

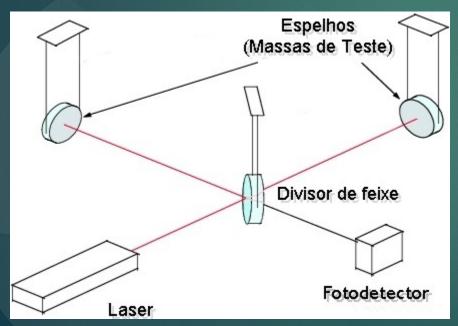
Multi-Nested Pendula

Marcio Constancio Jr.
Orientador: Odylio Denys de Aguiar *GWINPE / INPE / BRAZIL*

Apoio:

LIGO

- Laser Interferometer Gravitational-Wave;
- Hanford (Washington) e Livingstone (Louisiana) Braços de ≈ 4 Km;
- Interferômetro de Michelson;



Sistemas de Isolamento vibracional

$$h = \frac{\Delta L}{L}$$
 Amplitude adimensional!

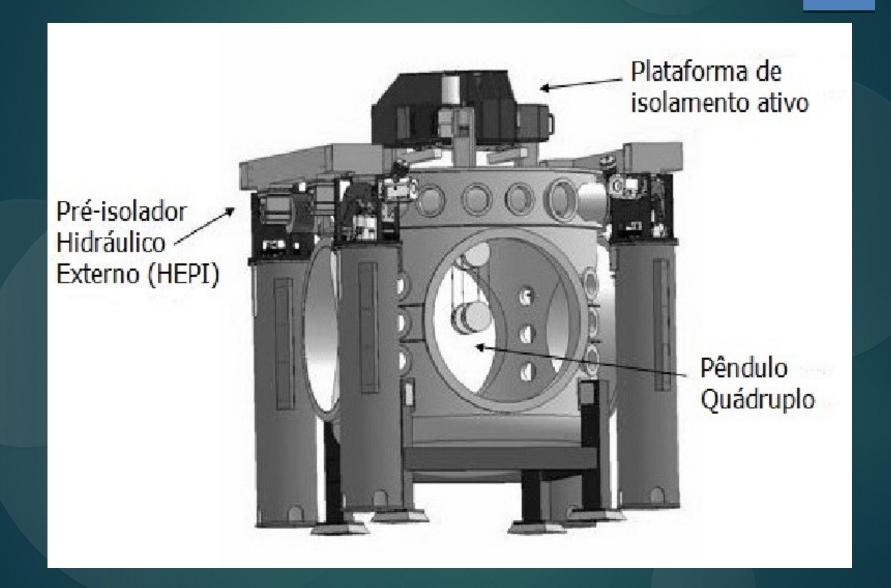
Amplitude de ondas gravitacionais são muito pequenas!

Fontes intensas podem gerar amplitudes de 10^{-21} , ou seja, equivale a detectar uma variação de 1Å entre o Sol e a Terra ($\approx 10^{11}$ m).

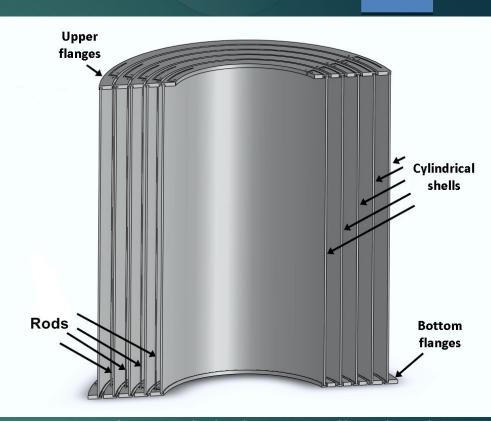
Massas de teste devem estar totalmente livres!

Dentre outras coisas, deve-se utilizar sistemas de isolamento vibracional eficientes.

Sistemas de Isolamento vibracional (LIGO)



Multi-Nested Pendula (MNP) -Sistema de isolamento vibracional aninhado



- MNP Sistema de isolamento vibracional aninhado;
- Estágios são interligados através de hastes de aço inox;
- Hastes que sai do flange superior liga-se ao flange inferior do estágio mais interno;

Objetivo

O objetivo deste projeto é criar um sistema aninhado, capaz de atenuar como um sistema em cascata.

