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Abstract

This lecture note contains the introductory material of intergalactic medium, Lyman-α forest,

and 21-cm astrophysics. It is suitable for advanced undergraduate and first year graduate stu-

dents to read and study if he/she wants to enter this research field.
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Figure 1: Two important transitions of the hydrogen atom. The Lyman-α transition is the transition in

between n = 2 and n = 1 levels (n is the principal quantum number), and results in the emission of Lyman-

α photons with wavelength λα = 1.216 × 10−5 cm, corresponding to the frequency να = 2.468 × 1015 Hz.

The 21-cm transition occurs between the hyperfine states of the ground energy level (n = 1), where the

parallel align of the spin in between electron e− and proton p is on a slightly higher energy state than

anti-parallel. The resulted wavelength of transition is 21 cm, corresponding to 1420 MHz.

1 High-redshift Intergalactic Medium

In this section, we will provide an introduction to high-reshift intergalactic medium through

the measurement of neutral hydrogen absorption line in the Lyman-α forest system. Then we

introduce the 21-cm transition line for the high redshift Universe.

1.1 Lyman-α Absorption

We first study how are the baryons distributed in the Universe inferred from the famous Lyman-

α forecast measurement. Hydrogen is the most abundant element in the Universe (the mass

fraction is Xp ' 0.74, with the rest almost helium Yp ' 0.24.) The predominance of neutral hy-

drogen is now well-understood by the Big-Bang Nucleo-synthesis (BBN) theory, which effectively

combine all neutrons with protons into helium. As a result, the heavier elements are formed inside

the stars during the stellar evolution process. We expect more IGM is dominated by hydrogen

and helium than Milky Way.

Since the lifetime of hydrogen atom with energy level n > 1 is far shorter than the typical

time it takes to excite them in the rarefied environment of the Universe, most of the hydrogen is

in its ground state (lowest energy level n = 1, see Fig. 1), we denote them as Hi .

The most widely discussed transition with hydrogen is the Lyman-α spectral line which is

transition state of hydrogen from n = 2 state to n = 1 state. In 1965, Jim Gunn and Bruce

Peterson [2] realized that then cross-section of Lyman-α transition is so large that even the neutral
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Figure 2: Lyman-α forest. At the top of the panel, the light emitted from the distant quasar passes

through several clouds of neutral hydrogen before seen by an observer. The quasar emitted the a high

flux of radiation at Lyman-α resonance wavelength. As those photons travel, they are redshifted, so the

whole spectrum moves to the right. Photons beginning blue-ward of the Lyman-α transition eventually

redshift through that resonance. If the photons are inside the Lyman-α clouds, they will be absorbed by

those clouds, producing the absorption features in the spectrum. Therefore the quasar spectrum allows

us to map out the column density of IGM neutral hydrogen and ionization structure.

hydrogen fraction is as small as 10−5, the IGM could be looked opaque.

Imagine a photon is emitted at λ < λα, where λα = 1216Å. The photon wavelength will be

stretched as the Universe expands, and eventually its wavelength is lengthened close to Lyman-

α resonance wavelength. Then it could be absorbed by a hydrogen atom and re-emitted in a

different direction. We will therefore need to integrate all the way across resonance line to

compute the optical depth.

1.1.1 Lyman-αCross-section

The full cross-section for a single atom is

σα(ν) =
3λ2

αΛ2
α

8π

(ν/να)4

4π2(ν − να)2 + (Λ2
α/4)(ν/να)6

, (1.1)

where να = (c/λα) = 2.468×1015 Hz is the Lyman-α resonance frequency, Λα = 8π2e2fα/(3mecλ
2
α) =

6.25× 108 s−1 is the Lyman-α (2p→ 1s) decay rate, fα = 0.4162 is the oscillation strength. This

is the formula for classical Rayleigh scattering.

In principal, the thermal velocity of IGM also has a finite spread, but those spread is small

comparing to the cosmological redshift, so we safely ignore them.

Since we are mostly interested in absorption close to the resonance, we take the limit of ν → ν0

and write

σα(ν) =
3λ2

αΛα
8π

·
[

1

π

(Λα/4π)

(ν − να)2 + (Λα/4π)2

]
. (1.2)

Since να � Λα, we can use one of the definition of Dirac delta function

δD(x) =
1

π
lim
ε→0

ε

x2 + ε2
, (1.3)
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Figure 3: Observations of the 19 quasar spectra from Slogan Digital Sky Survey in between redshift

5.74 < z < 6.42. For those high-reshift quasars, the spectra show no transmitted flux at the wavelength

shortward of the Lyman-αwavelength at the quasar redshift. This is the so-called Gunn-Peterson trough

which indicates the slight increase of the density of Hi in the IGM. Figure taken from [1].
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and convert the optical depth to be

σα(ν) =
3λ2

αΛα
8π

δD(ν − να)

=
πe2

mec
fαδD(ν − να)

≡ σ0ναδD(ν − να), (1.4)

where

σ0 =
πe2λαfα
mec2

' 4.15× 10−18 cm2. (1.5)

1.1.2 Radiative Transfer, Lyman-α optical depth

Let us suppose a total flux of light F , transverse a region with size ∆l with neutral hydrogen

density nHi , the flux will lose an amount

∆F = −FnHi σα∆l. (1.6)

Integrated it over, we have

F out = F0e
−

∫
nHi σαdl = F0e

−τ , (1.7)

where F0 is the unattenuated flux, and we define the optical depth as an integration along line-

of-sight towards us

τ ≡
∫ l

0
nHi σα(ν)dl, (1.8)

where the integral is over the proper length dl. We need to relate dl to dz and then dν to carry

out the integral. First we have

dl = cdt = c
dt

da
da =

c

H(z)

da

a
. (1.9)

Then since νobs/ν = a, we have

τ =

∫
nHi (a)σα (νobs/a)

c

H(a)

da

a

=

∫
nHi (a)σ0ναδD (νobs/a− να)

c

H(a)

da

a

= nHi (z)σ0
c

H(z)

= nHi (z)σ0
c

H0

1

E(z)
, (1.10)

where we have used the fact that να/νobs = (1 + z).
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Now we can write

nHi (z) =

(
nHi

nH

)(
nH

n̄H

)
n̄H(z)

= xHi (1 + δ)

[
XpΩbρcr(1 + z)3

mp

]
. (1.11)

Then we substitute Eq. (1.11) into Eq. (1.10), and use the fact that at high redshift E(z) =[
Ωm(1 + z)3 + ΩΛ

]1/2 ' Ω
1/2
m (1 + z)3/2, we obtain

τ = 1.6× 105 xHi (1 + δ)

(
Ωmh

2

0.147

)−1/2(
Xp

0.75

)(
Ωbh

2

0.023

)(
1 + z

4

)3/2

, (1.12)

which is the well-known Gunn-Peterson optical depth. One can see that Lyman-α cloud is very

efficient in absorbing photons, and even a small fraction of xHi (e.g. xHi ∼ 10−5) would absorb

photons very efficient, producing a large value of optical depth (IGM is opaque). The IGM

optical depth can be enormous even if the neutral fraction is small. Any transmission across

those wavelength is therefore evidence that the diffuse IGM is highly ionized.

