec7-0808.pdf. Acesso em: 30 jun. 2021.

GRUMBACH, R. J. S.; FRANCO, F. L.; SILVA, J. W. da; GRUMBACH, R. P. **Construindo o futuro**: o método Grumbach de gestão estratégica. Timburi: Cia do eBook, 2020. 273 p.

INFORME SETORIAL DA ÁREA INDUSTRIAL. Rio de Janeiro: BNDES, n. 16, jan. 2010. Disponível em: https://web.bndes.gov.br/bib/jspui/bitstream/1408/1875/2/InformeSetorial-Al_n.16%2C%20jan.2010_final_A.pdf. Acesso em: 1 jul. 2021.

INTERNATIONAL FERTILIZER ASSOCIATION. **Public summary**: short-term fertilizer outlook 2020-2021. Paris: IFA, 2020. Disponível em:

https://www.fertilizer.org/member/Download.aspx?PUBKEY=50AB625D-48C3-4EB9-AFBF-FF47DF1FE623. Acesso em: 4 nov. 2021.

KULAIF, Y.; FERNANDES, F. R. C. Panorama dos agrominerais no Brasil: atualidades e perspectivas. In: FERNANDES, F. R. C.; LUZ, A. B. da; CASTILHOS, Z. C. (ed.). **Agrominerais para o Brasil**. Rio de Janeiro: CETEM: MCT, 2010. cap. 1, p. 1-21. Disponível em:

http://livroaberto.ibict.br/bitstream/1/920/1/Agrominerais%20para%20o%20Brasil.pdf. Acesso em: 4 nov. 2021.

MANKINS, J. C. **Technology readiness levels**: a white paper. [Washington, DC]: NASA, 1995. Disponível em: https://www.spacepropulsion.org/uploads/2/5/3/9/25392309/john_mankins_paper_of_4-6-95_trl.pdf. Acesso em: 4 nov. 2011.

MERCADO brasileiro de fertilizantes. Paulínia: Fertilizantes Heringer, 2021. Disponível em: http://www.heringer.com.br/heringer/web/conteudo_pti.asp?idioma=0&tipo=29504. Acesso em: 24 jun. 2021.

MORDOR INTELLIGENCE. Fertilizers market - growth, trends, covid-19 impact, and forecasts (2021-2026). Hyderabad, 2020. Disponível em: https://www.mordorintelligence.com/industry-reports/fertilizers-market. Acesso em: 29 jun. 2021.

NASCIMENTO, L. Balança comercial do agronegócio somA US\$ 100,81 bilhões em 2020: China foi o principal destino dos produtos exportados pelo Brasil. Brasília, DF: Agência Brasil, 2021. Disponível em: https://agenciabrasil.ebc.com.br/economia/noticia/2021-01/balanca-comercial-do-agronegocio-soma-us-10081-bilhoes-em-2020. Acesso em: 28 jun. 2021.

POLIDORO, J. C. **Mercado e tecnologias em fertilizantes organominerais**. Rio de Janeiro: Embrapa solos, 2015. Disponível em: https://www.embrapa.br/documents/1355242/3554062/Sinop+5.pdf/643249bf-e5d3-40fb-9fcd-a68352a996a2. Acesso em: 27 de junho de 2021.

RAO, A.C.S., Smith, J.L., PARR, J.F. et al. Considerations in estimating Nitrogen Recovery Efficiency by the difference and isotopic dilution methods. Fertilizer Research 33, 209–217 (1992). https://doi.org/10.1007/BF01050876

UNITED NATIONS. Department of Economic and Social Affairs. Population Division. **World population prospects 2019**. New York, 2019. Disponível em: https://population.un.org/wpp/. Acesso em: 29 de junho de 2021.

VURAL, C. A.; ROSO, V.; HALLDÓRSSON, Á., STÅHLE, G.; YARUTA, M. Can digitalization mitigate barriers to intermodal transport? An exploratory study. Research in Transportation Business and Management, v. 37, p.100525, 2020

LISTA DE FIGURAS

Figura 1 - Produtos com aumento de exportação em 2029/2030	13
Figura 2 - Projeções de produção no Brasil para os próximos 10 anos	14
Figura 3 - Cadeia produtiva dos fertilizantes	16
Figura 4 - Maiores produtores de fertilizantes em 2020	18
Figura 5 - Principais empresas produtoras de fertilizantes no mundo	18
Figura 6 - Maiores consumidores de fertilizantes em 2020	19
Figura 7 - Mercado de fertilizantes no Brasil (em volume)	20
Figura 8 - Possíveis cenários de demanda por fertilizantes no Brasil em 2030, 2040 e 2050.	
Figura 9 - Consumo de fertilizantes por cultura em 2020	22
Figura 10 - Importação de fertilizantes nos últimos 23 anos (em US\$)	23
Figura 11 - Market share Brasil 2020	25
Figura 12 - Metodologia de elaboração do PNF	29
Figura 13 - Categorização dos inputs recebidos pelos atores externos	34
Figura 14 - Cadeia produtiva da ureia e possível integração setorial	35
Figura 15 - Resultados das análises logísticas e distância até os centros estaduais da lavouras.	
Figura 16 - Players de recursos não convencionais no Brasil	43
Figura 17 - Preço do gás natural para viabilidade de plantas de ureia	44
Figura 18 - Projeção de demanda de N contido nos fertilizantes	45
Figura 19 - Mapa de exportação (soja e milho) e de importação (fertilizantes) nos an de 2010, 2015 e 2020	
Figura 20 - Importação de fertilizantes (SH4-31) por estados da federação no Brasil entre 2010 e 2020	.128
Figura 21 - Organograma CONFERTErro! Indicador não defin	ido.
Figura 22 - Localização e potencial de produção de fertilizantes nitrogenados, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e com pedido de autorização	.174
Figura 23 - Localização e potencial de produção de fertilizantes nitrogenados, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e c pedido de autorização e classes de demanda de fertilizantes NPK	

Figura 24 - Localização e potencial de produção de fertilizantes fosfatados, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e com pedido de autorização
Figura 25 - Localização e potencial de produção de fertilizantes fosfatados, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e com pedido de autorização e classes de demanda de fertilizantes NPK177
Figura 26 - Localização e potencial de produção de fertilizantes potássicos, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e com pedido de autorização
Figura 27 - Localização e potencial de produção de fertilizantes potássicos, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e com pedido de autorização e classes de demanda de fertilizantes NPK179

LISTA DE TABELAS

Tabela 1 - Brasil no ranking mundial de produção e exportação em 202013
Tabela 2 - Preços máximos do gás natural (em US\$/MMBtu) para diferentes combinações de preço da ureia e taxa de desconto43
Tabela 3 - Visão de futuro baseada em três cenários e apresentadas em função da porcentagem do total de resíduo produzido77
Tabela 4 - Cenários de oferta e demanda para a cadeia de fertilizantes nitrogenados em 2030130
Tabela 5 - Cenários de oferta e demanda para a cadeia de fertilizantes nitrogenados em 2050130
Tabela 6 - Cenários de oferta e demanda para a cadeia de fertilizantes fosfatados em 2030131
Tabela 7 - Cenários de oferta e demanda para a cadeia de fertilizantes fosfatados em 2050131
Tabela 8 - Cenários de oferta e demanda para a cadeia de fertilizantes potássicos em 2030 e em 2050132

LISTA DE SIGLAS E ABREVIATURAS

3D Três Dimensões

ABAG Associação Brasileira do Agronegócio

ABC Agricultura de Baixo Carbono

ABIQUIM Associação Brasileira da Indústria Química

ABISOLO Associação Brasileira das Indústrias de Tecnologia em

Nutrição Vegetal

ABPM Associação de Empresas de Pesquisa Mineral

ABRACAL Associação Brasileira dos Produtores de Calcário Agrícola

ABRAMILHO Associação Brasileira dos Produtores de Milho

AD Agricultura Digital

AFRMM Adicional ao Frete para a Renovação da Marinha Mercante

AGU Advocacia-Geral da União

Al Artificial Intelligence

AIA Agriculture Innovation Agenda

AP Amapá

AM Amazonas

AMA-Brasil Associação dos Misturadores de Adubos do Brasil

ANDA Associação Nacional de Distribuidores de Adubo

ANDAV Associação Nacional dos Distribuidores de Insumos

Agrícolas e Veterinários

ANM Agência Nacional de Mineração

ANP Agência Nacional do Petróleo, Gás Natural e

Biocombustíveis

ANPII Associação Nacional dos Produtores e Importadores de

Inoculantes

ANTAQ Agência Nacional de Transportes Aquaviários

APEX Agência Brasileira de Promoção de Exportações e

Investimentos

APROSOJA Associação Brasileira dos Produtores de Soja

ASBRAM Associação Brasileira das Indústrias de Suplementos

Minerais

B Boro BA Bahia

BNDES Banco Nacional de Desenvolvimento Econômico e Social

BTU British Thermal Unit

C Carbono

Ca Cálcio

CADE Conselho Administrativo de Defesa Econômica

CAGR Compound Annual Growth Rate (taxa de crescimento anual

composta)

CaO Óxido de Cálcio

CAP EU's Common Agricultural Policy

Capes Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior

CAPEX Capital Expenditure

CAR Cadastro Ambiental Rural

CBIO Crédito de Descarbonização ou Crédito de Carbono

CC/PR Casa Civil da Presidência da República

CDL Companhia Distribuidora Local

CE Ceará

CEPEA Centro de Estudos Avançados em Economia Aplicada

CFEM Compensação Financeira pela Exploração de Recursos

Minerais

Cide Contribuição de Intervenção no Domínio Econômico

Cl Cloro

CNA Confederação da Agricultura e Pecuária do Brasil

CNAE Classificação Nacional de Atividades Econômicas

CNPE Conselho Nacional de Política Energética

CNPg Conselho Nacional de Desenvolvimento Científico e

Tecnológico

Co Cobalto

CO₂ Dióxido de Carbono

COFINS Contribuição para o Financiamento da Seguridade Social

CONAMA Conselho Nacional do Meio Ambiente

CONAB Companhia Nacional de Abastecimento

CONFAZ Conselho Nacional de Política Fazendária

CONFERT Conselho Nacional de Fertilizantes e Nutrição de Plantas

COOPERALFA Cooperativa Agroindustrial Alfa

CPRM Companhia de Pesquisa de Recursos Minerais

CRA Certificado de Recebíveis do Agronegócio

CSR Corporate Social Responsibility

C&T Ciência e Tecnologia

CT&I Ciência, Tecnologia e Inovação

Cu Cobre

DAP Fosfato Diamônico

DF Distrito Federal

DPE/SAE-PR Diretoria de Projetos Estratégicos da Secretaria Especial de

Assuntos Estratégicos da Presidência da República

EBIC European Biostimulants Industry Council

EMBRAPA Empresa Brasileira de Pesquisa Agropecuária

EPE Empresa de Pesquisa Energética

EQ/UFRJ Escola de Química da UFRJ

ESALQ Escola Superior de Agricultura "Luiz de Queiroz"

ES Espírito Santo

ESG Environmental, Social and Governance

ETC Estação de Transbordo de Carga

ETE Estação de Tratamento de Esgoto

EU European Union

EUA Estados Unidos da América

FAFEN Fábrica de Fertilizantes Nitrogenados

FAO Food and Agriculture Organization

FBN Fixação Biológica de Nitrogênio

Fe Ferro

FEALQ Fundação de Estudos Agrários Luiz de Queiroz

FG Fosfogesso

FGV-AGRO Centro de Agronegócio da Fundação Getúlio Vargas

FIDC Fundo de Investimento em Direitos Creditórios

FINEP Financiadora de Estudos e Projetos

FIP Fundo de Investimento em Participações

FNDCT Fundo Nacional de Desenvolvimento Científico e

Tecnológico

FO Fertilizante Orgânico

FOB Free On Board

FOM Organomineral

FUNTELL Fundo para o Desenvolvimento Tecnológico das

Telecomunicações

GASBOL Gasoduto Brasil-Bolívia

GEE Gases de Efeito Estufa

GN Gás Natural

GNC Gás Natural Comprimido

GNL Gás Natural Liquefeito

GO Goiás

GSI/PR Gabinete de Segurança Institucional da Presidência da

República

GTI Grupo de Trabalho Interministerial

GTI-PNF Grupo de Trabalho Interministerial do Plano Nacional de

Fertilizantes

ha Hectare

H₂ Hidrogênio

IBRAM Instituto Brasileiro de Mineração

ICMS Imposto sobre operações relativas à circulação de

mercadorias e sobre prestações de serviços de transporte

interestadual, intermunicipal e de comunicação

ICT Instituto de Ciência e Tecnologia

IFA International Fertilizer Association (Associação

Internacional de Fertilizantes)

IN Instrução Normativa

INCT Institutos Nacionais de Ciência e Tecnologia

INPAS Associação Brasileira de Insumos para Agricultura

Sustentável

IOF Imposto sobre Operações Financeiras

Internet of Things

IPI Imposto sobre Produtos Industrializados

IRRF Imposto sobre a Renda Retido na Fonte

ISE Índice de Sustentabilidade Empresarial

ISS Imposto Sobre Serviços

K Potássio

KCI Cloreto de Potássio

K₂O Óxido de Potássio

kg Quilograma

Km Quilômetro

LDO Lei de Diretrizes Orçamentárias

LGN Líquidos de Gás Natural

LOA Lei Orçamentária Anual

MA Maranhão

MAP Fosfato Monoamônio

MAPA Ministério da Agricultura, Pecuária e Abastecimento

MCTI Ministério da Ciência, Tecnologia e Inovações

ME Ministério da Economia

Mercado Comum do Sul

MINFRA Ministério da Infraestrutura

MMA Ministério do Meio Ambiente

MME Ministério de Minas e Energia

Mg Magnésio

MG Minas Gerais

MgO Óxido de Magnésio

Mha Milhão de Hectares

MMBTU Milhão de BTU

Mn Manganês

Mo Molibdênio

MP Medida Provisória

MRE Ministério das Relações Exteriores

MS Mato Grosso do Sul

MT Mato Grosso

N Nitrogênio

NCM Nomenclatura Comum do Mercosul

N₂O Óxido Nitroso

NOx Óxidos de Nitrogênio

NPCT Nutrição de Plantas Ciência e Tecnologia

NPK Nitrogênio, Fósforo e Potássio

OCB Organização das Cooperativas do Brasil

OCDE Organização para a Cooperação e Desenvolvimento

Econômico

ODS Objetivos de Desenvolvimento Sustentável

O&G Óleo e Gás

ONU Organização das Nações Unidas

P Fósforo

P₂O₅ Pentóxido de Difósforo

PA Pará

PASEP Programa de Formação do Patrimônio do Servidor Público

PB Paraíba

P&D Pesquisa e Desenvolvimento

PD&I Pesquisa, Desenvolvimento e Inovação

PE Pernambuco

PETROBRAS Petróleo Brasileiro S.A.

