

19 September 2023

Kilonovae: the cosmic foundries of heavy elements (Part I)

Elena Pian INAF-OAS, Bologna

Gravitational waves are "ripples" of Spacetime, produced by accelerated masses and predicted by **General Relativity** theory (Einstein 1916, 1918)

Genuarstrong vom 14. Februar 1918. - Mittellung vom SI, Januar 154

Über Gravitationswellen.

Von A. EINSTEIN.

(Vergelegt am 31. Januar 1918 [s. ohan S. 79].)

Die wichtige Frage, wie die Ausbreitung der Gravitationsfelder ertolgt, ist schon vor anderthalb Jahren in einer Akademienrheit von mic behandelt worden'. Da aber meine damalige Durstellung des Gegenstandes nicht genügend durchsichtig und außerdem durch einen bedauerlichen Rechenfehler verunstaltet ist, muß ich hier nochmals auf die Angelegenheit zurückkommen.

Wis demals beschränke ich mich auch hier auf den Fall, dass das betrachtete zeiträumliche Kontinuum sich von einem «galileischennur schr wenig unterscheidet. Um für alle Indizes

$$
u = -\delta_u + \gamma_u, \tag{1}
$$

seizen zu können, wählen wir, wie es in der speziellen Relativitärstheorie üblich ist, die Zeitvariable z, rein imaginär, indem wir

 $t_i = it$

setzen, wabei / die «Lichtzeit» bedeutet. In (1) ist d = t bzw. d mm o . je nachdem u. s v oder u thr ist. Die 7. sind gegen 1 kleine Größen, welche die Abweichung des Kontinuums vom fehlfreien darstellen: sie hilden einen Tensor vom zweiten Range gegenüber Louzerz-Transfarmationen.

8 1. Lösung der Näherungsgleichungen des Gravitationsfeldes durch retardierte Potentiale.

Wir gehen aus von den für ein beliebiges Koordinatensystem gültigen² Feldgininhungen

$$
-\sum_{\alpha}\frac{\partial}{\partial x_{\alpha}}\begin{Bmatrix} \mu u \\ \mu v \end{Bmatrix} + \sum_{\alpha}\frac{\partial}{\partial x_{\alpha}}\begin{Bmatrix} \mu x \\ \alpha \end{Bmatrix} + \sum_{\alpha}\begin{Bmatrix} \mu x \\ \beta \end{Bmatrix}\begin{Bmatrix} 1^{\alpha}\beta \\ \beta \end{Bmatrix} - \sum_{\alpha}\begin{Bmatrix} \mu v \\ \alpha \end{Bmatrix}\begin{Bmatrix} \mu v \\ \beta \end{Bmatrix}
$$

$$
= -\kappa \left(T_{\alpha} - \frac{1}{\pi}g_{\alpha}T\right).
$$

· Diese Sitwapsher. roth, 5. 686ff.

² Von der Kinfthrung des -2-Gliedes- (vgl. diese Strangsber, 1917, S. 140) is: dahni Abstand genommen.

AMPLITUDE AND POWER OF A GRAVITATIONAL WAVE

If *R, M, v* **are the characteristic size, mass, and speed of the emitting source, and** *r* **is our distance from the source, we have:**

Amplitude:
$$
h \sim \frac{r_{\text{Sch}}}{r} \frac{v^2}{c^2},
$$

Where *r_Sch* **is the Schwarzschild radius of the emitting source:** *r_Sch = GM/c^2*

Luminosity:
$$
\frac{dE}{dt} \sim \frac{G}{c^5} \left(\frac{M}{R}\right)^2 v^6 \sim L_0 \left(\frac{r_{\text{Sch}}}{R}\right)^2 \left(\frac{v}{c}\right)^6,
$$

where

$$
L_0 \equiv \frac{c^5}{G} = 3.6 \times 10^{59} \,\text{erg s}^{-1}.
$$

S.Shapiro & S.Teukolsky 1983, *Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects*

