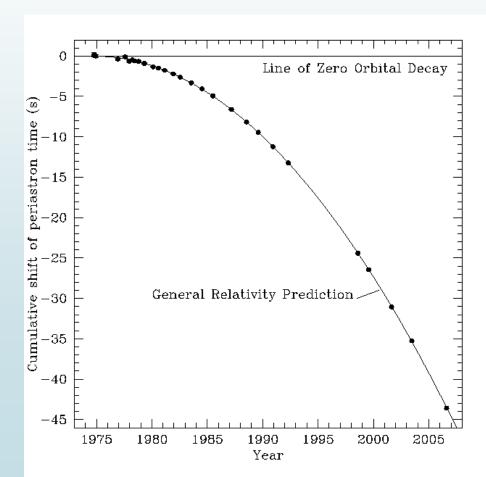
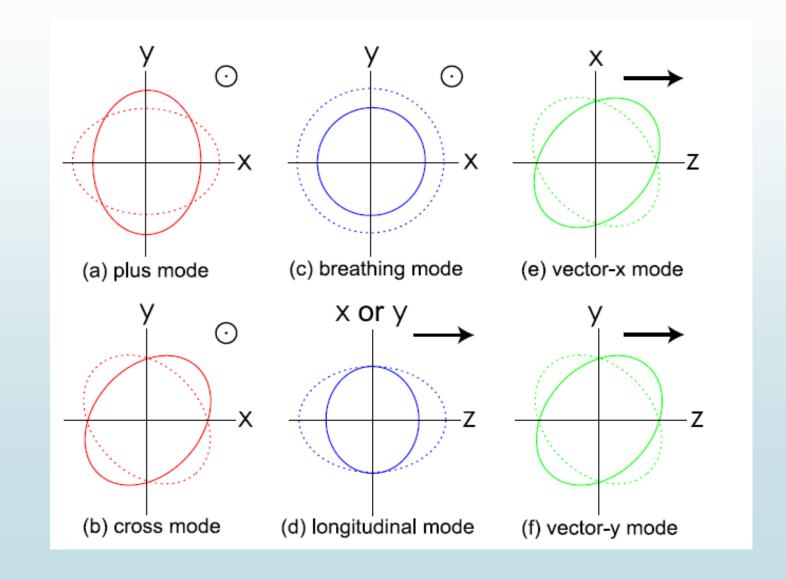
Testes para Teorias Alternativas de Gravitação


Aluna de Doutorado: Mariana C. Costa

Orientador: Dr. José Carlos N. de Araujo

VII Workshop da Pós-graduação em Astrofísica – DAS – INPE 2014

Introdução


- Relatividade Geral (RG) amplamente testada para regimes de campo fraco:
- No Sistema Solar:
 - Avanço do periélio de Mercúrio;
 - Øeflexão da luz pelo Sol.
- ► Fora do Sistema Solar:
 - Tempo de decaimento da órbita de pulsares binários;
 - Tempo de chegada do sinal de pulsares binários à Terra.

Introdução

- Testes da RG para regimes de campo forte:
- Detecção de Ondas Gravitacionais (OGs):
 - Sistemas binários de objetos compactos espiralantes.
- Espaço para teste de teorias alternativas à RG.
 - Diferentes teorias preveem diferentes modos independentes de polarização das OGs (seis modos independentes no total).
 - Se detectados modos adicionais ao X e + (únicos previstos pela RG), podem ser válidas algumas teorias alternativas.

Polarizações das OGs

Testes para Teorias Alternativas

- Cada teoria alternativa envolve uma série de parâmetros a serem obtidos experimentalmente.
- Muitas teorias → Muitos parâmetros!
- É necessário o desenvolvimento de métodos para testar diversas teorias simultaneamente.
- Desenvolvimento de formalismos que utilizam modelos gerais parametrizados:
 - Formalismo pós-Newtoniano parametrizado (ppN);
 - Formalismo pós-Kepleriano parametrizado (ppK);
 - Formalismo pós-Einsteiniano parametrizado (ppE).

Formalismo ppN

- Construído a partir de uma perturbação linear sobre o espaço de Minkowski – expansão de primeira ordem sobre o potencial gravitacional newtoniano.
- Desenvolvido para restringir parâmetros através de observações no nosso sistema solar.
- A métrica generalizada fica dada por:

$$g_{jk} = (1 + 2\gamma_{ppN}U)\delta_{jk},$$

com γ_{ppN} sendo os 10 parâmetros ppN.