PFPSA Programa Federal de Pagamento por Serviços Ambientais

PIB Produto Interno Bruto

PIS Programa Integração Social

PND Plano Nacional de Desenvolvimento

PNF Plano Nacional de Fertilizantes

PNL Plano Nacional de Logística

PNRH Política Nacional de Recursos Hídricos

PNRS Política Nacional de Resíduos Sólidos

PPA Plano Plurianual

PPI Programa de Parcerias de Investimentos

PR Paraná

PRA Programa de Regularização Ambiental

PRI Principles for Responsible Investment

REIF Regime Especial de Incentivo ao Desenvolvimento da

Infraestrutura da Indústria de Fertilizantes

REM Remineralizadores

RS Rio Grande do Sul

RSU Resíduo Sólido Urbano

S Enxofre

SA Sustentabilidade Ambiental

SAE/PR Secretaria Especial de Assuntos Estratégicos Presidência da

República

SC Santa Catarina

SEI Sistema Eletrônico de Informações

SGB Serviço Geológico do Brasil

SGM Secretaria de Geologia, Mineração e Transformação

Mineral

Si Silício

SINPRIFERT Sindicato Nacional das Indústrias de Matérias Primas para

Fertilizantes

SISCOMEX Sistema Integrado de Comércio Exterior

SNIF Sistema Nacional de Informação de Fertilizantes e Nutrição

de Plantas

SOP Sulfato de Potássio

SOx Óxidos de Enxofre

SP São Paulo

SRB Sociedade Rural Brasileira

SRI Socially Responsible Investment

SSP Superfosfato Simples

t Tonelada

TCC Termo de Compromisso de Cessação de Prática

TCU Tribunal de Contas da União

TIPI Tabela de Incidência do Imposto sobre Produtos

Industrializados

TIPLAM Terminal Integrador Luiz Antônio Mesquita

TO Tocantins

TRL/MRL Nível de Maturidade Tecnológica

TSP Superfosfato Triplo

TUSD Tarifa de Uso do Sistema de Distribuição

UnB Universidade de Brasília

US\$ United States Dollar

UFRJ Universidade Federal do Rio de Janeiro

USP Universidade de São Paulo

VALE S/A Companhia Vale do Rio Doce

VRT Variable Rate Technology

ZARC Zoneamento Agrícola de Risco Climático

Zn Zinco

ANEXO I – GLOSSÁRIO

Ácidos húmicos – É o nome genérico de uma família de compostos orgânicos que fazem parte das substâncias húmicas. Eles têm vários grupos funcionais, incluindo carboxílicos, fenólicos, anéis semelhantes a açúcar, quinonas e derivados de aminoácidos. É o principal componente das substâncias húmicas, que por sua vez é o principal constituinte orgânico do solo, turfa e carvão.

Ácidos fúlvicos – É um ácido orgânico natural que ocorre na terra profunda como resultado da humificação. Possui baixo peso molecular quando comparado ao ácido húmico.

Agentes fitotóxicos – São substâncias químicas, minerais ou orgânicas, que tem atividades que causam danos nas plantas, podendo induzir também respostas fisiológicas e/ou bioquímicas.

Agritechs – São startups que subsidiam as soluções agrícolas.

Anti-dusting – Aditivo anti-formação de poeira.

Bactérias diazotróficas – são aquelas capazes de fixar o nitrogênio atmosférico.

Biocompostos – Composto formado por elementos de origem biológica

Bioinsumos – Classe de produtos bastante ampla e que abrangem diferentes tipos de produtos. Podem ser derivados de uma diversidade de substâncias presentes em extratos vegetais e de agentes biológicos.

Biomoléculas – Molécula de substância viva.

Biosólido – Lodo originado em estação de tratamento de esgoto sanitário, que passou por tratamento biológico para redução de organismos patogênicos, que pode ser utilizado diretamente em solos agrícolas, como matéria prima da compostagem, ou como adjuvante em sistemas benéficos para o homem.

Clean Technologies – Qualquer processo, produto ou serviço que reduza os impactos ambientais negativos por meio de melhorias significativas na eficiência energética, o uso sustentável de recursos ou atividades de proteção ambiental.

Coating – Camada de uma determinada substância que cobre uma superfície.

Commodity – termo da língua inglesa que designa mercadoria em estado bruto ou produto básico fungível de importância comercial, como alguns minérios e metais (Au, Cu, Zn, Ni etc.), café, cereais e algodão, cujo preço costuma ser controlado por bolsas internacionais.

Compostagem – Processo de biológico de reciclagem de lixo, através do qual a matéria orgânica (estrume, folhas, papel, comida etc.) se transforma num material como o solo (composto), sendo usada como adubo agrícola.

Depósitos Evaporíticos – Rochas sedimentares formadas pela cristalização e precipitação química dos sais dissolvidos em um meio aquoso, devido a um processo de evaporação. Seu ambiente de formação são bacias fechadas sujeitas a evaporação intensa.

Fertilizantes – Que fertiliza, que fecunda. Substância natural ou artificial que contém elementos químicos e propriedades físicas que aumentam o crescimento e a produtividade dos vegetais, melhorando a fertilidade natural do solo ou devolvendo os elementos que foram retirados do solo pela erosão ou por culturas anteriores. Adubo.

Fungos micorrízicos – São fungos que possuem a capacidade de colonizar as raízes das plantas numa perfeita integração mutualística, possuindo características agronômicas importantes para os ecossistemas pois desempenham um papel fundamental no equilíbrio e sobrevivência das comunidades vegetais.

Inoculante – Insumo biológico com microrganismos capazes de desempenhar atividades benéficas e necessárias para o desenvolvimento das plantas.

Macronutrientes – Nutrientes essenciais ao desenvolvimento dos vegetais, usualmente encontrados em quantidades relativamente grandes na massa seca das plantas (%). São considerados macronutrientes os elementos químicos: nitrogênio (N), fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg) e enxofre (S).

Microbiota – Flora e a fauna microscópicas de uma região.

Micronização – Processo de fabricação que consiste na redução das dimensões de um produto, seja por quebra ou desgaste, até que se obtenha partículas muito finas, da ordem de micrometros.

Nanomateriais – Material que contém partículas ou constituintes de dimensões nanométricas, ou seja, da ordem dos bilionésimos do metro.

Nitrificação – Ação ou processo que consiste na transformação do nitrogênio amoniacal em nitratos.

Organominerais – São adubos orgânicos enriquecidos com nutrientes minerais.

Regaseificação – É o retorno ao estado gasoso.

Remineralizadores – Fertilizante obtido por meio de rochas moídas.

Rochas ígneas – Também chamadas de rochas magmáticas, são aquelas originadas em altas temperaturas a partir da solidificação do magma.

Rochas Silicáticas – São aquelas formadas por proporções variáveis de minerais silicáticos (feldspatos, micas, anfibólios etc.) e silicosos (quartzo), ou apenas silicáticos, abrangendo os materiais comercialmente classificados ou identificados como granito, pegmatito ("feldspato"), xisto.

Seamounts – Montanhas subaquáticas formadas por atividade vulcânica.

Shale Gas – Conhecido também como gás de xisto ou folhelho, é o gás natural nãoconvencional encontrado dentro de rochas sólidas de xisto.

Silvinita – Tipo de rocha sedimentar composta por uma mistura mecânica dos minerais silvina (KCl, cloreto de potássio) e halita (NaCl, cloreto de sódio).

Urease – Enzima responsável pela degradação da ureia em amônia e bicarbonato, o que aumenta o pH do local em que está presente, favorecendo a sua proliferação.

Vants – Veículo Aéreo Não Tripulado. Drones que precisam possuir uma carga útil embarcada, que não seja necessária para o equipamento voar. Por exemplo: uma câmera de filmagem ou ainda um produto, como uma pizza ou carta. Possui objetivo puramente comercial ou para fins de pesquisa científica e experimentos.

Zeólitas – É um mineral de origem vulcânica, que se origina da mistura das cinzas vulcânicas com a água do mar.

ANEXO II – VISÃO DA INFRAESTRUTURA PREVISTA

A seguir, serão apresentadas as áreas de mineração de que se tem conhecimento com as estruturas de transporte que estão sendo solicitadas ao Ministério da Infraestrutura (Minfra) no atendimento ao que está definido na MP 1.065 que institui o regime de autorizações para a exploração de ferrovias.

Em 11 de agosto de 2021, o Diretor de Projetos Estratégicos da Secretaria Especial de Assuntos Estratégicos da Presidência da República enviou e-mail dirigido à Embrapa Territorial solicitando estudo estratégico sobre infraestrutura e logística do setor de fertilizantes no Brasil: principais gargalos e demandas da cadeia de produção e distribuição de fertilizantes, corretivos e remineralizadores de solos, por obras de infraestrutura e logística, para que estimulem a produção nacional dos fertilizantes.

Este é um resumo da nota técnica a qual apresenta dados numéricos, cartográficos e gráficos, organizados pela Embrapa Territorial em atendimento à demanda citada.

Realizou-se a identificação de demanda de fertilizantes NPK, de maneira qualitativa e preliminar, por meio de dados de área plantada das culturas de cana-deaçúcar, milho e soja, disponíveis na pesquisa Produção Agropecuária Brasileira de 2019 do Instituto Brasileiro de Geografia e Estatística, via SIDRA/IBGE, e da distribuição em quartis da soma de área plantada dessas culturas. Os quartis foram gerados para indicar qualitativamente a classe de demanda de fertilizantes, sendo o Q1 como o de maior demanda de fertilizantes, ou seja, representa 25% da demanda total.

Foram levantadas as localizações dos possíveis sítios de produção de fertilizantes nitrogenados e de mineração de rochas potássicas e fosfáticas, às quais adicionaram-se informações de demanda de fertilizantes NPK e traçados de infraestrutura atual e futura (Figuras de 22 a 27).

Figura 22 - Localização e potencial de produção de fertilizantes nitrogenados, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e com pedido de autorização.

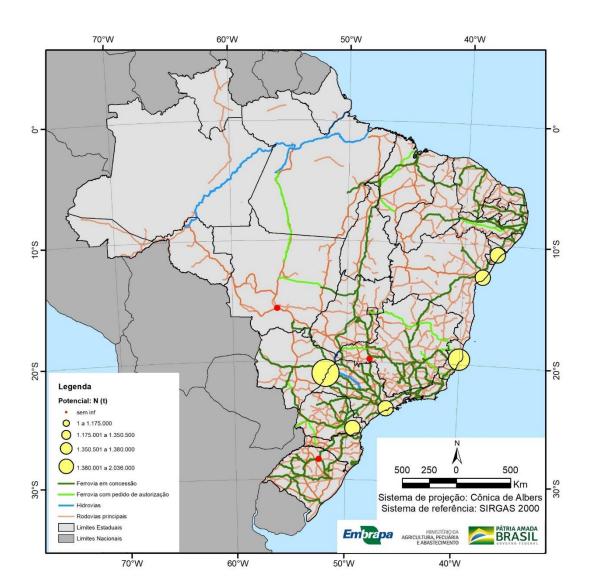
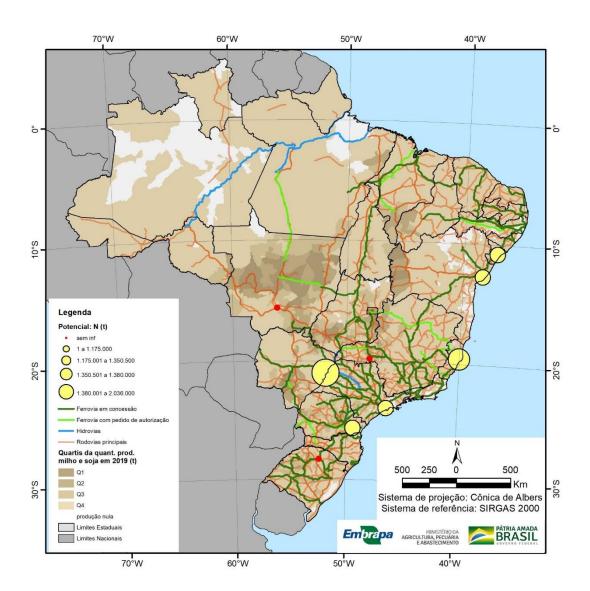



Figura 23 - Localização e potencial de produção de fertilizantes nitrogenados, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e com pedido de autorização e classes de demanda de fertilizantes NPK.