Então precisamos mostrar que o sistema aninhado se comporta como um sistema em cascata, certo?!

Então vamos lá...

inst

RECEIVED: June 9, 2014

ACCEPTED: July 23, 2014

PUBLISHED: August 29, 2014

TECHNICAL REPORT

Do coupled nested pendula have the same eigenfrequencies as pendula in cascade?

M. Constancio Jr., a,1 O.D. Aguiar, a G. McCurrach Keiser, b,c M. Malheiro c and L.J. Rangel Lemos c,d

^aInstituto Nacional de Pesquisas Espaciais (MCTI/INPE), São José dos Campos, SP,12227-010, Brazil

^bStanford University, Stanford, CA, 94305-4085, U.S.A.

^cInstituto Tecnológico da Aeronáutica, São José dos Campos, SP, 12228-900, Brazil

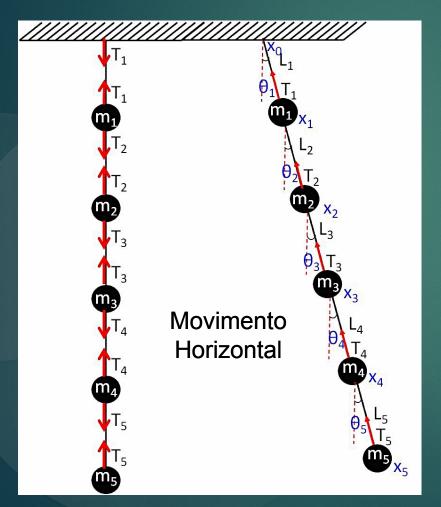
^d Universidade Federal do Tocantins, Araguaina, TO, 77.824-838, Brazil

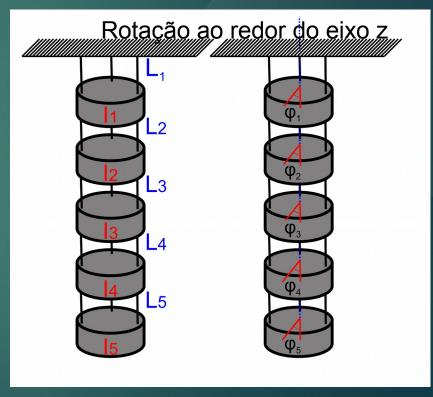
E-mail: marcio.constancio@inpe.br

Metodologia

Modelo teórico

Encontrar os modos de ressonância do sistema em cascata





Metodologia

Modelo teórico

Encontrar os modos de ressonância do sistema em cascata

$$\ddot{x}_{1} - \frac{1}{m_{1}} \left[-\left(\frac{M_{15}g}{L_{1}} + \frac{M_{25}g}{L_{2}} + K_{b1} + K_{b2} \right) x_{1} + \left(\frac{M_{25}g}{L_{2}} + K_{b2} \right) x_{2} \right] = 0$$

$$\ddot{x}_{2} - \frac{1}{m_{2}} \left[\left(\frac{M_{25}g}{L_{2}} + K_{b2} \right) x_{1} - \left(\frac{M_{25}g}{L_{2}} + \frac{M_{35}g}{L_{3}} + K_{b2} + K_{b3} \right) x_{2} + \left(\frac{M_{35}g}{L_{3}} + K_{b3} \right) x_{3} \right] = 0$$

$$\ddot{x}_{3} - \frac{1}{m_{3}} \left[\left(\frac{M_{35}g}{L_{3}} + K_{b3} \right) x_{2} - \left(\frac{M_{35}g}{L_{3}} + \frac{M_{45}g}{L_{4}} + K_{b3} + K_{b4} \right) x_{3} + \left(\frac{M_{45}g}{L_{4}} + K_{b4} \right) x_{4} \right] = 0$$

$$\ddot{x}_{4} - \frac{1}{m_{4}} \left[\left(\frac{M_{45}g}{L_{4}} + K_{b4} \right) x_{3} - \left(\frac{M_{45}g}{L_{4}} + \frac{m_{5}g}{L_{5}} + K_{b4} + K_{b5} \right) x_{4} + \left(\frac{m_{5}g}{L_{5}} + K_{b5} \right) x_{5} \right] = 0$$