It is possible to use higher order Lyman series lines, see Ref. [3], but you only gain a factor of

∼ 20 by going into Lyman-γ and higher order lines are exceedingly hard to measure accurately

because they blend with lower redshift Lyman-α absorptions.

1.1.3 Lyman-α forest

In the usual cases, the IGM absorption is observed against a luminous background, such as a

bright quasar or bright gamma-ray burst afterglow. The source emitted photons over an extended

continuum, which allows us to see absorption features over a range of wavelength. If the source is

located at redshift zs, then its Lyman-α transition appears at an observed wavelength λα(1 + zs).

Photons redward of this point will be even stretched to longer wavelength, so they will never enter

resonance with Lyman-α line in the IGM (though they might be absorbed by other elements).

Photons blueward of this point eventually redshift into resonance and are absorbed if the gas

is not too highly ionized. Each such photon redshifts into resonance at a particular distance from

the observer and the source that depends on its initial wavelength: photons emitted blueward

of Lyman-α in the source frame travel a great distance before their wavelength redshifted into

1216Å, but those emitted just blueward of it reach the resonance near the source. Therefore,

each observed wavelength samples a different point along the line of sight, this is illustrated in

Fig. 2.

The resulting Lyman-α forest is so named because of the strong variability of these absorption

features (Fig. 3). The redward of 1216Å(in the source frame), the quasar continuum is largely

unaffected by the IGM, but the blueward of Lyman-α has a highly variable absorption feature

that depends on the detailed structure along the line of sight. These features are due to the fact

that a line of sight passes through sheets, filaments, voids of the cosmic web, so the optical depth

fluctuates.
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1.1.4 Gunn-Peterson trough

If a source is observed along the line of sight where the neutral hydrogen fraction is substantial,

then all photons with wavelength shorter than λα(1 + zs)Åwould redshift to resonance, and are

absorbed by the IGM, and re-emitted into the other direction. Eventually this process would

result in a complete absorption trough blueward of λα in the source spectrum, which is known as

Gunn-Peterson trough.

In Fig. 3, we show the spectra of 19 quasars at redshift z ∼ 6. The spectra of highest z ∼ 6

show the hint of Gunn-Peterson effect. However, we cannot use it to infer whether the IGM is

highly ionized or not, because as we can see from Eq. (1.12), only a tiny fraction of xHi can make

the optical depth enormous.

The feature of spectral line is that each observational wavelength corresponds to a different

distance to us, the other spectral line also has the similar feature.

1.2 21-cm Line

As the powerful tools to study the high redshift Universe, comparing the 21-cm transition, the

Lyman-α transitions have the following advantages and disadvantages. The advantages are

• Comparing to 21-cm transition of spin-flip, the Lyman-α transition is is several orders of

magnitude stronger than this.

The disadvantages are

• The enormous cross-section. The Gunn-Peterson optical depth is so large that even a small

neutral hydrogen fraction would end up in an enormous optical depth, making it difficult

to study the detail behaviour of hydrogen ionization.

• Since Lyman-α transition lies in the UV band, observing it requires bright UV sources

which are rare at high redshifts, limiting the Lyman-α forest study to be only applicable to

a limited number of line of sight.

• The high excitation energy of the Lyman-α transition prevents us from using it to study

the cold pre-reionization of IGM, because the temperature of IGM before reionization is

too low to collisionally excite the Lyman-α line.

To overcome these disadvantages, we can search for a weaker, lower-energy transition of

neutral hydrogen, which is the spin-flip or hyperfine structure of Hi (Fig. 1). So the transition

between parallel and anti-parallel state of neutral hydrogen corresponds to the energy which

photon’s wavelength is 21-cm. The effective optical depth is roughly 1%, which makes the entire

neutral IGM accessible during the cosmic dawn.

Figure 4 illustrates the observable effect of 21-cm transition with analogy to Swiss cheese.

Each slice of cheese has a different structure, depending on where the air bubbles happen to lie

within it. By slicing the Swiss cheese, the full map of distribution of Hi as a function of redshift

would provide a 3D image of the the Swiss-cheese structure. So the tomography of the Hi volume

provides the only way to map the distribution almost entire Universe’s baryonic matter.
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Figure 4: A diagram of 21-cm imaging of ionized bubbles during the epoch of reionization, illustrating

to an analogy of slicing Swiss cheese. The two dimensions on each slice is the sky coordinates, and the

dimension of slicing is the frequency/wavelength/redshift.

Figure 5 is the cartoon version of the different phases of 21-cm. Figure 6 shows a more

concrete and quantitative overview of the evolution of global (sky-averaged) 21-cm brightness

temperature relative to the CMB. One can see that the spin-flip background measures the UV

and X-ray radiation field over a broad swath of cosmic history, complementing the discrete probes

of individual galaxies that are studied by Lyman-α forest.

1.2.1 Preliminary: Einstein coefficients and emission process

In 1916, Albert Einstein proposed that there are three processes occurring in the formation of an

atomic spectral line. The three processes are referred to as spontaneous emission, stimulated

emission, and absorption (Fig. 8). With each is associated an Einstein coefficient which is a

measure of the probability of that particular process occurring. Einstein considered the case of

isotropic radiation of frequency ν, and spectral energy density ρ(ν).

1. Spontaneous emission is the process by which an electron “spontaneously” (i.e. without

any outside influence) decays from a higher energy level to a lower one (left upper panel

of Fig. 8). The process is described by the Einstein coefficient A10 (s−1) which gives the

probability per unit time that an electron in state 1 with energy E1 will decay spontaneously

to state 0 with energy E0, emitting a photon with an energy E1 − E0 = hν. If ni is the

number density of atoms in state i, then the change in the number density of atoms in state

1 per unit time due to spontaneous emission will be:(
dn1

dt

)
spon

= −A10n1, (1.13)
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Figure 5: Cartoon of different phases of the 21-cm signal. The signal transitions from the an early phase of

collisional coupling to a later phase of Lyman-α coupling through a short period where there is little signal.