Apesar de muitos dados não disponíveis quanto à produção potencial de fertilizantes nitrogenados, verificou-se que, dentre as oito unidades levantadas, destaca-se a de Camaçari/BA, com capacidade superior a 2 milhões de t. As demais apresentam em torno de 1.175.000 t e 1.380.000 t.

Figura 24 - Localização e potencial de produção de fertilizantes fosfatados, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e com pedido de autorização.

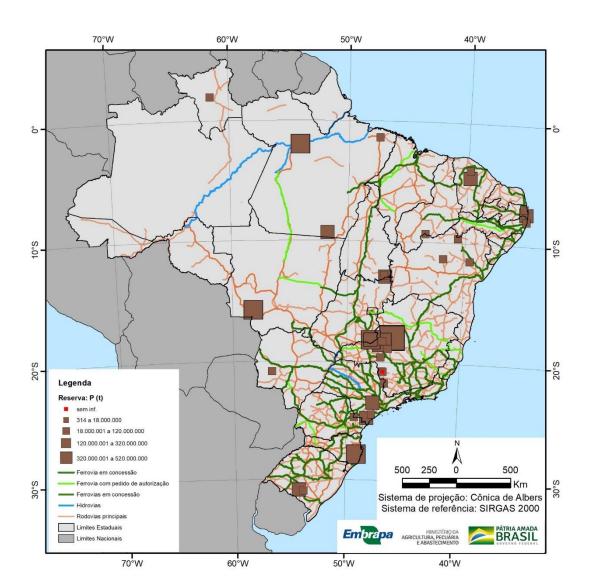
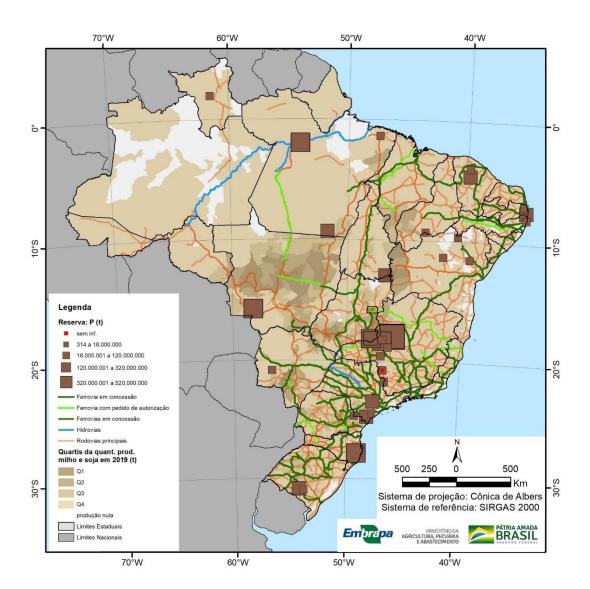




Figura 25 - Localização e potencial de produção de fertilizantes fosfatados, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e com pedido de autorização e classes de demanda de fertilizantes NPK.

Foram levantados 36 locais com potencial de mineração para fertilizantes fosfatados, destacadamente Minas Gerais (Patrocínio, Tapira e Mata da Corda, todas com potencial superior a 500 milhões de t).

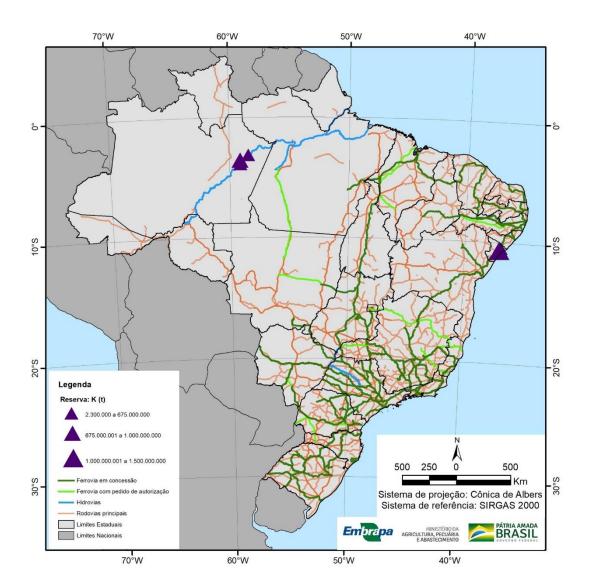
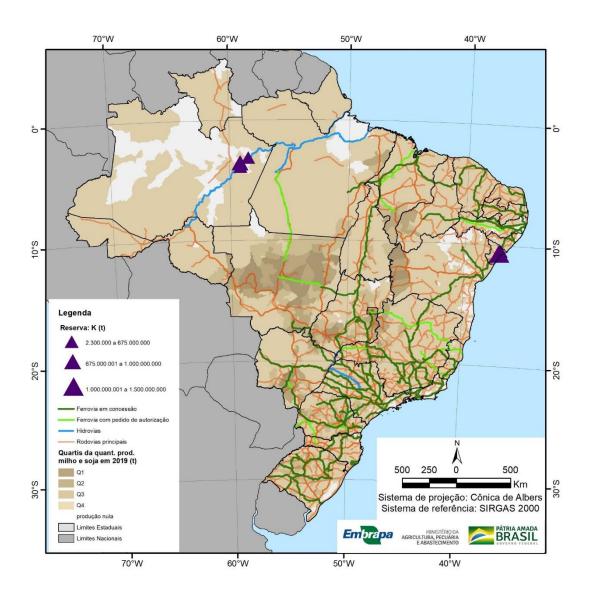



Figura 27 - Localização e potencial de produção de fertilizantes potássicos, infraestrutura de transporte rodoviário e hidroviário atual e ferrovias concedidas e com pedido de autorização e classes de demanda de fertilizantes NPK.

Foram identificados cinco locais para mineração de fertilizantes potássicos, sendo um operante em Rosário do Catete/SE, um com potencial em Japaratuba/SE e três com potencial no estado do Amazonas, com destaque para duas da Petrobras, em Nova Olinda do Norte e Itacoatiara com 487 milhões de t e 675 milhões de t, respectivamente.

As questões de infraestrutura são relevantes para a indústria de fertilizantes. A excessiva dependência do modal rodoviário, o alto custo da navegação de cabotagem e a baixa eficiência das operações portuárias são recorrentes queixas do setor. O transporte ferroviário é subutilizado. O custo da energia no Brasil é frequentemente relacionado como um entrave à competitividade, e esse fenômeno se agrava em atividades intensivas em energia – comuns à indústria de fertilizantes.

A produção nacional de fertilizantes NPK pode apresentar uma desvantagem logística em relação aos produtos importados: tais produtos são beneficiados à medida que a malha ferroviária brasileira apresenta, em maior parte, orientação interior-litoral.

A maior parte das restrições de competitividade relacionadas à produção de nitrogenados é relativa à aquisição de gás natural (disponibilidade e custo). Já a produção de fosfatados e de potássicos enfrenta as mesmas dificuldades que boa parte da indústria nacional minerária, geralmente localizadas em áreas remotas e com a necessidade de desenvolvimento da própria infraestrutura. A competitividade dos produtos nacionais em relação aos importados pode ser compensada pela proximidade ao mercado consumidor.

Deve ser considerado que o volume (peso) de cargas que saem das propriedades rurais e armazéns em direção aos portos para exportação é várias vezes superior ao volume (peso) de carga de fertilizantes nitrogenados que ali chegam. Como exemplo, segundo a base de dados de comércio exterior (COMEX STAT) do Ministério da Economia do Brasil, o total de soja exportado pelo Brasil em 2020 foi de 82,97 milhões de toneladas, somado à exportação de milho que foi de 34,43 milhões de toneladas. Enquanto isso, considerando todos os usos (culturas agrícolas, pastagens e silvicultura), no ano de 2020, o Brasil consumiu cerca de 40,5 milhões de toneladas de fertilizantes NPK (fonte: relatório preliminar do "Plano Nacional de Fertilizantes 2050 - Uma Estratégia para os Fertilizantes no Brasil").

ANEXO III – OFICINAS DE TRABALHO

GT Resolução CONFERT n. 5 de 31 de julho de 2023

1ª Reunião - 13/07/23

Ademir Jacinto (FUP)

Adalberto Maluf Filho (MMA)

Antonino Gomes (AMA)

Bernardo Silva (Simprifert)

Bruno Caligaris (MMA)

Carlos Durans (MDIC)

Carlos Venâncio (MDA)

Denise Alho (Petrobras)

Enir Sebastião Mendes (MME)

Fábio Alvares de Oliveira (Embrapa)

Fernando Tadeu de Castilho (Petrobras)

Gilson Bittencourt (MF)

Henrique Bley (MAPA)

José Carlos Polidoro (MAPA)

Liane Rucinski (MF)

Marcos Bertozo (MCTI)

Maria Carolina Marques (CNI)

Mariana dos Santos (MDA)

Paulo César Teixeira (Embrapa)

Renata de Oliveria (Ibram)

Silvana Santana (MDIC)

Soraya (MAPA)

Thiago Moraes (MCTI)

Yuri Landim (MAPA)

2ª Reunião 10/08/23

Antonino Gomes (AMA)

Bernardo Silva (Simprifert)

Bruno Caligaris (MMA)

Cássia Pedrosa Cajueiro (CNI)

Cássio Araújo Rodrigues (MMA)

Charles Rodrigues (Petrobras)

Cinthia Rodrigues (INM)

Cristina Calvet (Petrobras)

Eduardo Rocha Dias Santos (MMA)

Enir Sebastião Mendes (MME)

Fábio Alvares de Oliveira (Embrapa)

Francisco Valdir Silveira (CPRM)

Gustavo Bernardo da Silva (Petrobras)

Julio Nery (IBRAM)

Mariana dos Santos (MDA)

Michelle Peters (CNI)

Miguel Crisostomo Brito Leite (MME)

Paulo César Teixeira (Embrapa)

Paulo Romano (CPRM)

Soraya (MAPA)

Tiago Dahdah (MAPA)

Washington Bonini (MDIC)

3ª Reunião 30/08/23

Ademir Jacinto (FUP)

Antonino Gomes (AMA)

Bernardo Silva (Simprifert)

Bruno Caligaris (MMA)

Cássio Araújo Rodrigues (MMA)

Charles Rodrigues (Petrobras)

Cristina Calvet (Petrobras)

Fernando Tadeu de Castilho (Petrobras)

Marcos Bertozo (MCTI)

Maria Carolina Marques (CNI)

Mariana dos Santos (MDA)

Miguel Crisostomo Brito Leite (MME)

Paulo César Teixeira (Embrapa)

Paulo Romano (CPRM)

4ª Reunião 06/09/23

Ademir Jacinto (FUP)

Antonino Gomes (AMA)

Bernardo Silva (Simprifert)

Bruno Caligaris (MMA)

Cássio Araújo Rodrigues (MMA)

Charles Rodrigues (Petrobras)

Denise Alho (Petrobras)

Denise Rodrigues ()

Fábio Alvares de Oliveira (Embrapa)

Fernando Tadeu de Castilho (Petrobras)

Gustavo Bernardo da Silva (Petrobras)

Henrique Bley (MAPA)

Lúcia Gatto (MAPA)

Marcos Bertozo (MCTI)

Maria Carolina Marques (CNI)

Miguel Crisostomo Brito Leite (MME)

Paulo César Teixeira (Embrapa)

Tiago Dahdah (MAPA)

Ticiana (FUP)

Washington Bonini (MDIC)

5ª Reunião 12/09/23

Antonino Gomes (AMA)

Bernardo Silva (Simprifert)

Bruno Caligaris (MMA)

Cristina Calvet (Petrobras)

Elena Ascenção (Ibram)

Fábio Alvares de Oliveira (Embrapa)

Gustavo Bernardo da Silva (Petrobras)

Henrique Bley (MAPA)
Lúcia Gatto (MAPA)
Marcos Bertozo (MCTI)
Maria Carolina Marques (CNI)
Miguel Crisostomo Brito Leite (MME)
Paulo César Teixeira (Embrapa)
Rodrigo Secioso (MCTI)
Silvana Santana (MDIC)
Tiago Dahdah (MAPA)

6ª Reunião 14/09/23

Ticiana (FUP)

Antonino Gomes (AMA)
Bernardo Silva (Simprifert)
Bruno Caligaris (MMA)
Cristina Calvet (Petrobras)
Elena Ascenção (Ibram)
Fábio Alvares de Oliveira (Embrapa)
Gustavo Bernardo da Silva (Petrobras)
Henrique Bley (MAPA)
Lúcia Gatto (MAPA)
Marcos Bertozo (MCTI)
Maria Carolina Marques (CNI)
Miguel Crisostomo Brito Leite (MME)
Paulo César Teixeira (Embrapa)

7ª Reunião 21/10/23

Rodrigo Secioso (MCTI)

Silvana Santana (MDIC)

Tiago Dahdah (MAPA)

Ticiana (FUP)

Ademir Jacinto (FUP)
Antonino Gomes (AMA)
Bernardo Silva (Simprifert)
Bruno Caligaris (MMA)
Cássio Araújo Rodrigues (MMA)

Cassio Araujo Rodrigues (Minia Charles Rodrigues (Petrobras) Cristina Calvet (Petrobras)

Fábio Alvares de Oliveira (Embrapa)

Gilson Bittencourt (MF)

Gustavo Bernardo da Silva (Petrobras)

José Carlos Polidoro (MAPA)

Lúcia Gatto (MAPA) Marcos Bertozo (MCTI)

Maria Carolina Marques (CNI)

Michelle Peters (CNI)

Paulo César Teixeira (Embrapa)

Renata de Oliveria (Ibram) Silvana Santana (MDIC) Thaís Pereira (MME)

