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GRBs basic observations

» 70s - 80s: GRBs = sudden and unpredictable bursts of
hard X / soft gamma rays with huge flux

d most of the flux detected from 10-20 keV up to 1-2 MeV

d measured rate (by an all-sky experiment on a LEO satellite):
~0.8 / day; estimated true rate ~2 / day

d complex and unclassifiable light curves

L fluences (= av.flux * duration) typically of ~107 - 10 erg/cm?
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» Detectors in the energy range from a few keVs to
a few MeVs

J proportional counters (classical): ~1.5 - 30 keV, gas (e.g., 90%
argon, 10% methane), photoelectric, imaging with a few arcmin
accuracy (position sensitive + coded mask), energy resolution of
~1 keV, timing a few hundreds of ps

 silicon-based detectors (more recent): ~0.1 - 15 keV (CCD) or ~1.5
- 50 keV (SDD), photoelectric, imaging with a few arcmin
accuracy (+ coded mask), energy resolution of ~100-200 eV, timing

a few hundreds of us (CCD) or a few us (SDC)

J _crystal scintillators (classical): ~15 keV - 50 MeV, crystals (Nal,
Csl, BGO,Br3La4), photoelectric + Compton, non imaging, energy

resolution from 30% (60 keV) to 10% (600 keV), timing of 1-2 ~us

d solid-state detectors (more recent): ~6 keV - ~300 keV, CdTe or
CZT, photoelectric + Compton, imaging with a few arcmin
accuracy (+ coded mask), energy resolution of ~1 keV, timing of

10-100 pus
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» '90s: The contribution by CGRO/BATSE

d major contribution came in the "90s from the NASA BATSE
experiment (25-2000 keV) onboard CGRO (1991-2000)

 based on Nal scintillator detectors; 8 units covering a ~2n
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> "90s: the contribution by ——
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» "90s: Dection of GRB VHE emission by CGRO/EGRET

d pair conversion gamma-ray telescope based on spark
chambers sensitive in the 20 MeV - 30 GeV energy band
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» '90s: dection of GRB VHE emission by CGRO/EGRET

J CGRO/EGRET detected VHE (from 30 MeV up to 18 GeV) photons
for a few GRBs

d VHE emission can last up to thousends of s after GRB onset

[ average spectrum of 4 events well described by a simple power-law
with index ~2, consistent with extension of low energy spectra

d GRB 941017, measured by EGRET-TASC shows a high energy
component inconsistent with synchrotron shock model
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» Early evidences for a cosmological origin of GRBs

4 isotropic distribution of GRBs directions

U paucity of weak events with respect to homogeneous
distribution in euclidean space

 given the high fluences (up to more than 10 erg/cm?2 in 20-
1000 keV) a cosmological origin would imply huge luminosity

4 thus, a “local” origin was not excluded until 1997 !

2704 BATSE Gamma-Ray Bursts e

+_ 0

Humbar of Bursts

10000

Fluence, 50-300 keV (ergs cm™)



Fig, 1—3ky map of the first 1IN gamma-ray bursis observed by BATSE
Of these, 485 are from the second BATSE catalog and have positional un-
certaimies of abour 7% The remainder have preliminary positions or arc
affected by gaps in the telemetry stream, and have more encemain pesitions,
(From Briggs ot al. 1995.)

piece of evidence. But eventually, through the process of
weighing-up the evidence, scientists reach a conclusion.
Paczynski (1995) focuses on the isotropic sky distribution
of gamma-ray bursts. He describes the impact that the an-
nouncement that the sky distribution of faint bursts is con-
sistent with isotropy had on him and on some others when it
was made by the BATSE team in September 1991 (Meegan
et al. 1992}, The isotropy of the bursts on the sky is an
important piece of evidence. The cosmological hypothesis is
consistent with 1t. But the Galactic hypothesis is also consis-
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and the trajectories of high-velocity neutron stars which are escaping from
the Milky ‘Way, These high-velocity peutron stars form a previously un-
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tron stars which appears isotropic when viewed from Barth. Many scientists
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» Need for a substantial improvement in the location accuracy
several degrees (BATSE, scintillators) to arcmin
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» The BeppoSAX revolution (1996 - 2002)

d NFI (X-ray focusing
telescopes, 0.1-10 keV +
PDS, 15-200 keV)

d WEC (2 units, proportional
counters + coded mask,
FOV 20°x20° each unit, 2-28
keV)

d GRBM (4 units, Csl
scintillators, large FOV,
GRB triggering, 40-700 keV)

d WEC and GRBM co-aligned

(



> BeppoSAX: afterglow emission (late "90s): power-law decay
and spectrum (with exceptions)