Formalismo ppN

Parameter	Value in GR	Value in semi- cons. theories	What does it measure?	
$\gamma_{ m ppN}$	1	$\gamma_{ m ppN}$	How much space-time curvature is produced by a unit rest mass?	
$eta_{ m ppN}$	1	$eta_{ exttt{ppN}}$	How much "nonlinearity" is there in the superposition law for gravity	
ξ	0	ξ	Are there preferred location effects?	
$\alpha_1^{\rm ppN},\alpha_2^{\rm ppN},\alpha_3^{\rm ppN}$	0	$\alpha_1^{\rm ppN},\alpha_2^{\rm ppN},0$	Are there preferred frame effects?	
$\zeta_1^{\rm ppN},\zeta_2^{\rm ppN},\zeta_3^{\rm ppN},\zeta_4^{\rm ppN}$	0	0	Violation of mom. conservation?	

Formalismo ppK

- Construído com base nas leis de Kepler para o movimento planetário e na expansão das equações de Einstein até a primeira ordem;
- Fornece uma expressão genérica para o tempo de chegada do sinal de pulsares binários à Terra:

$$t_b - T_0 = F[\tau; \{p^K\}; \{p^{ppK}\}; \{q^{ppK}\}].$$

- Na expressão acima:
 - lacktriangle t_b é o tempo de chegada do sinal do pulsar ao baricentro do Sistema Solar;
 - \blacksquare T_0 é o época de passagem do periastro;
 - au é o tempo próprio do pulsar;
 - p^K , $\{p^{ppK}\}$ e $\{q^{ppK}\}$ são, respectivamente, os parâmetros keplerianos, póskeplerianos separadamente mensuráveis e pós-keplerianos não separadamente mensuráveis.

Formalismo ppK

$$\{p^{K}\} = \{P_{b}, T_{0}, e_{0}, \omega_{0}, x_{0}\}$$

$$\{p^{\text{ppK}}\} = \{k, \gamma, \dot{P}_{b}, r, s, \delta_{\theta}, \dot{e}, \dot{x}\}_{\text{ppK}}$$

$$\{q^{\text{ppK}}\} = \{\delta_{r}, A, B, D\}_{\text{ppK}}$$

Parameter	Effect	Measured value		
$\dot{P}_b^{\rm ppK}$	orbital decay	$-1.252(17) \times 10^{-12}$		
$r_{ m ppK}$	range of Shapiro delay	$6.21(33)(\mu s)$		
$s_{ m ppK}$	shape of Shapiro delay	0.99974(+16, -39)		
$\dot{\omega}_{ m ppK}$	periastron precession	016.89947(68)(°/yr)		
$\gamma_{ m ppK}$	gravitational red-shift	0.3856(26) (ms)		

Formalismo ppE

- Construído através de alterações nos termos de energia das equações da RG;
- Permite a construção de conjuntos de modelos para diferentes formas possíveis de OGs emitidas por sistemas binários de objetos compactos espiralantes.
- O modelo mais simples tem a forma:

$$\tilde{h}(f) = \tilde{h}^{GR} \cdot (1 + a_{ppE}u^a)e^{i\beta_{ppE}u^b}, \qquad u = (\pi M f)^{1/3},$$

sendo f a frequência, \tilde{h}^{GR} a forma da OG na RG e $M=(m_1m_2)^{3/5}/(m_1+m_2)^{1/5}$.

 a_{ppE} , a, β_{ppE} e b são os parâmetros ppE.

Formalismo ppE

Theory		$lpha_{ m ppE}$	b	$\beta_{ m ppE}$
Variable G(t)		$lpha_{ m ppE}'$	-13	β'_{ppE}
Brans-Dicke	-2	$\alpha'_{ m ppE}$ $\alpha'_{ m ppE}$	-7	β'_{ppE}
Dynamical Chern-Simons			-1	β'_{ppE}

Conclusão

- Como proposta de trabalho, pretendemos utilizar os formalismos ppN, ppK e ppE para analisar teorias de gravitação alternativas à RG.
- A utilização do formalismo ppE é de interesse especial para o grupo de Ondas Gravitacionais, devido a sua relação direta com a detecção das polarizações de OGs.

- **►** Fontes:
 - L. Sampson, N. Yunes and N. Cornish, arXiv:1307.8144v1, (2013).
 - ► K. Chatziioannou, N. Yunes and N. Cornish, Phys. Rev. D 86, 022004 (2012).
 - A. Nishizawa et al, Phys. Ver. D 79, 082002 (2009).

Obrigada!