8ª Reunião 26/09/23

Ademir Jacinto (FUP) Antonino Gomes (AMA) Bernardo Silva (Simprifert) Bruno Caligaris (MMA)

Cássio Araújo Rodrigues (MMA) Charles Rodrigues (Petrobras) Fábio Alvares de Oliveira (Embrapa) Gustavo Bernardo da Silva (Petrobras)

Henrique Bley (MAPA) Julia Emanuela (CNA) Lúcia Gatto (MAPA) Marcos Bertozo (MCTI)

Miguel Crisostomo Brito Leite (MME)

Paulo César Teixeira (Embrapa)

Paulo Romano (CPRM) Silvana Santana (MDIC) Tiago Dahdah (MAPA) Thaís Pereira (MME) Washington Bonini (MDIC)

9ª Reunião 28/09/23

Ademir Jacinto (FUP)

Alessandra Blaskowski (CPRM) Antonino Gomes (AMA)

Bruno Caligaris (MMA)

Cássio Araújo Rodrigues (MMA)

Gustavo Bernardo da Silva (Petrobras)

Irani Gomide Filho (Abisolo)

Julia Emanuela (CNA)

Maciel Silva (CNA)

Marco Bastos (MDIC)

Marcos Bertozo (MCTI)

Mariana dos Santos (MDA)

Paulo César Teixeira (Embrapa)

Thaís Pereira (MME)
Washington Bonini (MDIC)

10ª Reunião 03/10/23

Ademir Jacinto (FUP) Antonino Gomes (AMA) Bernardo Silva (Simprifert) Bruno Caligaris (MMA)

Cássio Araújo Rodrigues (MMA)

Cristina Calvet (Petrobras)

Gustavo Bernardo da Silva (Petrobras)

Henrique Bley (MAPA)
Irani Gomide Filho (Abisolo)
Marcos Bertozo (MCTI)
Michelle Peters (CNI)

Miguel Crisostomo Brito Leite (MME)

Paulo César Teixeira (Embrapa)

Tiago Dahdah (MAPA)

Thais Pereira (MME) Washington Bonini (MDIC)

11ª Reunião 05/10/23

Antonino Gomes (AMA) Bernardo Silva (Simprifert) Bruno Caligaris (MMA)

Charles Rodrigues (Petrobras)

Cássio Araújo Rodrigues (MMA)

Fábio Alvares de Oliveira (Embrapa)

Gustavo Bernardo da Silva (Petrobras)

Henrique Bley (MAPA) Irani Gomide Filho (Abisolo)

Julio Nery (IBRAM)

Marcos Bertozo (MCTI)

Maria Carolina Marques (CNI)

Michelle Peters (CNI)

Miguel Crisostomo Brito Leite (MME)

Paulo César Teixeira (Embrapa)

Tiago Dahdah (MAPA) Washington Bonini (MDIC)

12ª Reunião 09/10/23

Antonino Gomes (AMA) Bernardo Silva (Simprifert)

Bruno Caligaris (MMA)

Cássio Araújo Rodrigues (MMA)

Gustavo Bernardo da Silva (Petrobras)

Henrique Bley (MAPA)

Irani Gomide Filho (Abisolo)

Lúcia Gatto (MAPA) Michelle Peters (CNI)

Miguel Crisostomo Brito Leite (MME)

Paulo César Teixeira (Embrapa)

Thais Ferreira (MME) Washington Bonini (MDIC)

13ª Reunião 11/10/23

Ademir Jacinto (FUP)

Ana Caroline Suzuki Bertolucci (MDIC)

Alessandra Blaskowski (CPRM)

Bruno Caligaris (MMA)

Cássio Araújo Rodrigues (MMA)

Charles Rodrigues (Petrobras)

Cristina Calvet (Petrobras)

Enir Sebastião Mendes (MME)

Gustavo Bernardo da Silva (Petrobras)

Julia Emanuela (CNA)

Lúcia Gatto (MAPA) Marco Bastos (MDIC)

Marcos Bertozo (MCTI)

Maria Carolina Marques (CNI)

Miguel Crisostomo Brito Leite (MME) Paulo César Teixeira (Embrapa)

14ª Reunião 17/10/23

Antonino Gomes (AMA) Bernardo Silva (Simprifert) Bruno Caligaris (MMA)

Fernando Tadeu de Castilho (Petrobras)

Gustavo Bernardo da Silva (Petrobras)

Julia Emanuela (CNA)

Maciel Silva (CNA)

Marcos Bertozo (MCTI)

Maria Carolina Marques (CNI)

Miguel Crisostomo Brito Leite (MME)

Paulo César Teixeira (Embrapa)

Rodrigo Secioso (MCTI)

Thais Ferreira (MME)

Tiago Dahdah (MAPA)

15ª Reunião 19/10/23

Antonino Gomes (AMA)

Bernardo Silva (Simprifert)

Bruno Caligaris (MMA)

Fábio Alvares de Oliveira (Embrapa)

Gustavo Bernardo da Silva (Petrobras)

Irani Gomide Filho (Abisolo)

Julia Emanuela (CNA)

Marcos Bertozo (MCTI)

Maria Carolina Marques (CNI)

Miguel Crisostomo Brito Leite (MME)

Paulo César Teixeira (Embrapa)

Rodrigo Secioso (MCTI)

Thais Ferreira (MME)

Tiago Dahdah (MAPA)

16ª Reunião 24/10/23

Ademir Jacinto (FUP)

Antonino Gomes (AMA)

Bernardo Silva (Simprifert)

Bruno Caligaris (MMA)

Lúcia Gatto (MAPA)

Maciel Silva (CNA)

Marcos Bertozo (MCTI)

Maria Carolina Marques (CNI)

Miguel Crisostomo Brito Leite (MME)

Paulo César Teixeira (Embrapa)

Thais Ferreira (MME)

Washington Bonini (MDIC)

17ª Reunião 26/10/23

Ademir Jacinto (FUP)

Alessandra Blaskowski (CPRM)

Antonino Gomes (AMA) Bernardo Silva (Simprifert)

Bruno Caligaris (MMA)

Cássio Araújo Rodrigues (MMA) Gustavo Bernardo da Silva (Petrobras)

Julia Emanuela (CNA)
Lúcia Gatto (MAPA)
Maciel Silva (CNA)
Marco Bastos (MDIC)
Marcos Bertozo (MCTI)
Maria Carolina Marques (CNI)
Mariana dos Santos (MDA)
Paulo César Teixeira (Embrapa)

Thaís Pereira (MME) Washington Bonini (MDIC)

18ª Reunião 31/10/23 Ademir Jacinto (FUP) Alberto da Rocha Neto (MMA)

Ana Caroline Suzuki Bertolucci (MDIC)

Alessandra Blaskowski (CPRM) Antonino Gomes (AMA) Bernardo Silva (Simprifert) Bruno Caligaris (MMA)

Gustavo Bernardo da Silva (Petrobras)

Henrique Bley (MAPA)
Julia Emanuela (CNA)
Marcos Bertozo (MCTI)
Maria Carolina Marques (CNI)

Miguel Crisostomo Brito Leite (MME) Paulo César Teixeira (Embrapa) Rodrigo Toledo Cota (MME) Tiago Dahdah (MAPA) Washington Bonini (MDIC)

1º Reunião do GTI-PNF - Linhas de Ação de Fósforo e Potássio 12/03/2021

Ali A. Saab (Consultor externo)

Álvaro Vilela de Resende (EMBRAPA)

Cimara Monteiro Bogo (CPRM)
Daniel Alves Lima (MME)
Edgar Shinzato (CPRM)

Eduardo Fernandes Marcusso (MAPA) Eduardo Mello Mazzoleni (MAPA)

Elves Matiolo (CETEM)

Enir Sebastião Mendes (MME) Gilberto Dias Calaes (CPRM) Helinton José Rocha (MAPA) José Carlos Polidoro (EMBRAPA) Leonel Cerqueira Santos (SAE/PR)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Maisa Bastos Abram (CPRM) Marcelo Batista Motta (CPRM) Márcio José Remédio (CPRM) Paulo Afonso Romano (CPRM) Pedro Igor Veillard Farias (INPI)

Suripongse Naibert Chimpliganond (SAE/PR) Tereza Cleise da Silva de Assis (SAE/PR) Thomaz Adolpho Rein (EMBRAPA) Vinicius de Melo Benites (EMBRAPA)

1ª Reunião do GTI-PNF - Linha de Atuação Cadeias Emergentes 15/03/2021

Alessandro Cruvinel Fidelis (MAPA)

Cimara Monteiro Bogo (CPRM)

Cláudia Queiroz Gorgati (CNPq)

José Carlos Polidoro (EMBRAPA)

Juscimar Silva (EMBRAPA)

Liane Rucinski (ME)

Eder de Souza Martins (EMBRAPA) Lorrany Bianca de Herédias Miranda (SAE/PR)

Eduardo Mello Mazzoleni (MAPA)

Enir Sebastião Mendes (MME)

Fernando Carvalho Oliveira (Biossolo)

Gilmar Rizzotto (CPRM)

Hideraldo José Coelho (MAPA)

Luiz Roberto Guilherme (UFLA)

Marcelo Esteves (CPRM)

Márcio José Remédio (CPRM)

Paulo Afonso Romano (CPRM)

Pedro Igor Veillard Farias (INPI)

Ioná de Abreu Cunha (CPRM)
Rafael de Souza Nunes (EMBRAPA)
Suripongse Naibert Chimpliganond (SAE/PR)

Jerri Édson Zilli (EMBRAPA) Thiago de Mello Moraes (MCTI)

1º Reunião do GTI-PNF - Linha de ação Nitrogênio

Aldo Junior (MME)
Gabriel de Figueiredo da Costa (EPE)

Henrique Plaudio G. Rangel (EPE)
Jaqueline Meneghel Rodrigues (MME)

15/03/2021

Lorrany Bianca de Herédias Miranda (SAE/PR)

Pedro Paulo Dias Mesquita (BNDES)
Pedro Igor Veillard Farias (INPI)

Rafael de Souza Nunes (EMBRAPA)

Segundo Sacramento Urquiaga Caballero

(EMBRAPA)

Tereza Cleise da Silva de Assis (SAE/PR) Vinicio Bertazzo Rossato (MAPA) Yuri Landim Batista Cajazeira (MAPA)

1ª Reunião do GTI-PNF - Linha de ação Sustentabilidade Ambiental 15/03/2021

Alberto Carlos Bicca (Apex-Brasil) Anemarie da Silveira Bender (SAE/PR) Antônio Carlos Tinoco Cabral (MMA) Eduardo Mello Mazzoleni (MAPA)

Fábio Bueno dos Reis Junior (EMBRAPA)

Gilmar Rizzotto (CPRM)

Ioná de Abreu Cunha (CPRM)
José Antônio Sena (CETEM)
José Carlos Polidoro (EMBRAPA)
Lúcia Helena Xavier (CETEM)
Marcelo Esteves (CPRM)

Suripongse Naibert Chimpliganond (SAE/PR)

1ª Reunião do GTI-PNF - Linha de Ação CTI

Bernardo Mendes (EMBRAPA) Fernando Vilela (Campo Análises) Geraldo Jânio (Campo Análises)

Guilherme Lopes (UFLA)

José Carlos Polidoro (EMBRAPA) José Menezes (EMBRAPII)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luiz Roberto Guilherme (UFLA)

Marcos Bertozo (MCTI)

Rafael de Souza Nunes (EMBRAPA)

16/03/2021

Rodrigo E. Munhoz De Almeida (EMBRAPA) Rodrigo Rocha Secioso de Sá (FINEP)

Segundo Sacramento Urquiaga Caballero

(EMBRAPA)

Tereza Cleise da Silva de Assis (SAE/PR)

Thiago de Mello Moraes (MCTI) Vinicio Bertazzo Rossato (MAPA) Yuri Landim Batista Cajazeira (MAPA)

2ª Reunião do GTI-PNF - Linha de Ação Cadeias Emergentes 17/03/2021

Alessandra Blaskowski (CPRM)
Alessandro Cruvinel Fidelis (MAPA)

Andrea Sander (CPRM)

Antônio Carlos Tinoco Cabral (MMA) Cimara Monteiro Bogo (CPRM) Eder de Souza Martins (EMBRAPA)

Eduardo Mello Mazzoleni (MAPA) Enir Sebastião Mendes (MME)

Estevão Freire (UFRJ)

Fernando Carvalho Oliveira (Biossolo)

Fernando Andreote (USP) Guilherme Lopes (UFLA)

Hideraldo José Coelho (MAPA)

Ioná de Abreu Cunha (CPRM) Irani Gomide Filho (Abisolo) Jonas Jacob Chiaradia (Biossolo)

Juscimar Silva (EMBRAPA) Liane Rucinski (ME)

Luiz Roberto Guilherme (UFLA) Magda Bergmann (CPRM) Marcelo Esteves (CPRM)

Marcelo Oliveira Rodrigues (UnB)

Marcos Bertozo (MCTI)

Pedro Igor Veillard Farias (INPI) Rafael de Souza Nunes (EMBRAPA)

Suripongse Naibert Chimpliganond (SAE/PR)

2ª Reunião do GTI-PNF - Linha de ação Nitrogênio

Fernanda Marques Pereira Andreza (EPE)

Gabriel de Figueiredo da Costa (EPE) Henrique Plaudio G. Rangel (EPE)

Jaqueline Meneghel Rodrigues (MME) Lorrany Bianca de Herédias Miranda (SAE/PR)

Pedro Igor Veillard Farias (INPI)

18/03/2021

Renato Dutra (MME)

Segundo Sacramento Urquiaga Caballero

(EMBRAPA)