Fluctuations after this phase are dominated by spatial variation in the Lyman-α , X-ray and ionizing UV

backgrounds. After reionization is completed, there is residual signal from neutral hydrogen in the galaxies.

Figure taken from [5].

Figure 6: Overview of the global 21-cm signal. Top panel: Time evolution of fluctuations in the 21-cm

brightness from just before the first stars form to the end of reionization. The colour indicates the strength

of the 21-cm brightness as it transits from absorption (blue) to emission (red) and finally disappear (black)

due to ionization. Bottom panel: Expected evolution of the sky-averaged 21-cm brightness from the dark

ages at z ' 150 to the end of reionization z ' 6. This process is affected by the interplay of gas heating,

the coupling between gas and 21-cm temperatures and ionization of gas. There is a lot of astrophysical

uncertainties associated with this process. Figure taken from [6].
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Figure 7: The 21-cm global signal as a function of redshift, for the 193 different astrophysical models,

by varying cooling channel, star formation efficiency (f∗), X-ray efficiency of X-ray sources (fX), spectral

energy distribution of X-ray sources (SED), and the total CMB optical depth (τ). The color (see the color

bar on the right) indicates the ratio between the Lyman-α intensity (in units of erg s−1 cm−2 Hz−1 sr−1)

and the X-ray heating rate (in units of eV s−1 baryon−1) at the minimum point. Figure taken from [4].

Figure 8: Schematic diagram of atomic spontaneous emission, stimulated emission and absorption.
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where the same process results in increasing of the population of the state 0:(
dn0

dt

)
spon

= A10n1, (1.14)

2. Stimulated emission (also known as induced emission) is the process by which an electron

is induced to jump from a higher energy level to a lower one by the presence of electromag-

netic radiation at (or near) the frequency of the transition (right upper panel of Fig. 8). This

process is regarded as negative absorption (or inverse absorption). The process is described

by the Einstein coefficient B10 (J−1m3s−2), which gives the probability per unit time per

unit spectral energy density of the radiation field that an electron in state 1 with energy E1

will decay to state 0 with energy E0, emitting a photon with an energy E1−E0 = hν. The

change in the number density of atoms in state 0 per unit time due to induced emission

will be: (
dn0

dt

)
stim

= B10n1ρν , (1.15)

again, for conservation (
dn1

dt

)
stim

= −B10n1ρν , (1.16)

where ρν denotes the spectral energy density of the isotropic radiation field at the frequency

of the transition, i.e.

ρν =
8πhν3

c3

1

ehν/kBT − 1
≡ F (ν)Nγ , (1.17)

where we have defined F (ν) = 8πhν3/c3 and photon occupation numberNγ = 1/(exp(hν/kBT )−
1) in the above equation.

3. Absorption is the process by which a photon is absorbed by the atom, causing an electron

to jump from a lower energy level to a higher one (see lower panel of Fig. 8). The process is

described by the Einstein coefficient B01 (J−1m3s−2), which gives the probability per unit

time per unit spectral energy density of the radiation field that an electron in state 0 with

energy E0 will absorb a photon with an energy E1−E0 = hν and jump to state 1 with E1.

The change in the number density of atoms in state 0 per unit time due to absorption will

be: (
dn0

dt

)
absor

= −B01n0ρν . (1.18)

Note that from the MaxwellBoltzmann distribution we have for the number of excited atomic

species i

ni
n

=
gie
−Ei/kBT

Z
, (1.19)
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where n is the total number density of the atomic species, excited and unexcited, gi is the

degeneracy (also called the multiplicity) of state i, and Z is the partition function.

In the thermodynamic equilibrium, detailed balance (valid only at equilibrium) requires that

the change in time of the number of atoms in level 0 (or 1) due to the above three processes be

zero, i.e. (
dn0

dt

)
total

= A10n1 +B10n1ρν −B01n0ρν = 0. (1.20)

Then we substitute Eq. (1.19) and Eq. (1.17) into the above equation, we can arrive:

A10g1(ehν/kBT − 1) +B10g1F (ν) = B01g0F (ν)ehν/kBT . (1.21)

This equation must valid at any given temperature, therefore

B01g0 = B10g1, (1.22)

and

A10g1 = B10g1F (ν). (1.23)

Therefore, we arrive

B10

B01
=
g0

g1
,
A10

B10
= F (ν) =

8πhν3

c3
. (1.24)

For the ground state and first excitation state of 21-cm neutral hydrogen, g1/g0 = 3, i.e.

B10/B01 = 1/3.

Therefore, if we count all three processes, in the frame of the gas, the net change in the

number of photons per unit volume with energy in between E and E + dE propagating within a

solid angle dΩ in proper time dt is

dnemit =
dΩ

4π
[A10n1 +B10n1ρν −B01n0ρν ] dtdEδ(E − E21), (1.25)

then we substitute Eqs. (1.24) and (1.17) into the above equation and simplify, one can reach

dnemit =
1

4π
A10 [n1 + (n1 − 3n0)Nγ ] dtdEδ(E − E21)dΩ, (1.26)

which is Eq. (2.1).

1.2.2 Radiative Transfer

More radiative transfer to be added in.

The brightness temperature of 21-cm can be written as

δTb(ν) =
Ts − Tγ
1 + z

(1− e−τν0 )

≈ 27xHi (1 + δb)

(
H

dvr/dr +H

)(
1− Tcmb

Ts

)(
1 + z

10

0.15

Ωmh2

)1/2(Ωbh
2

0.023

)
mK,

(1.27)
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Figure 9: Evolution of spin temperature Ts, gas temperature TK and CMB temperature Tγ . This figure

is taken from [11].

where Ts is the gas spin temperature, τν0 is the optical depth at the 21-cm frequency ν0, δb(x, z) ≡
ρ/ρ̄−1 is the evolved (Eulerian) density contrast of baryons, H(z) is the Hubble parameter, dvr/dr

is the comoving gradient of the line of sight component of the comoving velocity, and all quantities

are evaluated at redshift z = ν0/ν − 1. Therefore the brightness temperature of 21-cm is very

sensitive to the spin temperature of gas and CMB temperature [11]. In addition, we have marked

the factors that are related to cosmology as red, and factors that are astrophysical determined as

blue. Once can see the rich dependence of astrophysics and cosmology for this global brightness

temperature.

