Cosmic particles: the energetic elite of the Universe

Vitor de Souza vitor@ifsc.usp.br

iretituto de Fisika Gleb Wateghin

UFRJ

CBPF

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA

> Universidade Federal

Fluminense

UEFS

iii

Astroparticle Physics @ IFSC/USP

- Extragalactic sources: AGNs and Radio Galaxies
 - Cainã de Oliveira et al., The Astrophysical Journal, v. 925, p. 42, 2022.
 - Cainã de Oliveira et al., European Physical Journal C, v. 81, p. 517, 2021.
 - Rodrigo Lang et al., Physical Review D, v. 102, p. 063012, 2020.
- Data analysis and simulations
 - Edivânia Martins et al., Astroparticle Physics, v. 141, p. 102706, 2022.
 - Luan Arbeletche et al., European Physical Journal C, v. 81, p. 195, 2021.
 - Andrés Delgado et al., Astroparticle Physics, v. 124, p. 102508, 2021.
- Dark matter
 - Maria Kherlakian et al., JCAP, v. 2023, p. 025, 2023.
 - Aion Viana et al, JCAP v. 2019, p. 061-061, 2019.

+ ative participations in the Pierre Auger and CTA Collaborations.

Agenda

Introduction

Instruments

Astroparticle Physics

Particles

Cosmic Radiation:

Victor Hess measured a radition increase with altitute showing the source was extraterrestrial.

Extraterrestrial source: cosmic rays/radiation

 $E^2 = p^2 c^2 + m^2 c^4$

 $E = h\nu = \frac{hc}{\lambda}$

 $1 \text{ eV} = 1.6 \times 10^{-19}$ Joule

C. Haslam et al., MPIfR, SkyView

Planck Sattelite

$\label{eq:constraint} \begin{array}{l} \mbox{Visible light} \\ E \sim 1 \ \mbox{eV} \Leftrightarrow \lambda \sim 10^{-6} \ \mbox{m} \end{array}$

por Axel Melinger

Ultraviolet $E \sim 100 \text{ eV} \Leftrightarrow \lambda \sim 10^{-8} \text{ m}$

L. Bianchi et.al., GALEX data

X-Rays $E \sim 1500 \text{ eV} \Leftrightarrow \lambda \sim 10^{-9} \text{ m}$

ROSAT - MPE

For example, the Crab Nebula

NASA, ESA, J. Hester and A. Loll (Arizona State University)

LHAASO Coll., Science, 2021, Vol 373, Issue 6553, pp. 425-430

http://www.eso.org/ public/images/ eso0903a/

For example, Centarus A

HESS Coll. - Nature, volume 582, pages 356-359 (2020)

-10

IAG/USP Fermi-LAT

IceCube Collaboration

IceCube Collaboration

https://doi.org/10.1126/science.adc9818

Most energetic messengers

Summary of the introduction

Gamma-rays TeV and charged particles EeV are the most energetic messenger of the Universe and they are related to extreme phenomena in Nature.

Air Shower

radiation produced in the atmosphere

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Instruments we participate

PIERRE AUGER OBSERVATORY

Cosmic Rays EeV Gamma-rays TeV

Auger @ Brasil - Instrumentation

FAPESP

Anel Corretor Schmidt build in Indaiatuba/SP

27 in operation

M. de Oliveira et al. NIM A 522 (2004) 360

Equatorial coordinates - Hammer projection - E > 8 EeV

- * Galactic center
- - Galactic plane

cherenkov telescope array

cta

cherenkov telescope array

Science with the Cherenkov Telescope Array

World Scientific

The CTA Consortium

Unveil the extremes of the Universe

https://arxiv.org/abs/ 1709.07997

CTA Targets

- Improve the sensitivity in one order of magnetitude
- Widen the energy range
 - 20 GeV < E < 300 TeV
- Increase the field of view
- Improve the angular resolution
 - 1- 3 arcmin
- Flexibility in operation