Tereza Cleise da Silva de Assis (SAE/PR)

Vinicio Bertazzo Rossato (MAPA)

2ª Reunião do GTI-PNF - Linha de Ação Sustentabilidade Ambiental 18/03/2021

Alberto Carlos Bicca (Apex-Brasil) Antônio Carlos Tinoco Cabral (MMA)

Anemarie da Silveira Bender (SAE/PR) Edgar Shinzato (CPRM)

Eduardo Fernandes Marcusso (MAPA)

Fábio Giusti (CETEM)

Ioná de Abreu Cunha (CPRM) José Antônio Sena (CETEM) José Carlos Polidoro (EMBRAPA)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Lúcia Helena Xavier (CETEM) Luiz Roberto Guilherme (UFLA)

Maria Green (CETEM)

Rafael de Souza Nunes (EMBRAPA) Ricardo Sierpe Vidal Silva (CETEM)

Suripongse Naibert Chimpliganond (SAE/PR)

2ª Reunião do GTI-PNF – Linhas de Ação Fósforo e Potássio 19/03/2021

Ali A. Saab (Consultor externo) Almeida Gonczarowska (MAPA)

Álvaro Vilela de Resende (EMBRAPA)

Cesar de Castro (EMBRAPA) Cimara Monteiro Bogo (CPRM) Dennys Casellato Hossne (AGU)

Edison Benedito da Silva Filho (IPEA)
Eduardo Fernandes Marcusso (MAPA)

Elves Matiolo (CETEM)

Enir Sebastião Mendes (MME) Fabiano Daniel de Bona (EMBRAPA)

Gilberto Dias Calaes (CPRM)

Helinton José Rocha (MAPA)

Igor Goulart (MRE)

Ioná de Abreu Cunha (CPRM) Leonel Cerqueira Santos (SAE/PR)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Maisa Bastos Abram (CPRM)
Marcelo Batista Motta (CPRM)
Pedro Igor Veillard Farias (INPI)
Rafael de Souza Nunes (EMBRAPA)
Rubim Almeida Gonczarowska (MAPA)
Thomaz Adolpho Rein (EMBRAPA)
Yuri Landim Batista Cajazeira (MAPA)

2ª Reunião do GTI-PNF - Linha de Ação CTI

Anderson Mendes Araújo (INPI) Bernardo Mendes (EMBRAPA) Cláudia Queiroz Gorgati (CNPq)

Guilherme Lopes (UFLA)

José Carlos Polidoro (EMBRAPA) Lafayette Franco Sobral (EMBRAPA) Luiz Roberto Guilherme (UFLA) Maguida Fabiana da Silva (MCTI)

22/03/2021

Marcos Bertozo (MCTI)

Rafael de Souza Nunes (EMBRAPA) Rodrigo Rocha Secioso de Sá (FINEP) Segundo Sacramento Urquiaga Caballero

(EMBRAPA)

Tereza Cleise da Silva de Assis (SAE/PR) Yuri Landim Batista Cajazeira (MAPA)

3ª Reunião do GTI-PNF - Linha de ação Nitrogênio

Ali A. Saab (Consultor externo) Fabiano Daniel De Bona (EMBRAPA)

Fernanda Marques Pereira Andreza (EPE)

Gabriel de Figueiredo da Costa (EPE)

Henrique Plaudio G. Rangel (EPE)
Jaqueline Meneghel Rodrigues (MME)
José Carlos Polidoro (EMBRAPA)

Marcelo Ferreira Alfradique (EPE)

24/03/2021

Pedro Paulo Dias Mesquita (BNDES) Pedro Igor Veillard Farias (INPI) Rafael de Souza Nunes (EMBRAPA)

Renato Dutra (MME)

Rodrigo E. Munhoz De Almeida (EMBRAPA) Tereza Cleise da Silva de Assis (SAE/PR)

Umberto Mattei (MME)

Yuri Landim Batista Cajazeira (MAPA)

3ª Reunião do GTI-PNF - Linha de Ação Sustentabilidade Ambiental 24/03/2021

Adriana Marlene Monteiro Pires (EMBRAPA)

Alberto Carlos Bicca (Apex-Brasil)
Anemarie da Silveira Bender (SAE/PR)

Bruno Jose Rodrigues Alves (EMBRAPA) Cimara Monteiro Bogo (CPRM)

Claudia Pozzi Jantalia (EMBRAPA) Eduardo Fernandes Marcusso (MAPA)

Eduardo Lunardelli Novaes (MMA)

Fabio Bueno dos Reis Junior (EMBRAPA)

Jerri Édson Zilli (EMBRAPA) José Carlos Polidoro (EMBRAPA) Lúcia Helena Xavier (CETEM)

Maria Green (CETEM)

Rafael de Souza Nunes (EMBRAPA) Ricardo Sierpe Vidal Silva (CETEM)

Suripongse Naibert Chimpliganond (SAE/PR)

3º Reunião do GTI-PNF - Linha de Ação Cadeias Emergentes 25/03/2021

Alberto Carlos de Campos Bernardi

(EMBRAPA)

Alessandra Blaskowski (CPRM)

Antônio Carlos Tinoco Cabral (MMA)

Daniel Alves Lima (MME)

Eder de Souza Martins (EMBRAPA) Eduardo Mello Mazzoleni (MAPA)

Enir Sebastião Mendes (MME)

Estevão Freire (UFRJ)

Evandro Chartuni Mantovani (EMBRAPA) Fabio Bueno dos Reis Junior (EMBRAPA) Fernando Carvalho Oliveira (Biossolo)

Fernando Andreote (USP)

Gustavo Spadotti Amaral Castro (EMBRAPA)

Hideraldo José Coelho (MAPA) Ioná de Abreu Cunha (CPRM)

Irani Gomide Filho (Abisolo) Jerri Édson Zilli (EMBRAPA) Jonas Jacob Chiaradia (Biossolo) José Carlos Polidoro (EMBRAPA)

Juscimar Silva (EMBRAPA) Liane Rucinski (ME)

Luiz Roberto Guilherme (UFLA) Magda Bergmann (CPRM)

Maguida Fabiana da Silva (MCTI) Marcelo Oliveira Rodrigues (UnB) Marco Antonio Nogueira (EMBRAPA)

Marcus Reis (SAE/PR)

Pedro Igor Veillard Farias (INPI) Rafael de Souza Nunes (EMBRAPA)

Suripongse Naibert Chimpliganond (SAE/PR) Tâmara Cláudia de Araújo Gomes (EMBRAPA)

3ª Reunião do GTI-PNF - Linhas de ação Fósforo e Potássio 26/03/2021

Ali A. Saab (Consultor Externo) Gilberto Dias Calaes (CPRM)

Álvaro Vilela de Resende (EMBRAPA) Igor Goulart (MRE)

Ioná de Abreu Cunha (CPRM) Amanda Soares de Freitas (CETEM) Cesar de Castro (EMBRAPA) José Carlos Polidoro (EMBRAPA)

Lorrany Bianca de Herédias Miranda (SAE/PR) Cimara Monteiro Bogo (CPRM)

Cristina Ferreira da Silva (MCTI) Maisa Bastos Abram (CPRM) Daniel Alves Lima (MME) Marcelo Batista Motta (CPRM)

Eduardo Fernandes Marcusso (MAPA) Pedro Igor Veillard Farias (INPI)

Elves Matiolo (CETEM) Rafael de Souza Nunes (EMBRAPA) Elzivir Azevedo Guerra (MCTI) Rubim Almeida Gonczarowska (MAPA)

Enir Sebastião Mendes (MME) Silvia Souza de Oliveira (INPI) Fabiano Daniel de Bona (EMBRAPA)

3ª Reunião do GTI-PNF - Linha de ação CTI

Anderson Mendes Araújo (INPI) Bernardo Mendes (EMBRAPA)

Yuri Landim Batista Cajazeira (MAPA)

Cláudia Queiroz Gorgati (CNPq)

Guilherme Lopes (UFLA)

José Carlos Polidoro (EMBRAPA)

Lafayette Franco Sobral (EMBRAPA)

Luiz Roberto Guilherme (UFLA) Maguida Fabiana da Silva (MCTI)

31/03/2021

Marcos Bertozo (MCTI)

Rafael de Souza Nunes (EMBRAPA) Rodrigo Rocha Secioso de Sá (FINEP) Segundo Sacramento Urquiaga Caballero

(EMBRAPA)

Tereza Cleise da Silva de Assis (SAE/PR)

Thiago de Mello Moraes (MCTI) Yuri Landim Batista Cajazeira (MAPA)

4º Reunião do GTI-PNF - linha de ação do Nitrogênio 31/03/2021

Alberto Carlos de Campos Bernardi

(EMBRAPA)

Fernanda Marques Pereira Andreza (EPE) Gabriel de Figueiredo da Costa (EPE)

Henrique Plaudio G. Rangel (EPE)

Igor Goulart (MRE)

Jaqueline Meneghel Rodrigues (MME)

Maria da Conceição Santana Carvalho

(EMBRAPA)

Pedro Paulo Dias Mesquita (BNDES) Pedro Igor Veillard Farias (INPI) Rafael de Souza Nunes (EMBRAPA) Rodrigo E. Munhoz De Almeida

(EMBRAPA)

Silvia Souza de Oliveira (INPI)

Tereza Cleise da Silva de Assis (SAE/PR)

Umberto Mattei (MME)

Yuri Landim Batista Cajazeira (MAPA)

4ª Reunião do GTI-PNF - Linha de Ação Sustentabilidade Ambiental 01/04/2021

Adriana Marlene Monteiro Pires (EMBRAPA)

Alberto Carlos Bicca (Apex-Brasil)

Anemarie da Silveira Bender (SAE/PR)

Bruno Jose Rodrigues Alves (EMBRAPA)

Eduardo Fernandes Marcusso (MAPA)

José Carlos Polidoro (EMBRAPA)

Leonardo Rossini Pereira (MMA)

Lúcia Helena Xavier (CETEM)

Luis Eduardo Pacifici Rangel (MAPA)

Fabio Bueno dos Reis Junior (EMBRAPA) Márcio Dias de Almeida (Apex-Brasil)
Gustavo Spadotti Amaral Castro (EMBRAPA) Maria Green (CETEM)

Jerri Édson Zilli (EMBRAPA) Rafael de Souza Nunes (EMBRAPA)

João Herbert Viana (EMBRAPA) Suripongse Naibert Chimpliganond (SAE/PR)

4º Reunião do GTI-PNF - Linhas de Ação Fósforo e Potássio 01/04/2021

Amanda Soares de Freitas (CETEM) José Carlos Polidoro (EMBRAPA)

César de Castro (EMBRAPA) Lorrany Bianca de Herédias Miranda (SAE/PR)

Cimara Monteiro Bogo (CPRM) Luís Eduardo Pacifini Rangel (MAPA)
Cristina Ferreira da Silva (MCTI) Maisa Bastos Abram (CPRM)

Edison Benedito da Silva Filho (IPEA)

Eduardo Fernandes Marcusso (MAPA)

Marcelo Batista Motta (CPRM)

Pedro Igor Veillard Farias (INPI)

Elves Matiolo (CETEM)

Elzivir Azevedo Guerra (MCTI)

Enir Sebastião Mendes (MME)

Helinton José Rocha (MAPA)

Rafael de Souza Nunes (EMBRAPA)

Silvia Souza de Oliveira (INPI)

Tássia de Melo Arraes (MCTI)

Thomaz Adolpho Rein (EMBRAPA)

Ioná de Abreu Cunha (CPRM)

4º Reunião do GTI-PNF - Linha de Ação Cadeias Emergentes 05/04/2021

Adriana Marlene Monteiro Pires (EMBRAPA) Irani Gomide Filho (Abisolo)

Alessandra Blaskowski (CPRM) Ivana Machado Fonseca (EMBRAPA)

Carlos Henrique Eiterer (UNIPAM)

Caue Ribeiro (EMBRAPA)

Cristiano Andrade (EMBRAPA)

Cristina Ferreira da Silva (MCTI)

Eder de Souza Martins (EMBRAPA)

Jerri Édson Zilli (EMBRAPA)

Joice Oliveira (Consultora)

José Carlos Polidoro (EMBRAPA)

Juscimar Silva (EMBRAPA)

Liane Rucinski (ME)

Ednaldo Da Silva Araujo (EMBRAPA)

Luiz Roberto Guilherme (UFLA)

Eduardo Mello Mazzoleni (MAPA)

Magda Bergmann (CPRM)

Elzivir Azevedo Guerra (MCTI)

Marco Antonio Nogueira (EMBRAPA)

Enir Sebastião Mendes (MME) Maria Regina Capdeville Laforet (EMBRAPA)

Estevão Freire (UFRJ) Pedro Igor Veillard Farias (INPI)
Fabio Bueno dos Reis Junior (EMBRAPA) Rafael de Souza Nunes (EMBRAPA)

Guilherme Lopes (UFLA)

Suripongse Naibert Chimpliganond (SAE/PR)

Gustavo Spadotti Amaral Castro (EMBRAPA)

Tâmara Cláudia de Araújo Gomes (EMBRAPA)

Hideraldo José Coelho (MAPA) Tássia de Melo Arraes (MCTI)

Reunião GTI-PNF - Fase Diagnóstico - Representantes de Produtores Rurais 13/04/2021

Adriana Marlene Monteiro Pires (EMBRAPA) André do Nascimento Moreno Fernandes

Alberto Carlos de Campos Bernardi (FINEP)

(EMBRAPA) Antonio Alberto Castanheira de Carvalho

Alessandra Blaskowski (CPRM) (MINFRA)

Álvaro Vilela de Resende (EMBRAPA) Antônio Carlos Tinoco Cabral (MMA)