1. Collisional coupling; T̄k = T̄s ≤ Tcmb: At high redshifts, the IGM is dense, so the spin

temperature is collisionally coupled to the gas kinetic temperature. The gas temperature is

originally coupled to the CMB, but after decoupling cools adiabatically as ∝ (1+z)−2, faster

than the CMB. The 21-cm brightness temperature offset from the CMB in this regime starts

at zero, when all three temperatures are equal, and then becomes increasingly negative as Ts

and Tk diverge more and more from Tcmb. The fluctuations in δTb are driven by the density

field, as collisional coupling is efficient everywhere In the fiducial model, this corresponds

to z & 100.

2. Collisional decoupling; T̄k < T̄s < Tγ : The IGM becomes less dense as the Universe ex-

pands. The spin temperature starts to decouple from the kinetic temperature, and begins

to approach the CMB temperature again, thus δTb starts rising towards zero. Decoupling

from Tk occurs as a function of the local gas density, with underdense regions decoupling

first. The power spectrum initially steepens, as small-scale density fluctuations drive the

additional fluctuations of the collisional coupling coefficient. As the spin temperature in

even the overdense regions finally decouples from the kinetic temperature, the power spec-
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trum flattens again, and the mean signal drops as T̄s → 0. In the fiducial model, this epoch

corresponds to 35 . z . 100.

3. Collisional decoupling → WF coupling transition; T̄k < T̄s ≈ Tγ : As the spin

temperature throughout the IGM decouples from the kinetic temperature, the mean signal

is faint and might disappear, if the first sources wait long enough to ignite. In the fiducial

model, this transition regime doesn’t really exist. In fact our first sources turn on before

the spin temperature fully decouples from the kinetic temperature.

4. WF coupling; T̄k < T̄s < Tγ : The first astrophysical sources turn on, and begin coupling

the spin temperature of the nearby IGM to the kinetic temperature through the WF effect

(Lyα coupling), i.e. the UV resonant scattering couples Ts to Tk. As the requirements for

Lyα coupling are more modest than those to heat the gas through X-ray heating, the kinetic

temperature keeps decreasing in this epoch. The mean brightness temperature offset from

the CMB starts becoming more negative again and can even reach values of δTb < −100

mK. In the fiducial model, this epoch corresponds to 25 . z . 35.

5. WF coupling → X-ray heating transition; T̄k ∼ T̄s < Tγ : Lyα coupling begins

to saturate as most of the IGM has a spin temperature which is strongly coupled to the

kinetic temperature. The mean spin temperature reaches a minimum value, and then begins

increasing. A few underdense voids are left only weakly coupled as X-rays from the first

sources begin heating the surrounding gas in earnest, raising its kinetic temperature. The

21-cm power spectrum steepens dramatically as small-scale overdensities now host hot gas,

while on large scales the gas is uniformly cold as Lyα coupling saturates. As inhomogeneous

X-ray heating continues, the large-scale power comes back up. In our fiducial model, this

transition occurs around z ∼ 25.

6. X-ray heating; T̄k = T̄s < Tγ : X-rays start permeating the IGM. The fluctuations in δTb

are now at their maximum, as regions close to X-ray sources are heated above the CMB

temperature, δTb > 0, while regions far away from sources are still very cold, δTb < 0. A

“shoulder” in the power spectrum, similar to that seen in the epoch of reionization, moves

from small scales to large scales. X-rays eventually heat the entire IGM, and 21-cm can

only be seen in emission. The power spectrum falls as this process nears completion. In

our fiducial mode, this epoch corresponds to 18 . z . 25.

7. X-ray heating → reionization transition; T̄k = T̄s > Tγ : X-rays have heated all of

the IGM to temperatures above the CMB. The 21-cm signal becomes insensitive to the

spin temperature. Emission in 21-cm is now at its strongest before reionization begins in

earnest. The 21-cm power spectrum is driven by the fluctuations in the density field. In

our fiducial model, this epoch corresponds to 16 . z . 18.

8. Reionization : Ionizing photons from early generations of sources begin permeating the

Universe, wiping-out the 21-cm signal inside ionized regions. The power spectrum initially

drops on large scales at x̄Hi & 0.9 as the first regions to be ionized are the small-scale

overdensities. The mean signal decreases as Hii regions grow, and the power spectrum is
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governed by Hiimorphology. This epoch can have other interesting features depending on

the detailed evolution of the sources and sinks of ionizing photons, as well as feedback

processes, but as the focus of this section is the pre-reionization regime, we shall be brief

in this point. In our fiducial model, this epoch corresponds to 7 . z . 16. So eventually

all gases have been ionized and there is no source to provide kinetic temperature, the Ts

comes back to TCMB.

The reason that step 6 is later than step 4 is because the X-rays is only emitted when the

violent astrophysics starts to happen inside the galaxies, so it takes some time for structure to

form. It also takes some time for emitted X-rays to be absorbed by the Hi .

The late time 21-cm intensity mapping signal comes out of the Hi synthesized during structure

evolution.

2 Low-redshift Universe: 21-cm Intensity Mapping

In the following calculation we take c = 1, and metric convention (+,−,−,−).

2.1 21-cm Brightness Temperature

Much of the following materials are presented in [8], but here we present a more detail calculation

through each step. Let the rest-frame (proper) number density of neutral hydrogen atoms at

redshift z along some line-of-sight be nHi , with a fraction n1/nHi being in the excited states and

n0/nHi in the singlet state of the 21-cm hyperfine transition. One should notice that the excited

state has S = 1 thus it has three degenerated state 2S + 1. Therefore, the net change in the

number of photons per volume with energy between E and E + dE propagation within a solid

angle dΩ in proper time dt due to 21-cm transition is

dnemit =
1

4π
[(n1 − 3n0)Nγ + n1]A10δ(E − E21)dEdtdΩ, (2.1)

where A10 ' 2.869× 10−15s−1 is the spontaneous emission coefficient, and E21 = 5.88µeV is the

rest-frame energy of 21-cm photon. Nγ is the photon occupation number, and in the Black-body

case, it is in the Planck form Nγ =
(
ehν/kBTrad − 1

)−1
=
(
eT21/T − 1

)−1
. The first term (n1Nγ)

is the stimulated emission, where the incident photons causing the first excited state to emit a

photon and jumps into ground state, and it also has the inverted process where the ground state

atom absorbs a photon and jumps up to the first excited state. The second term −3n0Nγ is

the absorption term which corresponds to the case where a ground state atom absorbs photon

and jumps onto first excitation state. The third term n1 is just the spontaneous emission from

1 → 0. One can verify that, in case of thermal equilibrium (n1/n0 = 3e−T21/T ) the square

bracket in Eq. (2.1) is equal to zero, i.e. no emission at all. The detail derivation is shown in

Appendix 1.2.1.

