Defesa de Dissertação de Mestrado: The Multiscale Hybrid-Hybrid-Mixed method
-
Palestrantes
Aluno: Franklin da Conceição de Barros
-
Informações úteis
Orientadores:
Alexandre Loureiro Madureira - Laboratório Nacional de Computação Científica - LNCC
Frédéric Gerard C. Valentin - Laboratório Nacional de Computação Científica - LNCC
Banca Examinadora:
Alexandre Loureiro Madureira - Laboratório Nacional de Computação Científica - LNCC (presidente)
Abimael Fernando Dourado Loula - Laboratório Nacional de Computação Científica - LNCC
Marcio Arab Murad - Laboratório Nacional de Computação Científica - LNCC
Marcus Vinicius Sarkis Martins - WPI/EUA
Henrique Versieux - Instituto de Matemática Pura e Aplicada - IMPA
Suplentes:
Sandra Mara Cardoso Malta - Laboratório Nacional de Computação Científica - LNCC
Resumo:Many problems of practical interest in science and engi neering are of multiscale type, and many of those are described by partial differential equations (PDEs) with oscillatory coefficients. The corresponding numerical solutions using classical methods are extremely expensive in terms of memory and CPU.
Multiscale schemes such as the MsFEM and MHM methods have been developed to solve such problems, based on two-level ideas.
This work proposes a new numerical method, the Multiscale Hybrid-Hybrid-Mixed method (MHHM). The starting point is a hybrid formulation of three fields: the solution in each element interior, its trace and flux on the mesh skeleton. Continuity of traces and fluxes are weakly imposed. Multiscale effects are incorporated into basis functions through localized Neuman problems. A series of static condensations transforms the saddle point problem into an elliptic one, posed at the interfaces. At the discrete level, this reduces drastically the size of the global system. The matrix of the associated linear system is symmetric and positive definite, and can be solved by classical iterative schemes. We prove the well-posedness of the method and establish error estimates. We also perform numerical tests to confirm the theoretical predictions and compare the method with the FEM, MsFEM and MHM schemes. -
Mais informações
Pós-graduação do LNCC´copga@lncc.br