Barbara Andrade Correa (Casa Civil/PR)

Bernardo Mendes (EMBRAPA)

Bruno Jose Rodrigues Alves (EMBRAPA)
Bruno Santos Abreu Caligaris (SAE/PR)

Carlos Henrique Eiterer (UNIPAM) Cel EB Márcio Santos e Silva (GSI) Cesar de Castro (EMBRAPA)

Cimara Monteiro Bogo (CPRM) Daniel Alves Lima (MME)

Daniel Monte Cardoso (IPEA)

Dennys Casellato Hossne (AGU) Eder de Souza Martins (EMBRAPA)

Edison Benedito da Silva Filho (IPEA)

Eduardo Mello Mazzoleni (MAPA) Eduardo Vale (IPEA)

Elizabeth Chagas (ASBRAM)

Evandro Chartuni Mantovani (EMBRAPA) Fabio Bueno dos Reis Junior (EMBRAPA)

Fabio Giusti (CETEM)

Fernanda Marques Pereira Andreza (EPE)

Gustavo Spadotti Amaral Castro (EMBRAPA)

Helinton José Rocha (MAPA) Henrique Plaudio G. Rangel (EPE) Hideraldo José Coelho (MAPA) Ioná de Abreu Cunha (CPRM)

Ivana Machado Fonseca (EMBRAPA)

Jairo Ilonor Loose (OCB)
Jalbas Aires Manduca (MAPA)

Jaqueline Meneghel Rodrigues (MME)

Jerusa Rech (APROSOJA)

Joanisval Brito Gonçalves (SAE/PR) Joao Jose Prieto Flavio (OCB)

José Almery Padilha (OCB)

José Antônio Sena (CETEM) José Aroudo Mota (IPEA)

José Carlos Polidoro (EMBRAPA)

José Menezes (EMBRAPII) Juscimar Silva (EMBRAPA)

Lafayette Franco Sobral (EMBRAPA) Leonardo Brauna (APROSOJA)

Leonardo Salema Garção Ribeiro Cabral

(SAE/PR)

Liane Rucinski (ME)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Lúcia Helena Xavier (CETEM)

Luis Eduardo Pacifici Rangel (Câmara Temática

de Insumos Agropecuários)
Luiz Roberto Guilherme (UFLA)
Magda Bergmann (CPRM)
Maguida Fabiana da Silva (MCTI)
Maisa Bastos Abram (CPRM)
Marcelo Batista Motta (CPRM)

Marcio Dias de Almeida (APEX-BRASIL) Marco Antonio Nogueira (EMBRAPA)

Maria Green (CETEM)

Mario Resende Barbosa (SRB)

Marisa Bezerra de Mello Monte (CETEM)

Paulo Milani (SAE/PR)

Pedro Igor Veillard Farias (INPI)

Reginaldo Minaré (CNA)

Ricardo Sierpe Vidal Silva (CETEM)

Rodrigo César de Vasconcelos dos Santos

(IPEA)

Rogerio Fabricio Glass (ME)

Suripongse Naibert Chimpliganond (SAE/PR) Tâmara Cláudia de Araújo Gomes (EMBRAPA)

Reunião GTI-PNF - Fase Diagnóstico - Representantes das Indústrias 14/04/2021

Alberto Carlos de Campos Bernardi Ed

(EMBRAPA)

Álvaro Vilela de Resende (EMBRAPA) Amanda Soares de Freitas (CETEM)

Andrea Sander (CPRM)

Antonio Alberto Castanheira de Carvalho

(MINFRA)

Barbara Andrade Correa (Casa Civil/PR)

Bernardo Silva (SINPRIFERT)

Bruno Santos Abreu Caligaris (SAE/PR) Carlos Eduardo L. Florence (AMA BRASIL)

Cel EB Márcio Santos e Silva (GSI) Cesar de Castro (EMBRAPA) Daniel Monte Cardoso (IPEA) Daniel Monte Cardoso (IPEA) Dennys Casellato Hossne (AGU)

Eder de Souza Martins (EMBRAPA)

Edison Benedito da Silva Filho (IPEA)

Eduardo Daher (ABAG)

Eduardo Mello Mazzoleni (MAPA)

Eduardo Vale (IPEA) Elves Matiolo (CETEM)

Enir Sebastião Mendes (MME)

Fernanda Marques Pereira Andreza (EPE)

Helinton José Rocha (MAPA) Henrique Plaudio G. Rangel (EPE) Hideraldo José Coelho (MAPA) Ioná de Abreu Cunha (CPRM) Jalbas Aires Manduca (MAPA)

Jaqueline Meneghel Rodrigues (MME)

José Carlos Grando (ANDAV) José Carlos Polidoro (EMBRAPA) Juscimar Silva (EMBRAPA)

Leonel Cerqueira Santos (SAE/PR)

Liane Rucinski (ME)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luis Eduardo Pacifici Rangel (MAPA) Luiz Roberto Guilherme (UFLA) Magda Bergmann (CPRM) Maguida Fabiana da Silva (MCTI) Maisa Bastos Abram (CPRM)

Marco Antonio Nogueira (EMBRAPA)

Paulo Milani (SAE/PR)

Pedro Igor Veillard Farias (INPI)

Rafael de Souza Nunes (EMBRAPA)

Ricardo Tortorella (ANDA)

Rodrigo César de Vasconcelos dos Santos

(IPEA)

Rodrigo Rocha Secioso de Sá (FINEP)

Rogério Fabrício Glass (ME)

Rubim Almeida Gonczarowska (MAPA) Suripongse Naibert Chimpliganond (SAE/PR) Tâmara Cláudia de Araújo Gomes (EMBRAPA)

Reunião GTI-PNF - Fase Diagnóstico - Atores transversais de Cadeias Emergentes, CTI e Sustentabilidade Ambiental 15/04/2021

Afrânio C Migliari (Agricultura Sustentável e

Irrigação)

Alberto Carlos de Campos Bernardi

(EMBRAPA)

Alessandra Blaskowski (CPRM)

Andrea Sander (CPRM)

Antonio Alberto Castanheira de Carvalho

(MINFRA)

Barbara Andrade Correa (Casa Civil/PR) Bruno Jose Rodrigues Alves (EMBRAPA)

Bruno Santos Abreu Caligaris (SAE/PR) Carlos Henrique Eiterer (UNIPAM)

Cesar de Castro (EMBRAPA)

Cimara Monteiro Bogo (CPRM) Cristina Ferreira da Silva (MCTI) Dennys Casellato Hossne (AGU)

Eder de Souza Martins (EMBRAPA) Eduardo Mello Mazzoleni (MAPA)

Elzivir Azevedo Guerra (MCTI) Eucildes Jutkoski (ABRACAL)

Evandro Chartuni Mantovani (EMBRAPA)

Fabio Bueno dos Reis Junior (EMBRAPA)

Fernando Andreote (USP)
Fernando José Vilela (CAMPO Fertilizante)

Geraldo Jânio Eugênio de Oliveira Lima

(CAMPO Fertilizante)
Guilherme Lopes (UFLA)
Helinton José Rocha (MAPA)

Hideraldo José Coelho (MAPA) Ioná de Abreu Cunha (CPRM) Irani Gomide Filho (ABISOLO)

Ivana Machado Fonseca (EMBRAPA)

Jalbas Aires Manduca (MAPA) Jerri Édson Zilli (EMBRAPA)

Joanisval Brito Gonçalves (SAE/PR) José Carlos Polidoro (EMBRAPA)

José Menezes (EMBRAPII) Jose Roberto Castro (ANPII)

Julia Flausino Traboulsi (SAE/PR) Juscimar Silva (EMBRAPA)

Liane Rucinski (ME)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luis Eduardo Pacifici Rangel (MAPA) Luiz Roberto Guilherme (UFLA) Magda Bergmann (CPRM)

Marcio Dias de Almeida (Apex-Brasil) Marco Antonio Nogueira (EMBRAPA) Pedro Igor Veillard Farias (INPI)

Rafael de Souza Nunes (Rede FertBrasil) Renato Benatti (Hinove Agrociência) Ricardo Curione Zion Almeida (Hinove

Agrociência)

Ricardo Eudes Parahyba (DNPM/CE)

Roberto (ABISOLO)

Segundo Sacramento Urquiaga Caballero

(EMBRAPA)

Silvia Souza de Oliveira (INPI) Solon Cordeiro De Araújo (ANPII)

Suripongse Naibert Chimpliganond (SAE/PR) Tâmara Cláudia de Araújo Gomes (EMBRAPA)

Reunião GTI-PNF - Fase Diagnóstico - Indústrias Transversais de NPK 16/04/2021

Alberto Carlos de Campos Bernardi

(EMBRAPA)

Alessandra Blaskowski (CPRM)

Álvaro Vilela de Resende (EMBRAPA)

Andrea Sander (CPRM)
Andres F. Santacruz (ACRON)

Angelo Massambani (Grupo Shceffer)

Antonio Alberto Castanheira de Carvalho

(MINFRA)

Antonio Josino Meirelles Neto (MOSAIC)

Antonio Schettino (MOSAIC)

Barbara Andrade Correa (Casa Civil/PR) Bruno Santos Abreu Caligaris (SAE/PR)

Carlos Heredia (YARA Brasil)

Cesar de Castro (EMBRAPA)
Cleiton Vargas (YARA Brasil)
Cristina Ferreira da Silva (MCTI)
Daniel Monte Cardoso (IPEA)
Dennys Casellato Hossne (AGU)
Eduardo Mello Mazzoleni (MAPA)

Eduardo Vale (IPEA) Elves Matiolo (CETEM) Elzivir Azevedo Guerra (MCTI)

Enir Sebastião Mendes (MME) Fabiano Daniel De Bona (EMBRAPA)

Felipe Pecci (MOSAIC)
Gilberto Dias Calaes (CPRM)
Guilherme Lopes (UFLA)
Helinton José Rocha (MAPA)
Hideraldo José Coelho (MAPA)
Ioná de Abreu Cunha (CPRM)
Jalbas Aires Manduca (MAPA)
Joanisval Brito Gonçalves (SAE/PR)

José Carlos Polidoro (EMBRAPA)

Joyce Anne Carvalho da Silva (SAE/PR)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luis Eduardo Pacifici Rangel (MAPA) Luiz Roberto Guilherme (UFLA) Magda Bergmann (CPRM) Maisa Bastos Abram (CPRM) Marcelo Batista Motta (CPRM)

Marcelo dos Santos Menezes (GOV Sergipe) Maria da Conceição Santana Carvalho

(EMBRAPA)

Paulo Milani (SAE/PR)

Pedro Paulo Dias Mesquita (BNDES) Pedro Igor Veillard Farias (INPI) Rafael de Souza Nunes (EMBRAPA)

Raphael Tulio (ACRON)

Rubim Almeida Gonczarowska (MAPA) Suripongse Naibert Chimpliganond (SAE/PR) Tereza Cleise da Silva de Assis (SAE/PR) Thomaz Adolpho Rein (EMBRAPA)

Reunião GTI-PNF - Fase Diagnóstico - Atores transversais de CE, CTI e AS 19/04/2021

Alberto Carlos de Campos Bernardi

(EMBRAPA)

Alessandra Blaskowski (CPRM) Álvaro Vilela de Resende (EMBRAPA)

Andrea Sander (CPRM)
Andres F. Santacruz (ACRON)

Angelo Massambani (Grupo Shceffer) Antonio Alberto Castanheira de Carvalho

(MINFRA)

Antonio Josino Meirelles Neto (MOSAIC)

Antonio Schettino (MOSAIC)

Barbara Andrade Correa (Casa Civil/PR) Bruno Santos Abreu Caligaris (SAE/PR)

Carlos Heredia (YARA Brasil)
Cesar de Castro (EMBRAPA)
Cleiton Vargas (YARA Brasil)
Cristina Ferreira da Silva (MCTI)
Daniel Monte Cardoso (IPEA)
Dennys Casellato Hossne (AGU)
Eduardo Mello Mazzoleni (MAPA)

Eduardo Vale (IPEA) Elves Matiolo (CETEM)

Elzivir Azevedo Guerra (MCTI) Enir Sebastião Mendes (MME) Fabiano Daniel De Bona (EMBRAPA)

Felipe Pecci (MOSAIC) Gilberto Dias Calaes (CPRM) Guilherme Lopes (UFLA)
Helinton José Rocha (MAPA)
Hideraldo José Coelho (MAPA)
Ioná de Abreu Cunha (CPRM)
Jalbas Aires Manduca (MAPA)
Joanisval Brito Gonçalves (SAE/PR)
José Carlos Polidoro (EMBRAPA)
Joyce Anne Carvalho da Silva (SAE/PR)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luis Eduardo Pacifici Rangel (MAPA) Luiz Roberto Guilherme (UFLA) Magda Bergmann (CPRM) Maisa Bastos Abram (CPRM) Marcelo Batista Motta (CPRM)

Marcelo dos Santos Menezes (GOV Sergipe) Maria da Conceição Santana Carvalho

(EMBRAPA)

Paulo Milani (SAE/PR)

Pedro Paulo Dias Mesquita (BNDES) Pedro Igor Veillard Farias (INPI) Rafael de Souza Nunes (EMBRAPA)

Raphael Tulio (ACRON)

Rubim Almeida Gonczarowska (MAPA) Suripongse Naibert Chimpliganond (SAE/PR) Tereza Cleise da Silva de Assis (SAE/PR) Thomaz Adolpho Rein (EMBRAPA)

Reunião GTI-PNF - Fase Diagnóstico - Nitrogênio

22/04/2021

Alberto Carlos de Campos Bernardi

(EMBRAPA)

