#### Astrofísica de Objetos Compactos

#### Jaziel G. Coelho

Instituto Nacional de Pesquisas Espaciais - INPE FAPESP 2013/15088-0 Temático: Dense Matter in the Universe 2013/26258-4

jaziel.coelho@inpe.br

04 de Abril, 2017

### Quadro Geral



| Modelo de di                           | polo magnético                                                                | -                 |
|----------------------------------------|-------------------------------------------------------------------------------|-------------------|
| Período                                | Р                                                                             | Rear Provide      |
| Idade de um Pulsar                     | $t_c = P/2\dot{P}$                                                            | The second        |
| Energia                                | $\dot{E}_{rot} = -4\pi^2 I \dot{P} / P^3$                                     | Baned<br>I salari |
| Dipolo                                 | $\dot{E}_{dip} = \frac{2 \overrightarrow{m} ^2}{3c^3} \Omega^4 \sin^2 \alpha$ |                   |
| Campo Magnético                        | $B=\sqrt{rac{3lc^3}{8\pi^2R^6}}P\dot{P}$                                     | _                 |
| Estrelas de N                          |                                                                               |                   |
| $B_{NS} = 3.2 \times 10^1$             | $(P\dot{P})^{1/2}G$                                                           |                   |
| $ \dot{E}_{rot} _{NS} = 3.9 \times 10$ | $^{46}\dot{P}/P^{3} \ erg/s$                                                  |                   |

#### Zoológico de Pulsares

- Radio Pulsar:  $\sim$ 2000
- X-ray binary NSs:  ${\sim}1000$
- $\bullet~$  X-ray Isolated NSs:  ${\sim}9$
- RRATs:~70
- CCOs:~5
- SGRs/AXPs (magnetars):~23
- estrelas de quarks??? (com Márcio, Leonardo)





Particular classe de pulsares:

| Pulsares       |                       |                                  |  |  |  |
|----------------|-----------------------|----------------------------------|--|--|--|
|                | Pulsares Ordinários   | SGRs/AXPs                        |  |  |  |
| Р              | $pprox 10^{-3} s$     | (2-12)s                          |  |  |  |
| Þ              | $pprox 10^{-15}~s/s$  | $pprox (10^{-10} - 10^{-13})s/s$ |  |  |  |
| $L_X$          | $pprox 10^{30}$ erg/s | $pprox (10^{34}-10^{36})$ erg/s  |  |  |  |
| t <sub>c</sub> | $>10^6$ yr            | $pprox 10^3 \; yr$               |  |  |  |

# Nossa amostra, $P - \dot{P}$



Entendidas como:

- NS lentas  $P \approx (2 12)$ s: Canônicas
  - $M = 1.4 M_{\odot}$
  - R = 10 km
  - $I \approx 10^{45} g \ cm^2$
- Alta Luminosidade  $L_X >> \dot{E}_{rot}$ .
- Bursts e flares típicos dessas fontes são provenientes de seus altos campos magnéticos *B*.
- Powered by strong magnetic fields  $B > 10^{14}$ G.

### Dificuldades do modelo magnetar

- nenhuma medida direta do alto campo B
- SGRs de baixo campo
- emissão rádio (com Ronaldo)
- SNRs
- observações de WDs magnéticas, rápidas e massivas<sup>1</sup> (com Claudia, Sarah).

<sup>&</sup>lt;sup>1</sup>modelo alternativo - Malheiro et al. 2012, Coelho & Malheiro 2014, Cáceres et al. 2017

#### Natureza rotation-power para SGRs and AXPs<sup>2</sup>

| Canonical NS           |              |
|------------------------|--------------|
| Source                 | $B_{NS}/B_c$ |
| CXOU J010043.1-721134  | 8.9          |
| 4U 0142+61             | 3.0          |
| SGR 0418+5729          | 0.1          |
| SGR 0501+4516          | 4.2          |
| SGR 0526-66            | 12.6         |
| 1E 1048.1-5937         | 8.7          |
| 1E 1547.0-5408         | 7.2          |
| PSR J1622-4950         | 6.2          |
| SGR 1627-41            | 5.0          |
| CXO J164710.2-455216*  | 2.3          |
| 1RXS J170849.0-400910  | 10.6         |
| CXOU J171405.7-381031  | 11.3         |
| SGR J1745-2900         | 5.2          |
| SGR 1806-20            | 44.3         |
| XTE J1810-197          | 4.7          |
| Swift J1822.3-1606     | 0.3          |
| Swift J1834.9-0846     | 3.2          |
| 1E 1841-045            | 15.9         |
| 3XMM J185246.6+003317* | 0.8          |
| SGR 1900+14            | 15.8         |
| 1E 2259+586            | 1.3          |
| PSR J1846-0258         | 1.1          |



<sup>2</sup>Jaziel G. Coelho et al. A&A 599, A87 (2017)

#### Campo magético



# $L_X/\dot{E}_{rot}$ - Eficiência



#### Ondas Gravitacionais e braking index de pulsares<sup>3</sup>

- valores medidos para nove pulsares, diferem em alguns casos substancialmente do valor esperado para o mecanismo de dipolo magnético, n=3
- desacordo entre a observação e teoria indicando que a perda da energia não é a proveniente da radiação de dipolo em forma "pura", sugerindo outras contribuições
- n = 3.15 sugere que o spindown pode ser uma combinação do freio dipolar magnético com o freio devido à emissão de GWs

| Pulsar              | <b>P</b> (s) | $\dot{P} (10^{-13} \text{ s/s})$ | n                   |
|---------------------|--------------|----------------------------------|---------------------|
| PSR J1734-3333      | 1.17         | 22.8                             | $0.9 \pm 0.2$       |
| PSR B0833-45 (Vela) | 0.089        | 1.25                             | $1.4 \pm 0.2$       |
| PSR J1833-1034      | 0.062        | 2.02                             | $1.8569 \pm 0.0006$ |
| PSR B0540-69        | 0.050        | 4.79                             | $2.140 \pm 0.009$   |
| PSR J1846-0258      | 0.324        | 71                               | $2.19\pm0.03$       |
| PSR B0531+21 (Crab) | 0.033        | 4.21                             | $2.51 \pm 0.01$     |
| PSR J1119-6127      | 0.408        | 40.2                             | $2.684 \pm 0.002$   |
| PSR B1509-58        | 0.151        | 15.3                             | $2.839 \pm 0.001$   |
| PSR J1640-4631      | 0.207        | 9.72                             | $3.15 \pm 0.03$     |

<sup>3</sup>Eur. Phys. J. C 76, 481 (2016); ApJ 831, 35 (2016); JCAP 07, 23 (2016)

### A influência do QVF<sup>4</sup>

- Acredita-se que os campos magnéticos na superfície dos pulsares poderiam ser tão elevados quanto o campo magnético crítico que vem da (QED)
- não trivialidade do QVF para a descrição de pulsares.
- QVF +E<sub>d</sub>, é possvel explicar de uma forma simples e auto-consistente vários aspectos fenomenológicos de pulsares, sem a necessidade de campos supercríticos ou outros mecanismos de perda de energia.
- evolução dos campos magnéticos superficiais e da direção do dipolo magnético.

## A influência do QVF<sup>5</sup>



<sup>5</sup>ApJ 823, 2, (2016)