The level of population defined by the spin temperature Ts by n1/n0 = 3e−T21/Ts , where

T21 ≡ E21/kB = 0.068K. We assume that the radiation field consists of CMB and addition

21-cm photons. At low redshift TK ' Ts � TCMB � T21. In this limit, n1 ' 3n0, therefore
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Figure 10: The congruence of the light-ray bundles, the area of wavefront and the observer’s focal plane.

nHi = (4/3)n1. Equation (2.1) becomes

dnemit '
3

16π
nHiA10δ(E − E21)dEdtdΩ, (2.2)

which is independent of spin temperature. Note that dnemit defined by Eqs. (2.1) and (2.2) have

the dimension of number density.

The number of photons collected by an observer with 4-velocity ua along the line-of-sight n̂,

with energies between E and E + dE in an area dA subtending a solid angle at the observer of

dΩ in a proper time dt is

dnrec = f(E, n̂)E2dEdΩdAdt, (2.3)

note that because photon distribution function f(E, n̂) has the unit of 1/h3
p, the dnrec is dimen-

sionless. Therefore, in order to relate dnemit and dnrec, we need to multiply a dV factor onto

dnemit.

We relate the dnrec and dnemit by considering the propagation of the bundle of null geodesics

that focus on the observer. Referring to Fig. 10, one can see that dÃ is the invariant2 area of

the wavefront, i.e. the surface of the constant phase at null surface, orthogonal to the central

ray. So dÃ is the observer’s area at given point xa. ka = dxa/dλ is the wave vector and xa is

the spacetime position along the light ray. In an interval of affine parameter dλ, the wave-front

sweeps a volume dÃuaskadλ, where uas is the source 4-velocity. Note that the volume is observer-

dependent, and dÃdxa = dÃkadλ is the volume at each position of the beam, and dÃuaskadλ is

the volume projected onto the source system, i.e. volume measured by the source. One can easily

see this recovers the ordinary volume in Minkowski spacetime, because in Minkowski spacetime,

if the source is at rest, uas = (1, 0, 0, 0). This is because the uaS is just the tangential vector along

the source worldline, i.e.

uaS =

(
∂

∂τ

)a
S

=

(
∂

∂t

)a( dt

dτ

)
+

(
∂

∂xi

)a(dxi

dτ

)
, (2.4)

2dÃ is invariant under Lorentz transformation, independent of local observer, because dÃ = detDodΩo.
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where the second term is zero because of at rest. Thus,

dÃuaskadλ = dÃ

(
dt

dλ

)
dλ = dÃdt = dV. (2.5)

Now we can relate Eq. (2.2) with Eq. (2.3), we first multiply with the volume (remember the

dimension is different between the two, dV is the local volume, and dnemit is the photons emitted

per volume), and note that Eq. (2.2) is about everything from the emission point

dnrec =

∫
dV dnemit

=

∫
(dÃkau

a
s dλ)

(
3

16π

)
nHiA10δ(Ee − E21)dEedtedΩ̃, (2.6)

where Ee is the emitted energy, which is related to the measured energy (redshifted energy) E

by Ee = E(1 + z). dte is the increment of time at the source, which is related with the time

measured by observer at z = 0 with dte = dt/(1 + z). dΩ̃ is the solid angle of the observer’s area

(focal plane) dA measured from the source. Now we substitute these relations into Eq. (2.6), we

have

dnrec =
3

16π

∫
dλ

[
nHiA10δ (E(1 + z)− E21)× dE(1 + z)

dt

1 + z
kau

a
s dΩ̃dÃ

]
. (2.7)

We now use the relation dλ = |dλ/dz|dz, and the following Dirac-delta function property

δ(E(1 + z)− E21) =
δ
(
z − E21−E

E

)
E

, (2.8)

and kau
a
s = E21 (energy of the photon measured from the source) and E21/E = 1 + z to simplify

the above equation. Then Eq. (2.7) becomes

dnrec =
3

16π
nHiA10(1 + z)

∣∣∣∣dλdz

∣∣∣∣dEdtdΩ̃dÃ. (2.9)

Now we use the reciprocity relation (Sec. A) dÃdΩ̃ = dAdΩ/(1 + z)2, and again E21/E = 1 + z,

to combine Eq. (2.9) with Eq. (2.3), and we obtain

f(E, n̂) =
3

16π

nHiA10(1 + z)

E2
21

∣∣∣∣dλdz

∣∣∣∣ . (2.10)

In Rayleigh-Jeans regime, kBTb = h3
pEf/2, where hp is Planck constant 3. It follows that

Tb(z, n̂) =
3

32π

h3
pnHiA10

kBE21

∣∣∣∣dλdz

∣∣∣∣ . (2.11)

Now if we only consider FRW universe, i.e. ignoring perturbation, then the affine parameter

λ can be arbitrarily re-scaled, but it needs to be fixed at the source since kau
a
s = E21. Note

3This is because f(x,p) =
2/h3

p

exp(E/(kBTb))−1
, where h3

p is to make sure
∫
fd3xd3p is dimensionless, and factor of

2 is due to that photon has two polarization state. In Rayleigh-Jeans regime, exp(x) ' 1 +x so one can obtain the

equation in the text.
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that |dλ/dz| in Eq. (2.11) is at emission point, and each 21-cm emission has fixed energy E21,

therefore ∣∣∣∣dzdλ

∣∣∣∣
e

=

∣∣∣∣ d

dλ

(
1

a

)∣∣∣∣ =

∣∣∣∣− ȧ

a2

dη

dλ

∣∣∣∣ =

∣∣∣∣Ha dη

dλ

∣∣∣∣ = H

∣∣∣∣dηdλ

∣∣∣∣
e

= H
( ε
a2

)
e

= H

(
E

a

)
e

= H(1 + z)E21, (2.12)

where at the second line we have used the definition of photon 4-momentum, i.e. Eq. (2.31) with

ψ = 0.