Alessandra Blaskowski (CPRM) André Passos Cordeiro (ABIQUIM)

Andrea Sander (CPRM)

Antonio Alberto Castanheira de Carvalho

(MINFRA)

Barbara Andrade Correa (Casa Civil/PR)

Bruno Santos Abreu Caligaris (SAE/PR)

Cristina Brasil Calvet Santos (Petrobras)

David Roquetti Filho (UNIGEL) Dennys Casellato Hossne (AGU)

Eduardo Fujisawa (SABIC)

Eduardo Mello Mazzoleni (MAPA) Fabiano Daniel De Bona (EMBRAPA)

Fátima Giovanna Coviello Ferreira (ABIQUIM)

Fernando Matsumoto (MME)

Hugo Manoel Marcato Affonso (ME)

Ioná de Abreu Cunha (CPRM)

Isabelle Nascimento (BNDES) Jalbas Aires Manduca (MAPA)

Jaqueline Meneghel Rodrigues (MME)

Joao Lima Romeiro (Petrobras)

Joyce Anne Carvalho da Silva (SAE/PR)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luis Felipe Ferreira (SABIC) Magda Bergmann (CPRM)

Maria da Conceição Santana Carvalho

(EMBRAPA)

Mario Lucio Lobato Campos Ferreira

(Petrobras)

Monica Beatriz Villela Biazon (Petrobras)

Paulo Milani (SAE/PR)

Pedro Paulo Dias Mesquita (BNDES) Pedro Igor Veillard Farias (INPI) Rafael de Souza Nunes (EMBRAPA) Roberto Noronha Santos (UNIGEL)

Tereza Cleise da Silva de Assis (SAE/PR)

Reunião GTI-PNF - Fase Diagnóstico - Atores Externos - Linha de ação Cadeias Emergentes 23/04/2021

Alberto Carlos de Campos Bernardi

(EMBRAPA)

Alessandra Blaskowski (CPRM) Amalia Borsari (CropLife)

Antonio Alberto Castanheira de Carvalho

(MINFRA)

Barbara Andrade Correa (Casa Civil/PR) Bruno Santos Abreu Caligaris (SAE/PR)

Carlos Henrique Eiterer (UNIPAM)

Cimara Monteiro Bogo (CPRM) Cristina Ferreira da Silva (MCTI) Dennys Casellato Hossne (AGU) Eder de Souza Martins (EMBRAPA) Eduardo Mello Mazzoleni (MAPA) Elzivir Azevedo Guerra (MCTI)

Enir Sebastião Mendes (MME)

Evandro Chartuni Mantovani (EMBRAPA) Fabio Bueno dos Reis Junior (EMBRAPA)

Fernando Andreote (USP)

Fernando Luiz Zancan (ABCM - Associação

Brasileira do Carvão Mineral)

Giovana Dalpont (ABCM - Associação

Brasileira do Carvão Mineral)

Guilherme Lopes (UFLA)

Gustavo Spadotti Amaral Castro (EMBRAPA)

Helinton José Rocha (MAPA)

Hideraldo José Coelho (MAPA) Ioná de Abreu Cunha (CPRM) Jalbas Aires Manduca (MAPA) Jerri Édson Zilli (EMBRAPA) José Carlos Polidoro (EMBRAPA) Joyce Anne Carvalho da Silva (SAE/PR)

Juscimar Silva (EMBRAPA) Liane Rucinski (ME)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Lucas Lopes (Rizobacter do Brasil) Luiz Roberto Guilherme (UFLA) Magda Bergmann (CPRM) Marcelo Esteves (CPRM) Marcos Bertozo (MCTI) Matheus (IPECONT)

Matheus Ramos Trolesi (AGROCP)

Paulo Milani (SAE/PR)

Pedro Igor Veillard Farias (INPI)

Roberto Faria (ABCM - Associação Brasileira

do Carvão Mineral) Rogerio Vian (GAAS)

Suripongse Naibert Chimpliganond (SAE/PR)

Susana Gazire (INPAS)

Tâmara Cláudia de Araújo Gomes (EMBRAPA)

Tássia de Melo Arraes (MCTI)

Valter Bonezi Junior (Rizobacter do Brasil)

Reunião GTI-PNF - Fase Diagnóstico - Fosfatados

Alberto Carlos de Campos Bernardi

(EMBRAPA)

26/04/2021

Alessandra Blaskowski (CPRM)

Aline Nunes (IBRAM)

Álvaro Vilela de Resende (EMBRAPA) Amanda Soares de Freitas (CETEM)

Andrea Sander (CPRM)

Antonio Alberto Castanheira de Carvalho

(MINFRA)

Antonio Josino Meirelles Neto (MOSAIC) Barbara Andrade Correa (Casa Civil/PR)

Bruno Santos Abreu Caligaris (SAE/PR)

Carlos Henrique Eiterer (UNIPAM)

Cesar de Castro (EMBRAPA) Cimara Monteiro Bogo (CPRM)

Cinthia de Paiva Rodrigues (IBRAM)

Claudio Ebert (SLC Agrícola) Cristina Ferreira da Silva (MCTI)

Daniel Monte Cardoso (IPEA)
Dennys Casellato Hossne (AGU)

Edgar Shinzato (CPRM)

Edison Benedito da Silva Filho (IPEA) Eduardo Mello Mazzoleni (MAPA)

Eduardo Vale (IPEA)
Elves Matiolo (CETEM)

Enir Sebastião Mendes (MME)

Fabiano Daniel De Bona (EMBRAPA)

Felipe Britto (ARKO Fertilizantes)

Felipe Pecci (MOSAIC)

Flávio Ottoni Penido (IBRAM)

Gilberto Dias Calaes (CPRM)

Guilherme Lopes (UFLA)

Helinton José Rocha (MAPA)

Hideraldo José Coelho (MAPA)

Hugo Manoel Marcato Affonso (ME)

Reunião GTI-PNF - Fase Diagnóstico - CTI

Antonio Alberto Castanheira de Carvalho

(MINFRA)

Antonio Eduardo Furtini Neto (COMIGO)

Barbara Andrade Correa (Casa Civil/PR)

Bruno Santos Abreu Caligaris (SAE/PR)

Claudia Wirz Leite Sa de Queiroz (SAE/PR)

Dennys Casellato Hossne (AGU)

Eduardo Mello Mazzoleni (MAPA)

Fábio Alvares de Oliveira (INCT)

Gabriel Barth (Fundação ABC)

Giancarlo Valduga (Timac Agro)

Guilherme Lopes (UFLA)

Hideraldo José Coelho (MAPA)

Jalbas Aires Manduca (MAPA)

Jerri Édson Zilli (EMBRAPA)

Joanisval Brito Gonçalves (SAE/PR)

João Paulo Smith Nascimento (UFAL)

José Carlos Polidoro (EMBRAPA)

José Francisco da Cunha (AGROPRECISA)

Irani Gomide Filho (ABISOLO)

Jalbas Aires Manduca (MAPA)

Jerri Édson Zilli (EMBRAPA)

Joanisval Brito Gonçalves (SAE/PR)

João Herbert Viana (EMBRAPA)

José Carlos Polidoro (EMBRAPA)

Joyce Anne Carvalho da Silva (SAE/PR)

Júlio César Nery Ferreira (IBRAM)

Juscimar Silva (EMBRAPA)

Leonel Cerqueira Santos (SAE/PR)

Liane Rucinski (ME)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luis Eduardo Pacifici Rangel (MAPA)

Luiz Roberto Guilherme (UFLA)

Magda Bergmann (CPRM)

Maisa Bastos Abram (CPRM)

Marcelo Batista Motta (CPRM)

Marcelo Batista Motta (CPRM)

Marcelo Esteves (CPRM)

Marco Antonio Nogueira (EMBRAPA)

Marcos Stelzer (Galvani Indústria)

Paulo Milani (SAE/PR)

Pedro Igor Veillard Farias (INPI)

Rafael de Souza Nunes (EMBRAPA)

Raldiney Beto dos Santos (Galvani Indústria)

Rodolfo Galvani Junior (Galvani Indústria)

Rodrigo César de Vasconcelos dos Santos

(IPEA)

Tâmara Cláudia de Araújo Gomes (EMBRAPA)

Tássia de Melo Arraes (MCTI)

27/04/2021

Joyce Anne Carvalho da Silva (SAE/PR)

Karinne de Freitas Alves (COMIGO)

Lafayette Franco Sobral (EMBRAPA)

Luis Eduardo Pacifici Rangel (MAPA)

Luís Henrique Penckowski (Fundação ABC)

Luís Ignácio Prochnow (NPCT)

Luiz Roberto Guilherme (UFLA)

Luiz Roberto Guilherme (UFLA)

Maguida Fabiana da Silva (MCTI)

Marco Antonio Nogueira (EMBRAPA)

Marcos Bertozo (MCTI)

Mariangela Hungria da Cunha (INCT)

Marisa Bezerra de Mello Monte (CETEM)

Mauricio Pazini Brandão (SAE/PR)

Paulo Afonso Romano (CPRM)

Paulo Milani (SAE/PR)

Pedro Igor Veillard Farias (INPI)

Rafael de Souza Nunes (EMBRAPA)

Rodrigo Rocha Secioso de Sá (FINEP)

Segundo Sacramento Urquiaga Caballero

Tereza Cleise da Silva de Assis (SAE/PR)

(EMBRAPA)

Reunião GTI-PNF - Fase Diagnóstico - Atores Estatais 28/04/2021

Alan Hiltner (GOV Sergipe) Alessandra Blaskowski (CPRM) Alysson Paolinelli (ABRAMILHO)

Andrea Sander (CPRM)

Antonio Alberto Castanheira de Carvalho

(MINFRA)

Barbara Andrade Correa (Casa Civil/PR)

Bruno Jose Rodrigues Alves (EMBRAPA) Bruno Santos Abreu Caligaris (SAE/PR) Carlos Henrique Eiterer (UNIPAM) Cel EB Márcio Santos e Silva (GSI) Cesar de Castro (EMBRAPA)

César Halum (MAPA)

Cimara Monteiro Bogo (CPRM) Claudia Pozzi Jantalia (EMBRAPA)

Claudia Wirz Leite Sa de Queiroz (SAE/PR)

Comunicação Sedetec/SE (GOV Sergipe)

Cristina Ferreira da Silva (MCTI) Daniel Lamassa (GOV RJ) Daniel Monte Cardoso (IPEA) Daniel Rosa (ABRAMILHO) David Roquetti Filho (UNIGEL) Dennys Casellato Hossne (AGU)

Diogo Martins Teixeira (GOV Sergipe) Eder de Souza Martins (EMBRAPA) Eduardo Mello Mazzoleni (MAPA) Enir Sebastião Mendes (MME)

Esteves Colnago (CPRM)

Fernanda Marques Pereira Andreza (EPE) Flávio Augusto Viana Rocha (SAE/PR)

Gilberto Dias Calaes (CPRM) Helinton Jose Rocha (MAPA) Hideraldo Jose Coelho (MAPA) Ioná de Abreu Cunha (CPRM) Jalbas Aires Manduca (MAPA)

Jaqueline Meneghel Rodrigues (MME) Jefferson Gusmao Scofield (SAE/PR)

Jerri Édson Zilli (EMBRAPA)

Joanisval Brito Gonçalves (SAE/PR) João Herbert Viana (EMBRAPA) José Carlos Polidoro (EMBRAPA) Joyce Anne Carvalho da Silva (SAE/PR)

Leonardo Soares (GOV RJ)

Liane Rucinski (ME)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luis Eduardo Pacifici Rangel (MAPA) Luiz Roberto Guilherme (UFLA) Magda Bergmann (CPRM) Maisa Bastos Abram (CPRM)

Marcelo Conforto de Alencar Moreira

(SAE/PR)

Marcelo dos Santos Menezes (GOV Sergipe)

Marcelo Ferreira Alfradique (EPE) Marcelo Batista Motta (CPRM) Márcio José Remédio (CPRM)

Marco Antonio Nogueira (EMBRAPA) Marcos Montes Cordeiro (MAPA) Maria da Conceição Santana Carvalho

(EMBRAPA)

Maria Green (CETEM)

Mauricio Pazini Brandão (SAE/PR) Paulo Afonso Romano (CPRM)

Paulo Milani (SAE/PR) Paulo Piau (UBERABA)

Pedro Igor Veillard Farias (INPI)

Petula Ponciano Nascimento (EMBRAPA)

Reinhold Stephanes (GOV Paraná) Roberto Rodrigues (FGVAGRO) Robinson Rosário Pitelli (SAE/PR) Rodrigo Rocha Secioso de Sá (FINEP) Sérgio Augusto Gomes Coelho (GOV RJ) Tâmara Cláudia de Araújo Gomes (EMBRAPA)

Tássia de Melo Arraes (MCTI)

Tereza Cleise da Silva de Assis (SAE/PR)

Uina Spencer (GOV RJ)

Reunião GTI-PNF - Fase Diagnóstico - Potássicos

Alessandra Blaskowski (CPRM) Álvaro Vilela de Resende (EMBRAPA) Amanda Soares de Freitas (CETEM)

Andrea Sander (CPRM)

Antonio Alberto Castanheira de Carvalho

(MINFRA)

Barbara Andrade Correa (Casa Civil/PR) Bruno Santos Abreu Caligaris (SAE/PR)

29/04/2021

Cesar de Castro (EMBRAPA) Cimara Monteiro Bogo (CPRM) Daniel Monte Cardoso (IPEA) Dennys Casellato Hossne (AGU) Edison Benedito da Silva Filho (IPEA) Eduardo Mello Mazzoleni (MAPA)

Elves Matiolo (CETEM)

Enir Sebastião Mendes (MME)