28 Feb1997 3 Mar 1997 10% £
BEhi2m3ds Eho2mids Shdimd2s ShdimiSs GBHhOZmMm3IBE ShOZmODE ShMm4Z: ShHOImMISE o (| 1" E
+12°00'00 100 |
+11° 54' 00" 10*
= E
B =000 [
+11° 48 00 b E
k= ——
£ 100 &
= E
»e C
=10 &
. E = GRBM 40-—700 keV
E = PDS 15—60 keV (x15)
r o WFC 2—10 keV
1 e a MECS 2-10 keV
F o ASCA 2—10 kgfl—er
0.1 = < R band
g * B.46 GHz
U‘Dl i IIIII IIIIIII ] IIIIIIII 1 rIIIIII] 11 i 1 11 1§ jray 1
0.1 1 10 100 1000 10+ 105 108
S ——— . t—t, (s)
WHT28297 0 INT 08/03/97 | T
: e e R i i s : 1.0e—03 ——
Tl TR, St w e L © = LEcs

‘* 2 - * " & : £ = MECS

L 9.0e—04—

-
:
&
&
&
L
Flux {keV ecm s keV'})

1.0e—04 . 1 [

Costa et al. 1997, Van Paradijs et al. 1997, SAX T ey en)

Energy (keV)



» optical spectroscopy of afterglow
and/or host galaxy -> first

measurements of GRB redshift

F, (109 erg el s-! Ha)

» redshifts higher than 0.01 and up to
> 9 GRB are cosmological

» their isotropic equivalent radiated i o | .
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» Distance and luminosity
(>1997)

d from optical spectroscopy (OT
or HG) -> redshift estimates

4 all GRBs with measured
redshift (~400) lie at
cosmological distances (except
for the peculiar GRB980425,
z=0.0085)

4 isotropic equivalent radiated
energies can be as high as >
10** erg

d short GRB lie at lower
redshifts (<~2) and are less
luminous (Eiso < ~10° erg)
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» Host galaxies (>1997, X-ray loc. + optical follow-up)

 host galaxies long GRBs: blue, usually regular and high star
forming, GRB located in star forming regions

 host galaxies of short GRBs (more recent): no preferred type
Short
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. . - 9 /
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» GRB/SN connection (> 1998)

» GRB 980425, a normal GRB detected
and localized by WFC and NFI, but in
temporal/spatial coincidence with a
type Ib/c SN at z = 0.008 (chance prob.
0.0001)

» Bumps in optical afterglow light
curves and optical spectra resembling
that of GRB980425 (e.g., GRB 030329)
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Standard scenarios for GRB progenitors

LONG o SHORT
ool < N
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» GRBs occur in star forming » short duration (<5 s)
regions » clean circum-burst
» GRBs are associated with SNe environment

> likely collimated emission > old stellar population



Standard scenarios for GRB phisics

» ms time variability + huge energy + detection of GeV
photons -> plasma occurring ultra-relativistic (I" > 100)
expansion (fireball or firejet)

» non thermal spectra -> shocks synchrotron emission (SSM)
» fireball internal shocks -> prompt emission

» fireball external shock with ISM -> afterglow emission

GRB FIREBALL MODEL"

Afterglaw
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» GRB prompt emission physics

d physics of prompt emission
. : . GRB FIREBALL MODEL"
still not settled, various scenarios: Aftorgle
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» GRB afterglow emission physics

d less complex and better understood w/r to prompt emission
(but VHE emission is challenging): power-law decay and spectra

d Mostly explained thorugh synchrotron shock emission models
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Standard scenarios for GRB progenitors
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» Detectors in the energy range from a few keVs to
a few MeVs

J proportional counters (classical): ~1.5 - 30 keV, gas (e.g., 90%
argon, 10% methane), photoelectric, imaging with a few arcmin
accuracy (position sensitive + coded mask), energy resolution of
~1 keV, timing a few hundreds of ps

 silicon-based detectors (more recent): ~0.1 - 15 keV (CCD) or ~1.5
- 50 keV (SDD), photoelectric, imaging with a few arcmin
accuracy (+ coded mask), energy resolution of ~100-200 eV, timing

a few hundreds of us (CCD) or a few us (SDC)