- 1. CTA Galactic Plane Survey
- 2. CTA Extragalactic Survey
- 3. Exploring extreme particle acceleration in the Galaxy
- 4. Probing DM with precision measurements of the Galactic Center
- 5. CTA studies on active galaxies
- On the connection between cosmic rays and the star-formation process
- 7. Observations of clusters of galaxies
- 8. Observations of the LMC
- 9. Observations of the Cygnus region
- 10. Observation of Galactic DM dominated targets
- 11. Observations of transient phenomena

40% of the obervational time of the first 10 years

Low-energy section energy threshold of some 10 GeV

Core array mCrab sensitivity in the 100 GeV – 10 TeV domain

High-energy section 10 km² area at multi-TeV energies

CTA observation modes

very deep field

deep field

monitoring

deep field

survey mode

Telescopes

MST

LST-1: Ready and taking data

https://www.lst1.iac.es/webcams.html

Building the telescopes in Brazil

Universidade Federal do ABC

Dispositivo de ajuste

Mover toneladas com precisão de milímetros

Tecnologia brasileira Para o CTA

> Patente depositada

https://globoplay.globo.com/v/11960264/

Sensitivity

Angular Resolution

Discovery Potential

Science with the CTA:

https://arxiv.org/abs/ 1709.07997

Summary of instruments

This is how we detect the most energetic particles and radiation of the Universe.

Sensitivity: DM + GC

Slide by Werner Hofmann

Credit: ESO/Z. Bardon

Slide by Werner Hofmann

Distance about 160000 LY, known to 1%

Credit: NASA/CXC/M.Weiss

Credit: ESO/Z. Bardon

Slide by Werner Hofmann

10 x higher star formation rate compared to Milky Way

harbors some extreme stellar objects

viewed face-on, known distance

Slide by Werner Hofmann

Image Credit: Alessandro Cipolat Bares

Image Credit: Hubble Space Telescope, NASA, ESA

Image Credit: Robert Gendler / ESA/ Webb

Slide by Werner Hofmann Image Credit: Alessandro Cipolat Bares

Image Credit: Hubble Space Telescope, NASA, ESA.

ASA ESA

30 Doradus or the Tarantula Nebula

Image Credit: Robert Gendler / ESA/ Webb

Image Credit: Alessandro Cipolat Bares

SN 1987A

0

Current VHE gamma-ray view of the LMC

Pulsar Wind Nebula N157B Supernova Remnant N132D Superbubble 30 Dor C Binary LMC P3

Credit: ESO/Z. Bardon

Slide by Werner Hofmann

Image Credit: Alessandro Cipolat Bares

cta

LMC model with

- 71 SNRs
- 10 iSNRs
- 91 PWNe
- 167 pulsar halos

(see also Milky Way model)

https://doi.org/10.1093/mnras/stad1576

cta

Telescope pointing pattern: 331 pointings of 1 h each

https://doi.org/10.1093/mnras/stad1576

Dark Matter in LMC

CTA Consoritum https://doi.org/10.1093/mnras/stad1576

PROPAGATION

Distance

$$\bigotimes \int_{\epsilon_{th}}^{\infty} d\epsilon \ \eta(\epsilon, z') \ \sigma(E, \epsilon, \theta, z') \ K(E, \epsilon, \theta, z')$$

Pair-production + LIV

 $\tau(E_{\gamma}, z, \eta) =$

Distance

$$\bigotimes \int_{-1}^{1} \frac{d(\cos\theta)}{2} \qquad \text{Target} \qquad \text{Interaction}$$

$$\bigotimes_{\epsilon_{th}} \int_{\epsilon_{th}}^{\infty} d\epsilon \, \eta(\epsilon, z') \, \sigma(E, \epsilon, \theta, z') \underbrace{K(E, \epsilon, \theta, z')}_{\epsilon_{th}} = \frac{m_e c^2}{4E_\gamma K(1-K)} - \frac{\delta_1 E_\gamma^2}{4}$$
⁶⁹