Simulation: Manuela Campanlli Carlos Lousto **Yosef Zlochower**

Visualization: Hans-Peter Bischof

CCRG RIT

Copyright - CCRG - 2009

GW amplitude-frequency diagram of known cosmic sources

Polarization of GWs

GWs have 2 different linear polarizations. The 2 states are rotated 45 deg relative to one another. This contrasts with the 2 polarization states of an electromagnetic wave, which are 90 deg to each other. This pattern of polarization is due to the fact that gravity is represented by a second-rank symmetric **tensor** (hμν), while electromagnetism is represented by the **vector** potential *A mu*

Scheme of a laser interferometer

Credit: LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration

Advanced Lite Livingston 2015

Advanced LIGO

H_{anonu}

015

Advanced Virgo 2016

GEO600 (HF)

1101

LIGO-India **(2022)**
(INDIGO)

KAGRA

2018

Hanford Livingston

September 14, 2015 at 11:50:45 in Central European Time

Alarm reported by the on-line algorithm for generic transient search

SNR =24

14 September 2015: First detection of gravitational waves

Abbott et al. 2016

week ending 12 FEBRUARY 2016

\mathcal{G}

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

Die Feldgleichungen der Gravitation. **Von A. Ensympy**

 $\frac{1}{3}$ + \sum $\frac{1}{3}$ + \sum

 $S_{\text{in}} = \sum_{i} \frac{e^{i} |I|}{e_{i}} - \sum_{i} \frac{[Im][I_i^{\text{eff}}]}{[I_i^{\text{eff}}]}$

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 410⁺¹⁶⁰ Mpc corresponding to a redshift $z = 0.09_{-0.04}^{+0.03}$. In the source frame, the initial black hole masses are $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

Über Gravitationswellen.

Von A. EISSTEIN

Lösung der Näherungsgleichungen des Grav

 $-\sum \frac{\partial}{\partial x_1}\begin{bmatrix}uv\\u\end{bmatrix}+\sum \frac{\partial}{\partial x_1}\begin{bmatrix}ux\\x\end{bmatrix}+\sum \begin{bmatrix}ux\\0\end{bmatrix}\begin{bmatrix}x\\u\end{bmatrix}-\sum \begin{bmatrix}uv\\u\end{bmatrix}\begin{bmatrix}x\beta\\0\end{bmatrix}$

 $= -x \left(T_{ii} - \frac{1}{2} g_{ii} T \right)$

DOI: 10.1103/PhysRevLett.116.061102

http://link.aps.org/doi/10.1103/PhysRevLett.116.061102

GW150914: FACTSHEET

BACKGROUND IMAGES: TIME-FREQUENCY TRACE (TOP) AND TIME-SERIES (BOTTOM) IN THE TWO LIGO DETECTORS; SIMULATION OF BLACK HOLE HORIZONS (MIDDLE-TOP), BEST FIT WAVEFORM (MIDDLE-BOTTOM)

first direct detection of gravitational waves (GW) and first direct observation of a black hole binary

Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds. Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 x 10¹² km; Mpc=mega parsec=3.2 million lightyear, Gpc=10³ Mpc, fm=femtometer=10⁻¹⁵ m, Mo=1 solar mass=2 x 10³⁰ kg

Gravitational Waves

PA

Nobel Prize for Physics 2017 R. Weiss K. Thorne B. Barish

A. Einstein 1916

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

https://ligo.northwestern.edu/media/mass-plot/index.html

While black hole mergers are expected to be electromagnetically "silent", neutron star mergers (or mergers of a NS and a BH) are expected to be accompanied by an electromagnetic signal. The mergers of systems containing at least a NS present thus a large potential for:

- 1) determining the NS equation of state
- 2) mapping the history of heavy elements formation
- 3) Studying the progenitor population of short GRBs

Mass of star determines its fate

Massive Stars (>8M_∩)

- Si burning \rightarrow Fe core
- Core collapse
- Compact object (NS/BH)
- v emission
- KE deposited (~10⁵¹erg)
- **Nucleosynthesis** \rightarrow ⁵⁶Ni (~0.1M_○)
- envelope ejection
- SN type depends on degree of stripping
	- Role of binarity?

