

20 September 2023

Kilonovae: the cosmic foundries of heavy elements (Part II)

Elena Pian INAF-OAS, Bologna

yesterday problem:

How many neutrinos where liberated in SN1987A explosion? And how many reached Earth?

Solution:

Mass of NS remnant: 1.4 solar masses, Where 1 solar mass = 2E33 g

Mass of proton m_p: 1840 * m_e, Where m_e = 9.1E-28 g

N_nu = N_protons = M_remnant / m_p = 1.4 solar masses / (1840 x m_e) ~ 2 E57 neutrinos *This is a lot of energy! Neutrinos carry away 99% of NS binding energy, E53 erg*

At 50 kpc distance, the neutrinos that reached the detectors are 2E57 / (4pi d^2) ~ 6 E9 neutrinos, *but only a dozen detected!*

Expected rate of double neutron star mergers:

~300-3000 /Gpc^3/yr

Abbott et al. 2020

A double neutron star merger is expected to produce:

- 1) a GW signal at ~1-1000 Hz (nearly isotropic)
- 2) a short GRB (highly directional and anisotropic)
- 3) r-process nucleosynthesis (nearly isotropic)
- 4) a MeV neutrino burst

Lattimer & Schramm 1974; Eichler et al. 1989; Li & Paczynski 1998

Simulation of the merger of a 1.3 and a 1.4 Msun neutron stars

(S. Rosswog, [http://compact-merger.astro.su.se\)](http://compact-merger.astro.su.se)

Conditions during decompression of NS material

Crashing neutron stars can make gamma-ray burst jets

Simulation begins

7.4 milliseconds

13.8 milliseconds

15.3 milliseconds

21.2 milliseconds

26.5 milliseconds

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla

Kilonova scenarios (Kasen et al. 2017)

regions of heavy r-process elements radiate red/infrared light regions of light r-process elements radiate blue/optical light

During the merger, tidal forces peel off tails of matter, forming a torus of heavy r-process ejecta in the plane of the binary. Material squeezed into the polar regions during the stellar collision can form a cone of light r-process material.

If the remnant survives as a hot neutron star for tens of milliseconds, its neutrino irradiation lowers the neutron fraction and produces a blue wind.

GW170817 and GRB170817A

The short GRB170817A lags GW signal by 1.7s: is this timescale related to the engine or to the plasma outflow? As a minimum, it tells us that GW and light propagation speeds differ by less than 1 part in e15.

Epeak ~200 keV (GBM)

Abbott et al. 2017; Savchenko et al. 2017; Fermi Collaboration 2017

GW170104 MMMMMW

 $GW170817 -$

1 0 time observable (seconds)

LIGO/University of Oregon/Ben Farr

2

Search for GW170817 optical counterpart: GW error regions and Swope 1m pointings

LVC Localization Confidence Percentile

Detection of optical source AT2017gfo associated with GW signal GW170817 in NGC 4993 (40 Mpc = 130 million light years)

Credit: ESO, Swope 1m, STScI

GW170104

GW151226

GW170817

GW150914

LIGO/Virgo/NASA/Leo Singer (Milky Way image: Axel Mellinger)

GW170814

Optical and near-infrared light curves of GW170817 / AT2017gfo

AT2017gfo evolves much more rapidly than any supernova

ESO VLT X-Shooter spectral sequence of kilonova GW170817

Pian et al. 2017; Smartt et al. 2017

Receding photosphere: P-Cygni profile of absorption lines

Supernova spectral evolution: the photosphere (τ ~ 1) recedes with time (SN1998bw, 35 Mpc)

FIG. 4.—Evolution of the Si π λ 6355 region. The empty circles mark the value that has been assumed to represent the photospheric velocity.

Patat et al. 2001

Typical spectra of Stripped-envelope core-collapse SNe

Pian & Mazzali 2017

GRB980425 Supernova 1998bw (Type Ic)

14 Magnitude
15
15 $\mathfrak{so}_\mathfrak{S}$ $17 - 0I - 1$ $\mbox{\texttt{A}}\mbox{\texttt{R}}\mbox{\texttt{-}}\mbox{\texttt{0}}.5$ $\alpha \rm{V}$ \circ B 18 \bullet U+0.5 *V+2.5 of SN 1994I Ω 10 20 30_o 40 50 t (days after burst) SN 1998bw $Log(F_{\lambda}) + Const$ SN 1994I (Ic) $FeII$ HeI SiII Hel SN 1984L (Ib) 4000 5000 6000 7000 Wavelength (Å)

SN 1998bw in Spiral Galaxy ESO184-G82

z = 0.0085

13

ESO PR Photo 39a/98 (15 October 1998)

C European Southern Observatory

Kouveliotou+1993; von Kienlin+2014

Photospheric velocities of core-collapse Supernovae

Physical properties of core-collapse supernovae

Mazzali et al. 2021

Element abundances at 1 day after DNS merger

Tanaka et al. 2017, PASJ

Geometry of 3-component model for kilonova

Tanaka et al. 2017, PASJ

Kilonova 3-component model for AT2017gfo: ejecta mass is 0.03-0.05 solar masses

Kilonova 3-component model for AT2017gfo: ejecta mass is 0.03-0.05 solar masses

Poor spectral fits: less than optimal knowledge of atomic opacities

Wavelength (\AA)

X-Shooter spectra of AT2017gfo (40 Mpc) with modeled Sr II lines

Watson et al. 2019

Domoto et al. 2021,2022

Isotropic irradiated –ray energy vs redshift

Timeline of future observing runs of Ligo/Virgo/Kagra interferometers

https://observing.docs.ligo.org/plan/

Conclusions

Binary massive star systems evolve to binary neutron star systems that merge after some hundred million years producing a multi-messenger signal: short GRB, multiwavelength afterglow, optical/infrared kilonova, GWs, MeV neutrinos.

With the exception of neutrinos, all the above was detected in the event GW170817 in NGC4993 (40 Mpc).

The kilonova spectra show broad absorption lines that reveal presence of atomic species ejected at very large speed (20-30% of light speed) and synthesized via rapid neutron capture (r-process).

Identification of individual lines is compounded by line blending and enormous number of transitions.

Attempts have been made to identify most probable atomic transitions, and to model atomic structures and opacities, but these need to be benchmarked experimentally (e.g. via laser-produced-plasmas).

Tentative evidence of Sr II was reported.