R. Lang et al. Phys. Rev. D 99, 043015 (2019)

R. Lang et al. Phys. Rev. D 99, 043015 (2019)

R. Lang et al. Phys. Rev. D 99, 043015 (2019)

Raios Cósmicos EeV Astrofísica

+-

Física Partículas Raios Gamas TeV

INVARIÂNCIA DE LORENTZ

? $E^2 = p^2 c^2 + m^2 c^4$

Take away message

- CTA is launching
- Auger producing interesting results
- Even prior to launch, CTA is making many important contributions
- CTA is a great opportunities for young people
- CTA will open a new window of discoveries

EXTRAS

UHECR Propagação

Y (Mpc)

1 pc = 3 x 10¹⁶ m

J. Croningo

Emissão térmica Radiação de corpo negro

Propagação

Y (Mpc)

J. Cronin 82

 $E_{eV} < 10^{15} Z \times B_{\mu G} \times R_{pc}$

Magnetic Field

M. Hillas₈₃

Wdowczyk and Wolfendale Annu. Rev. Nucl. Part. Sci. 1989. 39: 43-71

The Gamma Ray Horizon $\gamma + \gamma \rightarrow e^+e^-$

1 pc = 3.26 anos-luz = 3,08 x 10^16 m z = 1 = 10^10 anos-luz

Cinemática das interações $a + b \rightarrow c + d$

$$p^{\mu} = \left(\frac{E}{c}, p_x, p_y, p_z\right)$$
$$p^{\mu}_a + p^{\mu}_b = p^{\mu}_c + p^{\mu}_d$$

Aproximações $E >> mc^2 \rightarrow E \sim pc$ $E_a >> E_b$

Solução

$$s = E^2 - p^2 c^2 = m^2 c^4$$

$$s_i = s_f$$

$$\begin{cases} s_i = (E_a + E_b)^2 - (\vec{p}_a + \vec{p}_b)^2 c^2 \\ s_f = (E_c + E_d)^2 - (\vec{p}_c + \vec{p}_d)^2 c^2 \end{cases}$$

Inelasticidade

Solução

$$\begin{cases} s_i = (m_a^2 + m_b^2)c^4 + 2E_a E_b \left(1 - \cos\theta_i + \cos\theta_i \left(\frac{m_a^2 c^4}{2E_a^2} + \frac{m_b^2 c^4}{2E_b^2}\right)\right) \\ s_f = (m_c^2 + m_d^2)c^4 + K(1 - K) \left(\frac{m_c^2 c^4}{K^2} + \frac{m_d^2 c^4}{(1 - K)^2}\right) \end{cases}$$

Produção de pares: $\gamma + \gamma_{CB} \rightarrow e^+ + e^-$

$$\begin{cases} m_a = m_b = 0\\ m_c = m_d = m_e \end{cases}$$

Qual a energia mínima(ϵ_{th}) de γ_{CB} para que a interação aconteça ?

$$\begin{cases} s_i = 2E_{\gamma}\epsilon_{th}(1 - \cos\theta_i) = 4E_{\gamma}\epsilon_{th}\\ s_f = 2m_ec^2 + K(1 - K)(\frac{m_ec^2}{K^2} + \frac{m_ec^2}{(1 - K)^2})\\ \epsilon_{th} = \frac{m_ec^2}{4E_{\gamma}K(1 - K)} \end{cases}$$

Qual a energia mínima ($\epsilon_t d \not\in \gamma_{OP}$ ara que a interação aconteça supondo LIV ?

$$E^{2} = p^{2}c^{2} + m^{2}c^{4} + \delta_{1}p^{3}c^{3}$$
$$s_{LIV} = E^{2} - p^{2}c^{2} = m^{2}c^{4} + \delta_{1}p^{3}c^{3}$$

$$\epsilon_{th}^{LIV} = \frac{m_e c^2}{4E_\gamma K(1-K)} - \frac{\delta_1 E_\gamma^2}{4}$$