Now we substitute Eq. (2.12) into Eq. (2.11) and adding on c3 to make correct the dimension

to be in temperature, we have

T b(z) =

(
3

32π

)
(hpc)

3nHiA10

kBE2
21(1 + z)H(z)

. (2.13)

We then use

nHi = nHi (z) =
ΩHi (z)ρc(0)

mp

1

a3
=

ΩHi (z)ρc(0)

mp
(1 + z)3, (2.14)

where ΩHi (z) is the comoving mass density in Hi in unit of current critical density. By substituting

Eq. (2.14) into Eq. (2.13), we obtain

T b(z) = 0.188K (ΩHi (z)h)
(1 + z)2

E(z)

= 0.127

(
h

0.7

)(
ΩHi (z)

10−3

)(
(1 + z)2

E(z)

)
mK, (2.15)

which is clear of its cosmological parameter dependence. For the most general case where curva-

ture is non-zero and dynamical dark energy,

E(z) =
[
Ωm(1 + z)3 + Ωk(1 + z)2 + Ωde(1 + z)3(1+w0+wa)e−3waz/(1+z)

]1/2
, (2.16)

where Ωm + Ωk + Ωde = 1 [7]. The above z dependence on dark energy is because, for CPL

parametrization, w(a) = w0 + wa(1− a),

ρde(a) = ρde0a
−3(1+w0+wa)e3wa(a−1). (2.17)

2.2 Relativistic Perturbation to 21-cm brightness temperature

The above Eqs. (2.13) and (2.15) are for the average brightness of 21-cm emission. Now we want

to calculate the perturbation of the brightness temperature so that we can do power spectrum

estimation and cross-correlation studies.
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2.2.1 Metric perturbation

In the following we only consider the the spacetime metric with sign (+,−,−,−). The most

general perturbation to the background metric is

ds2 = a2(η)
(
(1 + 2ψ)dη2 − 2Bidx

idη − [(1− 2φ)δij + 2Eij ] dx
idxj

)
, (2.18)

where the coordinate transformation is like

xi → x
′i, Bi →

∂xj

∂x′i
Bj , Eij →

∂xk

∂x′i
∂xl

∂x′j
Ekl, (2.19)

and Eij is a symmetric (Eij = Eji) and trace-free (δijEij = 0) three-tensor.

2.2.2 Orthogonal Frame Vectors

It is very useful to construct explicitly an orthonormal frame of 4-vectors, (E0)µ and (Ei)
µ, in the

perturbed metric (the upper index µ is known as Penrose Abstract Index). Taken the timelike

(E0)µ to be the 4-velocity uµ of an observer at rest relative to the coordinate system. It follows

that (E0)µ must be parallel to δµ0 and normalizing gives, at linear order

(E0)µ = a−1(1− ψ)δµ0 , (2.20)

since then

gµν(E0)µ(E0)ν = a−2(1− 2ψ)g00 = a−2(1− 2ψ)a2(1 + 2ψ) = 1, (2.21)

where we have dropped the second order (and above) term here.

The spacelike (Ei)
µ is a little more involved, since the coordinate vectors δµi are not orthogonal

to uµ unless Bi = 0. The following construction has the required property

(Ei)
µ = a−1

[
Biδ

µ
0 + (1 + φ)δµ0 − E

j
i δ
µ
j

]
, (2.22)

one can easily verify the following two properties at the first order

gµν(E0)µ(Ei)
ν = 0,Orthogonality

gµν(Ei)
µ(Ej)

ν = −δij ,Normalization. (2.23)

2.2.3 Scalar perturbations in conformal Newtonian gauge

We only consider scalar perturbation here, and we can also choose two gauge functions so that

metric perturbation E and B are zero. This defines conformal Newtonian gauge

ds2 = a2(η)
[
(1 + 2ψ)dη2 − (1− 2φ)δijdx

idxj
]
, (2.24)

In this gauge, the physics appears to be simple because the hypersurfaces of constant time are

orthogonal to the worldlines of observers at rest in the coordinate (g0i = Bi = 0), and the induced

geometry of the constant-time hypersurface is isotropic.
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To derive the particle geodesic equation, we first derive the Christoffel symbol. Generally

Γµνρ =
1

2
gµκ (∂νgκρ + ∂ρgκν − ∂κgνρ) , (2.25)

and the metric is diagonal and simple to invert:

gµν =
1

a2

(
1− 2ψ 0

0 −(1 + 2φ)δij

)
. (2.26)

Then we can work out the all of the nonzero Christoffel symbols (the dot is referring to the

derivative to η)

Γ0
00 = H+ ψ̇

Γ0
0i = ∂iψ

Γi00 = δij∂jφ

Γ0
ij = Hδij −

[
φ̇+ 2H(φ+ ψ)

]
δij

Γij0 = (H− φ̇)δij

Γijk = −2δi(j∂k)φ+ δjkδ
il∂lφ, (2.27)

where the round bracket in the last line means A(ij) = (1/2)(Aij + Aji). In addition, all of the

over-dot means the partial derivative with respective to conformal time η, i.e. (̇) = ∂η.

The metric perturbation leads to changes in a photon’s energy during propagation relative

to the change in an unperturbed cosmology. This effect, in turn, leads to the 21-cm fluctuations

(CMB anisotropy is the same reason) on the sky. We shall do the perturbation calculation in

conformal Newtonian gauge. We parameterise the photon 4-momentum in terms of the energy E

seen by an observer at rest in the coordinates, and by the direction cosines ei of the propagation

direction seen by the same observer on the (Ei)
µ orthogonal frame of vectors (Eqs. (2.20) and

(2.22)). Note that δije
iej = 1, the photon 4-momentum is

pµ = E
[
(E0)µ + ei(Ei)

µ
]

= Ea−1
[
(1− ψ)δµ0 + ei(1 + φ)δµi

]
. (2.28)

Using the 3-vector notation, and identifying ei with vector e, we can write

pµ = Ea−1 [(1− ψ), (1 + φ)e]

= εa−2 [(1− ψ), (1 + φ)e] , (2.29)

where we have introduced comoving energy ε ≡ Ea which is a constant in the background.

Photons move on geodesic of the perturbed metric so

dpµ

dλ
+ Γµνρp

νpρ = 0, (2.30)
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where λ is an affine parameter such that pµ = dxµ/dλ. Using the parameterisation of Eq. (2.29)

in pµ = dxµ/dλ, we have

dη

dλ
=

ε

a2
(1− ψ) (2.31)

dxi

dλ
=

ε

a2
(1 + φ) ei (2.32)

⇒ dxi

dη
= (1 + φ+ ψ) ei, (2.33)

at linear order.