J _crystal scintillators (classical): ~15 keV - 50 MeV, crystals (Nal,
Csl, BGO,Br3La4), photoelectric + Compton, non imaging, energy

resolution from 30% (60 keV) to 10% (600 keV), timing of 1-2 ~us

d solid-state detectors (more recent): ~6 keV - ~300 keV, CdTe or
CZT, photoelectric + Compton, imaging with a few arcmin
accuracy (+ coded mask), energy resolution of ~1 keV, timing of
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» Swift (> 2004): transition from prompt to afterglow

O Swift: NASA mission dedicated to GRB
studies launched 20 Nov. 2004 USA / Italy /

UK consortium

d main goals: afterglow onset, connection
prompt-afterglow, substantially increase of
conunterparts detection at all wavelengths
(and thus of redshift estimates)

4 payload: BAT (CZT+coded mask, 15-150 keV, wide FOV,
arcmin ang. res.), XRT (X-ray optics, 0.3-10 keV, arcsec ang.res.),
UVOT (sub-arcsec ang.res. mag 24 in 1000 s)

 spacecraft: automatic slew to target source in ~1 - 2 min.



> Swift: transition from ] Swift era

prompt to afterglow (>2005) .
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» Early X-ray afterglow

d new features seen by Swift in X-ra{ early afterglow light curves
(initial very steep decay, early breaks, flares) mostly unpredicted and
unexplained

d initial steeE decaaf: continuation of prompt emission, mini break due
to patchy shell, IC up-scatter of the reverse shock sinchrotron
emission ?

d flat decay: 1Erobably “refreshed shocks” (due either to long duration
ejection or short ejection but with wide range of I') ?

d flares: could be due to: refreshed shocks, IC from reverse shock,
external density bumps, continued central engine activity, late
internal shocks...

Prompt emission '
A Schematic X-ray light curve
(Zhang et al., 2006; Nousek et al., 2006)
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E -—§ r . — \ ————————— \
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» Duration of the central engine: X-ray flares and
ultra-long GRBs

 The X-ray flares, discovered by Swift, super-imposing to the early
afterglow and the recently investigated class of ultra-long GRBs (i..e.
lasting hours instead of minutes) are challenging evidences for models
of long GRB central engine and progenitors
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d Central engine: BH or NS? -> Fireball nature : baryon kinetic
energy or Poynting flux dominated?

massive

progenitor shell

instability '\ cd

magnetic
shell Afterglow

\ contact
photosphere C\ \ \discontinuity
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thermal
precursor?




» Why emission collimated into a jet?

d Less “demanding” energy budget

d Numerical simulations of collapsars (long GRBs) and NS-NS
/ NS-BH mergers (short GRBs) produce a jet if internal
engine (BH or NS) fastly spinning and with strong magnetic
field associated (as expected)

d Degree of collimation depending on several parameters and
assumptions, can range from 1-2 deg to tens of degrees
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» Afterglow emission and jet opening angle

d jet angles, derived from break time of optical afterglow light
curve by assuming standard scenario, are of the order of few
degrees

d the collimation-corrected radiated energy spans the range
~5x10% - 5x10>

of N
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> lack of jet breaks in several Swift X-ray afterglow light
curves, in some cases, evidence of achromatic break

» challenging evidences for Jet interpretation of break in
afterglow light curves or due to present inadequate sampling
of optical light curves w/r to X-ray ones and to lack of
satisfactory modeling of jets ?