$$\ddot{x}_{5} - \frac{1}{m_{5}} \left[\left(\frac{m_{5}g}{L_{5}} + K_{b5} \right) x_{4} - \left(\frac{m_{5}g}{L_{5}} + K_{b5} \right) x_{5} \right] = 0$$

$$\ddot{\varphi}_{1} = \frac{1}{I_{1}} \left[-(K_{1} + K_{2})\varphi_{1} + K_{2}\varphi_{2} \right]$$

$$\ddot{\varphi}_{2} = \frac{1}{I_{2}} \left[K_{2}\varphi_{1} - (K_{2} + K_{3})\varphi_{2} + K_{3}\varphi_{3} \right]$$

$$\ddot{\varphi}_{3} = \frac{1}{I_{3}} \left[K_{3}\varphi_{2} - (K_{3} + K_{4})\varphi_{3} + K_{4}\varphi_{4} \right]$$

$$\ddot{\varphi}_{4} = \frac{1}{I_{4}} \left[K_{4}\varphi_{3} - (K_{4} + K_{5})\varphi_{4} + K_{5}\varphi_{5} \right]$$

$$\ddot{\varphi}_{5} = \frac{1}{I_{5}} \left[K_{5}\varphi_{4} - K_{5}\varphi_{5} \right]$$

 $K_i = K_{i\text{Ten}} + K_{i\text{Tor}} + K_{i\text{bend}} = \frac{M_{i5}gr_i^2}{I_i} + 3\frac{\pi GR^4}{2I_i} + 3\frac{12EJr_i^2}{I^3}$

Consideramos uma constante de mola devido à flexão da haste e a força restauradora $x_i = A_i e^{-j\omega_i t}$ devido à gravidade.

$$(\boldsymbol{\omega}_i^2 - [\mathbf{M}])\mathbf{X} = 0$$

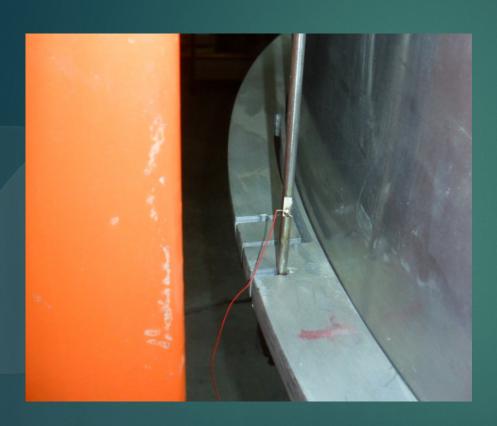
$$f_i = \frac{\sqrt{eig[M]}}{2\pi}$$

K contém termos relacionados à tensão, torção e flexão da haste.

Metodologia

O experimento

Encontrar os modos de ressonância do sistema aninhado



Medida dos modos normais de excitação do sistema através de cristais piezoelétricos colados às hastes mais externas.

Resultados

Table 3. Theoretical pendular and rotational mode frequencies calculated for a cascaded pendula and experimental pendular and rotational measured for a nested pendula.

Pendular Modes (Hz)			Rotational Modes (Hz)		
Theoretical	Measurement	ratio	Theoretical	Measurement	ratio
(cascaded)	(nested)	$\left(\frac{\text{exp.}}{\text{theo.}}\right)$	(cascaded)	(nested)	$\left(\frac{\text{exp.}}{\text{theo.}}\right)$
0.235	0.236	1.00	0.294	0.310	1.05
0.515	0.519	1.01	0.551	0.580	1.05
0.798	0.793	0.99	0.823	0.862	1.05
1.084	1.040	0.96	1.095	1.144	1.04
1.400	1.310	0.94	1.399	1.461	1.04

Há uma boa concordância entre os dados teóricos de um sistema em cascata e os dados experimentais de um sistema aninhado.

Logo, podemos considerar que o MNP substitui bem um sistema em cascata, poupando espaço vertical.

MAS...

E A FUNÇÃO DE TRANSFERÊNCIA?