SN1987A: core-collapse supernova in the LMC (50 kpc) First example of multi-messenger astronomy (barring the Sun…)!!!

credit: ESO February 1987

artist concept of SN1987A

SN1987A: MeV neutrino detection Proves core-collapse and neutron star formation

The neutrino detectors IMB (USA), Kamiokande (Japan) and Baksan (Russia) detected a handful of neutrinos each, a few hours before light detection from SN1987A (I. Shelton 1987, IAU Circ. 4316)

Water tank Diameter 16 m Height 16 m

Photomultiplier Tubes

Core-collapse supernova neutrinos

Electron capture (or inverse beta decay):

$$
p + e \rightarrow n + v_e
$$

This process is responsible for neutronization of massive stellar cores undergoing gravitational collapse (neutron star remnant formation)

neutron star

Light curves of core-collapse supernovae

SN Light Curves are diverse

Powered by decay of ⁵⁶Ni \rightarrow ⁵⁶Co \rightarrow ⁵⁶Fe

Periodic table of elements

https://en.wikipedia.org/wiki/R-process

Electron capture $(p + e - \rightarrow n + nu e)$ and beta+ decay ($p \rightarrow n + e+ +nu$) **Are also responsible for supernova light emission, dominated by the decay chain:**

56Ni 56Co 56Fe

The emitted neutrino flux is normally way too weak to be detected

SN spectra near maximum light: diversity suggests different origin

Typical spectra of Stripped-envelope core-collapse SNe

Pian & Mazzali 2017

Jet-Supernova Models as r-process Sites?

- MHD-driven polar 'jets" could sweep out n-rich matter.
- **Requires extremely fast matter** ejection, extremely rapid rotation and extremely strong magnetic fields in pre-collapse stellar cores.
- Should be very rare event; maybe 1 of \bullet 1000 stellar core collapses?

Winteler et al., ApJL 750 (2012) L22

From Th. Janka, 2016

Jet-Supernova Models as r-process Sites? BUT:

- MHD-driven polar 'jets" in 3D develop kink instability.
- Assumed initial conditions not supported by stellar pre-collapse models.
- Dynamical scenario does not provide environment for robust r-process.

From Th. Janka, 2016

Simulation of the merger of a 1.3 and a 1.4 Msun neutron stars

(S. Rosswog, [http://compact-merger.astro.su.se\)](http://compact-merger.astro.su.se)

Crashing neutron stars can make gamma-ray burst jets

Simulation begins

7.4 milliseconds

13.8 milliseconds

15.3 milliseconds

21.2 milliseconds

26.5 milliseconds

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla

The valley of stability

<https://www.youtube.com/watch?v=BaUjNiJYgO4> https://www.youtube.com/watch?v=UTOp_2ZVZmM&t=192s

Periodic table

Heavy elements: s- and r-process nucleosynthesis

Solar system abundances of heavy elements produced by r-process and s-process neutron capture.

The s-process (~1000 years) takes place in red-giants cores (AGB phase)

The r-process (seconds or less) takes place in binary NS mergers

Short GRB130603B $(z = 0.356)$

Kilonova : Ejection of r -process material from a NS merger (0.01 -0.1 Mo) (Barnes & Kasen 2013)

 $M_H \approx -15$

 $M_R \approx -13$

Tanvir et al. 2013; Berger et al. 2013

Conclusions

Gravitational waves are a spacetime perturbation, described by a 4 dimensional tensor, produced by massive asymmetric sources.

First gravitational radiation detection (~100 Hz) in 2015 lagged theoretical prediction by one century, but results were spectacular: a binary system of black holes of 30 solar masses each merges and produces a nearly 60 solar mass black hole. The mass difference, 3 solar masses, is radiated away as GWs. However, no electromagnetic signal is detected, and none is expected (in principle).

The search for multiwavelength electromagnetic signal accompanying GWs from a binary neutron star merger has manifold implications: compact stellar object physics (NS EoS), binary merger dynamics, GRB physics, nucleosynthesis, MeV neutrino physics.

In particular, the optical/infrared counterpart of a binary NS merger is a radioactive source (kilonova), analogous to supernova.

Nucleosynthesis of binary NS merger points to dominance of r-process, as opposed to s-process: neutron fluxes are rapid and abundant.