1000 10000 %o 4 1k 4
B 1'.H. 050401 3 | 1 E 050922C
3 4eF 3 [ ]
x 15350 keV i ] s 4 10’
0 4 03-10keV 10 : J=b 4 F i)
- ¥ E = F
: |1 = ] L 4
s ¢ - B L 1+ L | E 3
E a U E =E E
E : g
& o UVWI L 4
- x . UVM2 1 g EPNS . 4 E
M- % . UVW2 E <4 F -}’
il *, g
3 10 a 050807
s 3 E = °F 3 F E
4
+ -
% b 3 ELS El3 E
=10
} + i 1ob 1L )
n § _|. TE 15
T : Foo 1
E ,_g * 3 E
ul Wil 1 I i | : I| Lol r ] : 1
107 1’ 10¢ 10° 10 vl ol ol 4l ol ol Lol i vl ol vl ) Lo ol vl i ol
Time since BAT trigger (s) 0% 10" 10° 10' 10° 10" 107 10° 10' 10° 10° 10" 10° 10' 10°

time (hours) time (hours) time (hours)



» Fermi (> 2008): broad band prompt emission and VHE

d Detection, arcmin localization and study of GRBs in the GeV
energy range through the Fermi/LAT instrument, with dramatic
improvement w/r CGRO/EGRET

d Detection, rough localization (a few degrees) and accurate
determination of the shape of the spectral continuum of the prompt
emission of GRBs from 8 keV up to 30 MeV through the

Fermi/GBM instrument

s o " (»)Large Area Telescope (LAT)
' \\ » Pair conversion telescope. : ,"T”?'call: Pmlmpt ,GRB,SPEFHU'I" .
B » Independent on-board and ground burst 10 f GBM ‘ 5
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_J A») Gamma-ray Burst Monitor (GBM) "5 10° | ;
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» VHE (> 100 MeV) properties of GRBs by Fermi

A the huge radiated energy, the spectrum extending up to VHE without
any excess or cut-off and time-delayed GeV photons of GRB 080916C
measured by Fermi are challenging evidences for GRB prompt emission
models

d nevertheless, an excess at E > 100 MeV, modeled with an additional
power-law component, is detected in some GRBs (e.g., GRB 090902B,
GRB090510): SSC of lower energy sinchrotron emission, IC of photospheric
emission, hadronic processes
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[ significant evidence (at least for the brightest GRBs) of a delayed onset of
VHE emission with respect to soft gamma rays;

d the time delay appears to scale with the duration of the GRB (several
seconds in the long GRBs 080916C and 090902B, while 0.1 — 0.2 s in the
short GRBs 090510 and 081024B)

[ again, challenging for models (hadronic: e.g., proton acceleration time ?)
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» Detection of TeV photons from GRBs by Cherenkov
telescopes

O Long GRB180720B (HESS) and GRB190114C (MAGIC), plus two
more events

[ Further evidence of possible SSC or IC component in GRB
afterglow emission
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» Detection of TeV photons from GRBs by Cherenkov
telescopes

d Long GRB180720B (HESS) and GRB190114C (MAGIC), plus two
more events

d Further evidence of possible SSC or IC component in GRB
afterglow emission
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» 2017- The birth of multi-messenger astrophysics and
confirmation of NS-NS (BH) origin for short GRBs

LIGO, Virgo, and partners make first detection of
gravitational waves and light from colliding neutron stars

Lightcurve from Fermi/GBM (50 — 300 keV)
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» 2017- The birth of multi-messenger astrophysics and
confirmation of NS-NS (BH) origin for short GRBs

LIGO, Virgo, and partners make
gravitational waves and light fro

Lightcurve from Fermi/GBM (50 — 300 keV)
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Standard scenarios for GRB progenitors

Long GRBs: core collapse of
particular massive stars,
association with SN, star

formation rate, primordial
galaxies -> COSMOLOGY

Short GRBs: NS-NS or NS-
BH mergers, association with
GW sources -> MULTI-
MESSENGER
ASTROPHYSICS

Long gamma-ray burst
(>2 seconds’duration)
A red-giant
l star collapses
__>.<_ onto its core....

l

..becoming so

dense that it

/ expels its outer
ayersina
supernova

Short gamma-ray burst
(<2 seconds’ duration)

Stars* in
a compact
binary system »

begin to spiral
inward....
.

..eventually

Mg

colliding.
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The resulting torus
has at its center

a powerful

black hole.
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*Possibly neutron stars.




» Short /long classification and physics

J GRB 200826 A: a short GRB with evidence of association with a SN
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» Short /long classification and physics

1 GRB 211211A: a long GRB with evidence of association with a KN
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» Short /long classification and physics
1 GRB 211211A: a long GRB with evidence of association with a KN

(a) GRB 211211A: Swift/BAT (c) Fermi/GBM Catalog: o ongs.
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GRBs (from collapsing stars)
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End of Lecture 1