Função de transferência - teórica

Das equações abaixo, podemos obter a função de transferência para o movimento horizontal e para a rotação. Basta aplicar a transformada de Laplace:

$$\ddot{x}_{1} - \frac{1}{m_{1}} \left[-\left(\frac{M_{15}g}{L_{1}} + \frac{M_{25}g}{L_{2}} + K_{b1} + K_{b2} \right) x_{1} + \left(\frac{M_{25}g}{L_{2}} + K_{b2} \right) x_{2} \right] = 0$$

$$\ddot{x}_{2} - \frac{1}{m_{2}} \left[\left(\frac{M_{25}g}{L_{2}} + K_{b2} \right) x_{1} - \left(\frac{M_{25}g}{L_{2}} + \frac{M_{35}g}{L_{3}} + K_{b2} + K_{b3} \right) x_{2} + \left(\frac{M_{35}g}{L_{3}} + K_{b3} \right) x_{3} \right] = 0$$

$$\ddot{x}_{3} - \frac{1}{m_{3}} \left[\left(\frac{M_{35}g}{L_{3}} + K_{b3} \right) x_{2} - \left(\frac{M_{35}g}{L_{3}} + \frac{M_{45}g}{L_{4}} + K_{b3} + K_{b4} \right) x_{3} + \left(\frac{M_{45}g}{L_{4}} + K_{b4} \right) x_{4} \right] = 0$$

$$\ddot{x}_{4} - \frac{1}{m_{4}} \left[\left(\frac{M_{45}g}{L_{4}} + K_{b4} \right) x_{3} - \left(\frac{M_{45}g}{L_{4}} + \frac{m_{5}g}{L_{5}} + K_{b4} + K_{b5} \right) x_{4} + \left(\frac{m_{5}g}{L_{5}} + K_{b5} \right) x_{5} \right] = 0$$

$$\ddot{x}_{5} - \frac{1}{m_{5}} \left[\left(\frac{m_{5}g}{L_{5}} + K_{b5} \right) x_{4} - \left(\frac{m_{5}g}{L_{5}} + K_{b5} \right) x_{5} \right] = 0$$

$$\ddot{\varphi_1} = \frac{1}{I_1} \left[-(K_1 + K_2)\varphi_1 + K_2\varphi_2 \right]$$

$$\ddot{\varphi_2} = \frac{1}{I_2} \left[K_2\varphi_1 - (K_2 + K_3)\varphi_2 + K_3\varphi_3 \right]$$

$$\ddot{\varphi_3} = \frac{1}{I_3} \left[K_3\varphi_2 - (K_3 + K_4)\varphi_3 + K_4\varphi_4 \right]$$

$$\ddot{\varphi_4} = \frac{1}{I_4} \left[K_4\varphi_3 - (K_4 + K_5)\varphi_4 + K_5\varphi_5 \right]$$

$$\ddot{\varphi_5} = \frac{1}{I_5} \left[K_5\varphi_4 - K_5\varphi_5 \right]$$

$$T_{PH}(\omega) = \frac{|X_5|}{|X_0|} = \frac{\sqrt{(b_0 b_3 b_6 b_9 b_{12})^2}}{\sqrt{\beta(\omega)^2}}$$

$$\beta(\omega) = (b_1 - \omega^2)(b_4 - \omega^2)(b_7 - \omega^2)(b_{10} - \omega^2)(b_{13} - \omega^2) - [b_{11}b_{12}(b_1 - \omega^2)(b_4 - \omega^2)(b_7 - \omega^2)]$$

$$- [b_8b_9(b_1 - \omega^2)(b_4 - \omega^2)(b_{13} - \omega^2)] - [b_5b_6(b_1 - \omega^2)(b_{10} - \omega^2)(b_{13} - \omega^2)]$$

$$+ [b_5b_6b_{11}b_{12}(b_1 - \omega^2)] - [b_2b_3(b_7 - \omega^2)(b_{10} - \omega^2)(b_{13} - \omega^2)]$$