Then the geodesic equation in conformal time (change from dλ to dη) is

(1− ψ)
ε

a2

dpµ

dη
+ Γµνρp

νpρ = 0. (2.34)

We now want to find out what are the 0-component and i-component of this geodesic equation.

We need to use the fact that the derivative dψ/dη is along the path of photon so

dψ

dη
= ψ̇ + ei∂iψ, (2.35)

to the first order. In addition, we need to use the perturbed connection coefficients (Eq. (2.27)),

so finally by simplifying the µ = 0 component of Eq. (2.34), we have

1

ε

dε

dη
= −dψ

dη
+ (φ̇+ ψ̇). (2.36)

This equation tells us how the comoving energy of a photon evolves along the photon path in

the presence of metric perturbations. In the background, ε is a constant, but this is modified

by the variation of ψ along the path (the first term on the right) and by the time evolution of

gravitational potential (second term on the right). The second term is the ISW effect which is

important when the dark energy starts to dominate the Universe.

By using the i-component of Eq. (2.34) and Eq. (2.29), we will find that the direction of

photon propagation evolves along the photon path according to the first-order equation

dei

dη
= −

(
δij − eiej

)
∂j(φ+ ψ). (2.37)

Just a note, in the vector format, Eq. (2.33) and Eq. (2.37) can be written as

dx

dη
= (1 + φ+ ψ)e,

de

dη
= −∇⊥(φ+ ψ), (2.38)

where ∇⊥ = ∇− e(e · ∇).
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Figure 11: The diagram illustrates that, although two objects could form at the same time, and have

the same evolutionary history (same η) but they could have different redshifts due to the potential effect.

Therefore, the surface of constant η could have z fluctuations and the surface of constant z could have η

fluctuations.

Solving for the photon path, we integrate Eq. (2.33), we have

x(n̂, η) =

∫ η

ηA

dx

dη
dη =

∫ η

ηA

(1 + φ+ ψ)edη

=

∫ η

ηA

(φ+ ψ)e dη′ +

∫ η

ηA

e dη′

' eA

∫ η

ηA

(φ+ ψ)dη′ + (eη′)
∣∣η
ηA
−
∫ η

ηA

η′
(

de

dη′

)
dη′

' eA

∫ η

ηA

(φ+ ψ)dη′ + (eη − eAηA) +

∫ η

ηA

η′~∇⊥(φ+ ψ)dη′

= eA

∫ η

ηA

(φ+ ψ)dη′ + eA(η − ηA)−
∫ η

ηA

(η − η′)~∇⊥(φ+ ψ)dη′, (2.39)

where the second term indicates the radial displacement and corresponds to (Shapiro) time-delay,

and the third term is the transverse (lensing) displacement. The reason that in the first term

we approximate e = eA is the Born Approximation in the sense that for small perturbation,

the lensing integral can be evaluated on the unperturbed light path. At first-order this is fine

because the e is multiplied with (φ+ψ), so it is fine to assume e takes its zeroth-order value, i.e.

a constant eA.

Born Approximation: In Quantum Mechanics, if the potential V (r) is weak enough, it

will distort only slightly the incident plane wave. Therefore one can replace the scattered wave

function Ψ(r) by a plane wave.

2.2.4 Brightness temperature fluctuation

Now we can calculate the brightness temperature fluctuation as a function of redshift z and

direction n̂ on the sky. According to Eq. (2.11), we need to expand nHi and |dλ/dz| since other
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terms are constants.

nHI term. First of all, we have to make clear that z is observed redshift and η is the conformal

time. The perturbed conformal time at redshift z along the line-of-sight n̂ is η(n̂, z) = ηz + δη,

where ηz is the unperturbed value (see Fig. 11). So δη is the time variation at a given z at a

particular direction. This is similar to the CMB where if you look at different parts of the sky

you see different temperature, although local temperature at the decoupling time is the same.

We now calculate the perturbation of neutral hydrogen density at redshift z at a given direc-

tion

nHi (z, n̂) = nHi (ηz)

(
1 + δn +

ṅHi

nHi
δη

)
, (2.40)

where the second term is the intrinsic brightness fluctuation, and the third term is due to the

perturbation of conformal time.

Preparation for calculating |dλ/dz| term. Let us write the source 4-velocity as uas = ua+va,

i.e.uµs = a−1[1− ψ, vi], where vi is the orthonormal-triad component of va. Similarly, observer’s

4-velocity at point A can be written as uµoA = a−1
A [1 − φA, v

i
oA]. Therefore, the physical energy

of the photon at emission time E and at receiving time EA (EA is the energy of a fundamental

observer with rest to the FRW frame) is related to the observed redshift through

(1 + z) =

(
E

EA

)
(1 + n̂ · (v − voA)), (2.41)

where z is the observed redshift which contains both physical redshift factor and the local motion

contribution. One can see that if a photon is moving away from the observer, n̂ · v > 0, then

it make z increase (redshift) and vice versa. For local motion, if observer moves towards the

observing line-of-sight direction, i.e. n̂ · voA > 0, it makes the line-of-sight direction z decrease

(blueshift). n̂ = −eA is the line-of-sight direction of the photon seen by the observer. Using the

definition of comoving energy, we have

1 + z =

(
aA

a

ε

εA

)
(1 + n̂ · (v − voA)) . (2.42)

Integrating Eq. (2.36), we obtain the ratio of Newtonian gauge energies

ε

εA
= 1 + ψA − ψ +

∫ η

ηA

(φ̇+ ψ̇)dη′, (2.43)

which has the usual Sachs-Wolfe (first term) and integrated Sachs-Wolfe (ISW) (second term)

contributions. Substituting Eq. (2.43) into Eq. (2.42), we have the redshift at η along the line-

of-sight n̂ as

1 + z =
aA

a(η)

(
1 + ψA − ψ +

∫ η

ηA

(φ̇+ ψ̇)dη′ + n̂ · (v − voA)

)
, (2.44)
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note that this z is the redshift at η. Again, we use η(n̂, z) = ηz + δη, where ηz is the unperturbed

value (see Fig. 11). Therefore, we have

1 + z =
aA

a(ηz)
=

aA

a(η)

(
1 + ψA − ψ +

∫ η

ηA

(φ̇+ ψ̇)dη′ + n̂ · (v − voA)

)
(2.45)

⇒ a(η)

a(ηz)
= 1 + ψA − ψ +

∫ η

ηA

(φ̇+ ψ̇)dη′ + n̂ · (v − voA), (2.46)

since a(η) = a(ηz)(1 +Hδη), one can obtain

H(ηz)δη = ψA − ψ +

∫ ηz

ηA

(φ̇+ ψ̇)dη′ + n̂ · (v − voA), (2.47)

where we have substituted η → ηz into the above equation since the difference is second order.