Fábio Ono (ME)

Felipe Buscacio Paolucci (Verde Agritech)

Frederico Munia Machado (ME) Gilberto Dias Calaes (CPRM) Gilmar Rizzotto (CPRM)

Guilherme Jácome (Potássio do Brasil)

Helinton José Rocha (MAPA) Hideraldo José Coelho (MAPA)

Hugo Manoel Marcato Affonso (ME) Ioná de Abreu Cunha (CPRM) Jalbas Aires Manduca (MAPA) José Carlos Polidoro (EMBRAPA)

Joyce Anne Carvalho da Silva (SAE/PR) Leonel Cerqueira Santos (SAE/PR)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luis Eduardo Pacifici Rangel (MAPA)

Luís Ignácio Prochnow (NPCT) Luis Mauricio Azevedo (ABPM) Luiz Roberto Guilherme (UFLA) Magda Bergmann (CPRM) Maisa Bastos Abram (CPRM) Marcelo Batista Motta (CPRM) Marcelo Esteves (CPRM)

Miguel Antonio Cedraz Nery (ABPM)

Milton Moraes (UFMT)

Pedro Igor Veillard Farias (INPI) Rafael de Souza Nunes (EMBRAPA) Roberto Loreti Júnior (CPRM)

Rodrigo César de Vasconcelos dos Santos

(IPEA)

Suripongse Naibert Chimpliganond (SAE/PR) Vitor Antônio Silva Carmo (Verde Agritech)

Reunião GTI-PNF - Fase Diagnóstico - Atores Externos - Linha de ação Sustentabilidade Ambiental 30/04/2021

Alberto Carlos de Campos Bernardi

(EMBRAPA)

Alessandra Blaskowski (CPRM)

Alexandre de Vicente Ferraz (Câmara Setorial

de Florestas Plantadas) Andrea Sander (CPRM)

Anna Leticia Pighinelli (RenovaBio)

Antonio Alberto Castanheira de Carvalho

(MINFRA)

Barbara Andrade Correa (Casa Civil/PR)

Bruno Jose Rodrigues Alves (EMBRAPA) Bruno Santos Abreu Caligaris (SAE/PR)

Cimara Monteiro Bogo (CPRM)

Cláudia Wirz Leite Sá de Queiroz (SAE/PR)

Dennys Casellato Hossne (AGU) Eduardo Mello Mazzoleni (MAPA)

Fabio Bueno dos Reis Junior (EMBRAPA) Fabricio Profiro de Oliveira (AMBIPAR)

Gustavo Branco (Haifa Group) Ioná de Abreu Cunha (CPRM)

Irani Gomide Filho (ABISOLO)

Joanisval Brito Gonçalves (SAE/PR) João Herbert Viana (EMBRAPA) José Carlos Polidoro (EMBRAPA) Joyce Anne Carvalho da Silva (SAE/PR)

Juscimar Silva (EMBRAPA)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luis Eduardo Pacifici Rangel (MAPA)

Luiz Calvo Ramires Junior (Câmara Setorial de

Florestas Plantadas)

Luiz Carlos Demattê Filho (Câmara Setorial da Cadeia Produtiva da Agricultura Orgânica)

Magda Bergmann (CPRM) Marcelo Morandi (RenovaBio) Marcelo Oliveira Rodrigues (UnB)

Maria Green (CETEM)

Mauricio Pazini Brandão (SAE/PR)

Nilza Patrícia (RenovaBio) Pedro Igor Veillard Farias (INPI) Ricardo Sierpe Vidal Silva (CETEM) Robinson Rosário Pitelli (SAE/PR)

Suripongse Naibert Chimpliganond (SAE/PR)

Reunião GTI-PNF - Fase Diagnóstico - Linha de ação CTI 19/05/2021

Eduardo Mello Mazzoleni (MAPA) Marcos Bertozo (MCTI)

Guilherme Lopes (UFLA)

José Carlos Polidoro (EMBRAPA) Juscimar Silva (EMBRAPA) Rodrigo Rocha Secioso de Sá (FINEP)

Lafayette Franco Sobral (EMBRAPA)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luiz Roberto Guilherme (UFLA) Maguida Fabiana da Silva (MCTI) Pedro Igor Veillard Farias (INPI)

Rafael de Souza Nunes (EMBRAPA) Segundo Sacramento Urquiaga Caballero

(EMBRAPA)

Suripongse Naibert Chimpliganond (SAE/PR) Tereza Cleise da Silva de Assis (SAE/PR)

Reunião GTI-PNF - Fase Diagnóstico - Linhas de ação Fósforo e Potássio

20/05/2021

Amanda Soares de Freitas (CETEM) José Carlos Polidoro (EMBRAPA)
Cimara Monteiro Bogo (CPRM) Leonel Cerqueira Santos (SAE/PR)

Daniel Monte Cardoso (IPEA) Lorrany Bianca de Herédias Miranda (SAE/PR)

Eduardo Vale (IPEA)

Elves Matiolo (CETEM)

Enir Sebastião Mendes (MME)

Frederico Munia Machado (ME)

Gilberto Dias Calaes (CPRM)

Maisa Bastos Abram (CPRM)

Marcelo Batista Motta (CPRM)

Pedro Igor Veillard Farias (INPI)

Rafael de Souza Nunes (EMBRAPA)

Silvia Souza de Oliveira (INPI)

Hideraldo José Coelho (MAPA) Suripongse Naibert Chimpliganond (SAE/PR)

Ioná de Abreu Cunha (CPRM)

Reunião GTI-PNF - Fase Diagnóstico - Linha de ação Cadeias Emergentes 20/05/2021

Alberto Carlos de Campos Bernardi José Carlos Polidoro (EMBRAPA)

(EMBRAPA) Joyce Anne Carvalho da Silva (SAE/PR)

Alessandra Blaskowski (CPRM)

Andrea Sander (CPRM)

Liane Rucinski (ME)

Carlos Henrique Eiterer (UNIPAM) Lorrany Bianca de Herédias Miranda (SAE/PR)

Cesar de Castro (EMBRAPA)

Cimara Monteiro Bogo (CPRM)

Enir Sebastião Mendes (MME)

Estevão Freire (UFRJ)

Luis Eduardo Pacifici Rangel (MAPA)

Luiz Roberto Guilherme (UFLA)

Magda Bergmann (CPRM)

Marcus Reis (SAE/PR)

Fabio Bueno dos Reis Junior (EMBRAPA)

Pedro Igor Veillard Farias (INPI)

Guilherme Lopes (UFLA)

Rafael de Souza Nunes (EMBRAPA)

Hideraldo José Coelho (MAPA)

Suripongse Naibert Chimpliganond (SAE/PR)

Ioná de Abreu Cunha (CPRM)

Tâmara Cláudia de Araújo Gomes (EMBRAPA)

Jerri Édson Zilli (EMBRAPA)

Reunião GTI-PNF - Fase Diagnóstico - Linha de ação Nitrogênio21/05/2021

Alberto Carlos de Campos Bernardi Marcelo Ferreira Alfradique (EPE)
(EMBRAPA) Marco Antônio Barbosa Fidelis (MME)
Cristina Ferreira da Silva (MCTI) Maria da Consoição Santana Carvalho

Cristina Ferreira da Silva (MCTI) Maria da Conceição Santana Carvalho

Eduardo Mello Mazzoleni (MAPA) (EMBRAPA)

Fernanda Marques Pereira Andreza (EPE)

Gabriel de Figueiredo da Costa (EPE)

Henrique Plaudio G. Rangel (EPE)

Jaqueline Meneghel Rodrigues (MME)

Pedro Paulo Dias Mesquita (BNDES)

Pedro Igor Veillard Farias (INPI)

Rafael de Souza Nunes (EMBRAPA)

Silvia Souza de Oliveira (INPI)

José Carlos Polidoro (EMBRAPA) Tereza Cleise da Silva de Assis (SAE/PR) Lorrany Bianca de Herédias Miranda (SAE/PR) Yuri Landim Batista Cajazeira (MAPA)

Reunião GTI-PNF - Fase Diagnóstico - Linha de ação Sustentabilidade Ambiental 21/05/2021

Bruno Jose Rodrigues Alves (EMBRAPA) Marcelo Morandi (EMBRAPA)
Cristiano Andrade (EMBRAPA) Maria Green (CETEM)
João Herbert Viana (EMBRAPA) Nilza Ramos (EMBRAPA)

José Carlos Polidoro (EMBRAPA) Petula Ponciano Nascimento (EMBRAPA)

Joyce Anne Carvalho da Silva (SAE/PR) Ricardo Sierpe Vidal Silva (CETEM)

Juscimar Silva (EMBRAPA) Suripongse Naibert Chimpliganond (SAE/PR)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Reunião GTI-PNF - Fase Diagnóstico - Linha de ação CTI 31/05/2021

Eduardo Mello Mazzoleni (MAPA) Joyce Anne Carvalho da Silva (SAE/PR)

Guilherme Lopes (UFLA) Lorrany Bianca de Herédias Miranda (SAE/PR)

José Carlos Polidoro (EMBRAPA) Luiz Roberto Guilherme (UFLA)

Maguida Fabiana da Silva (MCTI)

Marcos Bertozo (MCTI)

Pedro Igor Veillard Farias (INPI)

Rafael de Souza Nunes (EMBRAPA)

Segundo Sacramento Urquiaga Caballero

(EMBRAPA)

Tereza Cleise da Silva de Assis (SAE/PR)

Reunião GTI-PNF - Fase Diagnóstico - Linha de ação Cadeias Emergentes 01/06/2021

Alberto Carlos de Campos Bernardi

(EMBRAPA)

Alessandra Blaskowski (CPRM) Alessandro Cruvinel Fidelis (MAPA)

Andrea Sander (CPRM)

Carlos Henrique Eiterer (UNIPAM)

Caue Ribeiro (EMBRAPA)

Cristina Ferreira da Silva (MCTI)

Eder de Souza Martins (EMBRAPA) Eduardo Mello Mazzoleni (MAPA) Elzivir Azevedo Guerra (MCTI)

Enir Sebastião Mendes (MME)

Estevão Freire (UFRJ) Evandro Chartuni Mantovani (EMBRAPA)

Fabio Bueno dos Reis Junior (EMBRAPA)

Fernando Andreote (USP) Guilherme Lopes (UFLA)

Hideraldo José Coelho (MAPA)

Ioná de Abreu Cunha (CPRM)

Irani Gomide Filho (Abisolo)

Joice Oliveira (Consultora)

José Carlos Polidoro (EMBRAPA)

Joyce Anne Carvalho da Silva (SAE/PR)

Juscimar Silva (EMBRAPA)

Liane Rucinski (ME)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Luis Eduardo Pacifici Rangel (MAPA) Luiz Roberto Guilherme (UFLA) Magda Bergmann (CPRM) Marcelo Esteves (CPRM)

Marco Antonio Nogueira (EMBRAPA) Pedro Paulo Dias Mesquita (BNDES) Pedro Igor Veillard Farias (INPI)

Suzi Maria de Cordova Huff Theodoro (UnB) Tâmara Cláudia de Araújo Gomes (EMBRAPA)

Reunião GTI-PNF - Fase Diagnóstico - Linha de ação Nitrogênio01/06/2021

Cristina d'Urso (INPI)

Eduardo Mello Mazzoleni (MAPA) Fabiano Daniel De Bona (EMBRAPA) Henrique Plaudio G. Rangel (EPE)

Jaqueline Meneghel Rodrigues (MME) José Carlos Polidoro (EMBRAPA)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Marcelo Ferreira Alfradique (EPE) Marco Antônio Barbosa Fidelis (MME) Pedro Paulo Dias Mesquita (BNDES) Pedro Igor Veillard Farias (INPI)

Silvia Souza de Oliveira (INPI)

Tereza Cleise da Silva de Assis (SAE/PR)

Reunião GTI-PNF - Fase Diagnóstico - Linha de ação Sustentabilidade Ambiental 02/06/2021

Alberto Carlos Bicca (Apex-Brasil)

Bruno Jose Rodrigues Alves (EMBRAPA)

Cristiano Andrade (EMBRAPA) João Herbert Viana (EMBRAPA) José Carlos Polidoro (EMBRAPA)

Joyce Anne Carvalho da Silva (SAE/PR)

Lorrany Bianca de Herédias Miranda (SAE/PR)

Nilza Ramos (EMBRAPA)

Pedro Igor Veillard Farias (INPI) Ricardo Sierpe Vidal Silva (CETEM)

Reunião GTI-PNF - Fase Diagnóstico - Linhas de ação Fósforo e Potássio 02/06/2021

Álvaro Vilela de Resende (EMBRAPA) Amanda Soares de Freitas (CETEM)

Antônio Alberto Castanheira de Carvalho

(MINFRA)

César de Castro (EMBRAPA) Cimara Monteiro Bogo (CPRM)

Cristina D'Urso (INPI)

Cristina Ferreira da Silva (MCTI)

Daniel Alves Lima (MME) Daniel Monte Cardoso (IPEA)

Elves Matiolo (CETEM)

Enir Sebastião Mendes (MME) Fabiano Daniel De Bona (EMBRAPA)

Gilberto Dias Calaes (CPRM) Hideraldo José Coelho (MAPA)

José Carlos Polidoro (EMBRAPA)

Leonel Cerqueira Santos (SAE/PR) Lorrany Bianca de Herédias Miranda (SAE/PR) Maisa Bastos Abram (CPRM) Marcelo Batista Motta (CPRM) Pedro Igor Veillard Farias (INPI) Roberto Loreti Júnior (CPRM) Rodrigo César de Vasconcelos dos Santos (IPEA) Silvia Souza de Oliveira (INPI)