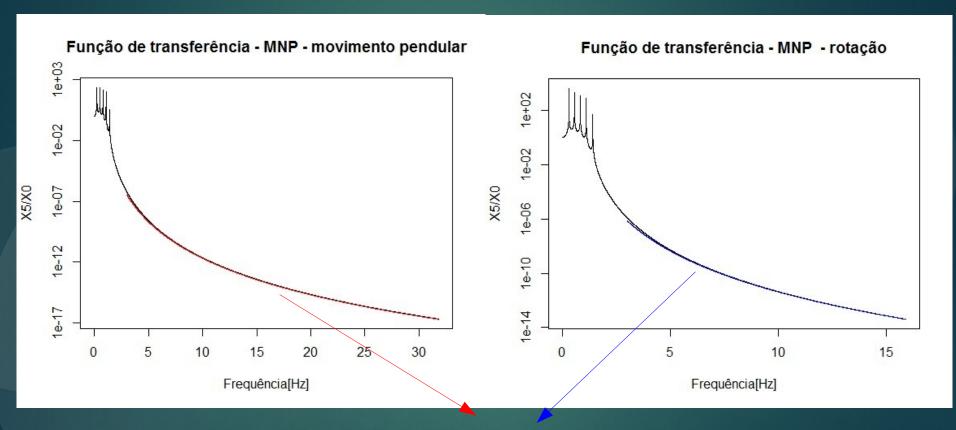
$$+ [b_2b_3b_{11}b_{12}(b_7 - \omega^2)] + [b_2b_3b_8b_9(b_{13} - \omega^2)]$$

$$T_{Yaw}(\omega) = \frac{|\varphi_5|}{|\varphi_0|} = \frac{\sqrt{(B_1 B_2 B_3 B_4 A_5)^2}}{\sqrt{\alpha(\omega)^2}}$$

$$\begin{split} \alpha(\omega) &= (A_1 - \omega^2)(A_2 - \omega^2)(A_3 - \omega^2)(A_4 - \omega^2)(A_5 - \omega^2) \\ &- (A_1 - \omega^2)(A_2 - \omega^2)(A_3 - \omega^2)C_4A_5 \\ &- (A_1 - \omega^2)(A_2 - \omega^2)(A_5 - \omega^2)C_3B_4 \\ &- (A_1 - \omega^2)(A_4 - \omega^2)(A_5 - \omega^2)C_2B_3 \\ &+ (A_1 - \omega^2)C_2C_4A_5B_3 - (A_3 - \omega^2)(A_4 - \omega^2)(A_5 - \omega^2)C_1B_2 \\ &+ (A_3 - \omega^2)C_1C_4A_5B_2 + (A_5 - \omega^2)C_1C_3B_4B_2 \end{split}$$

Função de transferência - teórica

Cujo resultado dá:



Curvas coloridas representam o ajuste (f_o/f)^{2N}

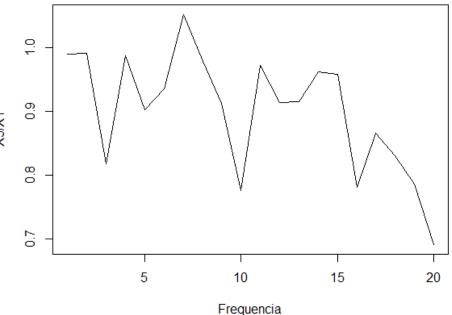
ESTE RESULTADO PARECE PROMISSOR...

O QUE OS RESULTADOS EXPERIMENTAIS MOSTRAM?

Função de transferência - Experimento

Medidas realizadas utilizando um sismômetro pertencente a um grupo de sismologia da USP não confirmam o resultado esperado.

Rotação



Conclusões

- Os modos de ressonância do sistema aninhado mostra que o sistema é equivalente a um sistema em cascata.
- O MNP simula modos equivalente a um sistema em cascata com 4,7 vezes sua altura, dessa forma poupa-se bastante espaço vertical.
- CONTUDO, a função de transferência tem-se mostrado completamente diferente do esperado.
- Atualmente estamos pesquisando quais motivos tem levado a este comportamento.
- Dentre os principais motivos está a espessura das hastes e o fato de que elas podem estar tocando dentro de pneumáticos (apresentação do ELVIS), gerando transmissão direta entre os estágios.

Obrigado!

Apoio:

Motivação