H ≡ ȧ/a is the conformal Hubble parameter. Note that in Eq. (2.47) the ISW term φ and ψ are

functions of spatial hyper-surface r at each conformal time η′, so δη is both a function of n̂ on

the sky and a function of redshift z.

|dλ/dz| term. Now we can calculate |dλ/dz|. We first calculate |dλ/dz|(η) and then expand

η(n̂, z) = ηz + δη. First, we have ∣∣∣∣dλdz

∣∣∣∣
η

=

∣∣∣∣(dλ

dη

)(
dη

dz

)∣∣∣∣ . (2.48)

From Eq. (2.31), we have

dη

dλ
=

ε

a2
(1− ψ) =

1

aaA

(aA

a

)(( ε

εA

)
εA

)
(1− ψ) =

(
εA
aaA

)(
ε

εA

aA

a

)
(1− ψ)

=

(
εA
aaA

)
(1 + z) (1− ψ − n̂ · (v − voA)) , (2.49)

⇒ dλ

dη
=

(
aaA

εA(1 + z)

)
(1 + ψ + n̂ · (v − voA)) (2.50)

where in the second line of Eq. (2.49) we have used the Eq. (2.42). Then by using Eq. (2.45) we

have

dz

dη
=

aA

a(η)

[
−dψ

dη
+ (φ̇+ ψ̇) + n̂ · dv

dη

]
− aA

a2

da

dη

[
1 + ψA − ψ +

∫ η

ηA

(φ̇+ ψ̇)dη′ + n̂ · (v − voA)

]
= −H(η)aA

a(η)

(
1 + ψA − ψ +

∫ η

ηA

(φ̇+ ψ̇)dη′ + n̂ · (v − voA) +
1

H
dψ

dη
− 1

H
(φ̇+ ψ̇)− 1

H
n̂ · dv

dη

)
.

(2.51)

We invert Eq. (2.51) and multiply with Eq. (2.50), we obtain

dλ

dz

∣∣∣∣
η

= − a2(η)

H(η)εA(1 + z)

[
1− ψA + 2ψ −

∫ η

ηA

(φ̇+ ψ̇)dη′ − 1

H
dψ

dη
+

1

H
(φ̇+ ψ̇) +

1

H
n̂ · dv

dη

]
= − a2(η)

H(η)εA(1 + z)

[
1 + ψ −H(ηz)δη + n̂ · (v − voA)− 1

H
dψ

dη
+

1

H
(φ̇+ ψ̇) +

1

H
n̂ · dv

dη

]
,

(2.52)
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where in the second line we have used Eq. (2.47) to get rid of the integral term. Now we need to

calculate |dλ/dz| at a given redshift z, therefore we need to expand the front term in Eq. (2.52)

a2(η)

H(η)εA(1 + z)
=

a(ηz)
2 (1 + 2(ȧ(ηz)/a(ηz))δη)

H(ηz)
(

1 + (Ḣ/H)δη
)
εA(1 + z)

=
a(ηz)

2

H(ηz)εA(1 + z)

(
1 +

(
2H− Ḣ

H

)
δη

)
. (2.53)

(εA/a(ηz)) term. We now need to calculate (εA/a(ηz)) to proceed. This is non-trivial and easy

to be incorrect, and one has to bear in mind that εA is the comoving energy of the fundamental

observer A at rest in the Newtonian gauge, so we can call it “Newtonian gauge observer”. In fact,

all εs are comoving energy measured by Newtonian gauge observer, so that is why in Eq. (2.43),

when we compare the two comoving energies, there is no Doppler term in it. But in reality

neither observers or emitters are at rest in the Newtonian gauge because of the peculiar motion.

Therefore ε/a = E21(1− n̂ · v) because the 21-cm emitter (gas) has motion v. Now we have two

ways to calculate it

• We can write(
εA
a(ηz)

)
=

(εA
ε

)( ε
a

)( a

a(η̄z)

)
= [1− f(η)] [E21(1− n̂ · v)] [1 + f(η) + n̂ · (v − voA)]

= E21(1− n̂ · voA). (2.54)

On the second line of above equation, f(η) = ψA − ψ +
∫ η
ηA

(φ̇ + ψ̇)dη′. (εA/ε) is the ratio

between the comoving energy of fundamental receiver and emitter so we used Eq. (2.43).

For a/a(η̄z) we used Eq. (2.46).

• We can also write (
εA
a(ηz)

)
=

(
εA
aA

)(
aA

a(ηz)

)
. (2.55)

εA/aA = EA, which is the energy received by fundamental observer, and EA/E21 = (1 −
n̂ · v)/(1 + z), where z is the redshift of only-cosmic expansion effect (no peculiar motion

effect), and v is the peculiar velocity of emitter. This is because εA/aA is the photon energy

measured by a Newtonian gauge observer, whereas E21 is the energy measured by emitter,

whose velocity differs from that of Newtonian gauge observers by the peculiar velocity of

the gas v.

In addition,

aA

a(ηz)
= (1 + z) = (1 + z)(1 + n · (v − voA)), (2.56)

where the first equality comes from Eq. (2.45), and the second equality is just a summation

effect of pure cosmic expansion and peculiar motion. Therefore, by combining the above
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equations, one can find(
εA
a(ηz)

)
=

(
εA
aA

)(
aA

a(ηz)

)
= E21 ×

1− n̂ · v
1 + z

(1 + z)(1 + n · (v − voA))

= E21(1− n̂ · voA), (2.57)

which is the same conclusion as Eq. (2.54). Note that This cancels the Doppler term of

observer’s motion in Eq. (2.52).

Putting together for Tb(z, n̂). Therefore, combining Eqs. (2.53) with (2.52) and ((2.54) or

(2.57)), we have∣∣∣∣dλdz

∣∣∣∣ (z, n̂) =
a(ηz)

H(ηz)E21(1 + z)

[
1−

(
Ḣ
H
−H

)
δη + ψ + n̂ · v − 1

H
dψ

dη
+

1

H
(φ̇+ ψ̇) +

1

H
n̂ · dv

dη

]
.

(2.58)

Combining Eq. (2.11) with Eq. (2.40) and Eq. (2.58), we obtain

Tb(z, n̂) =

(
3

32π

)
(hpc)

3nHi (ηz)A10

kBE2
21(1 + z)H(z)

(1 + ∆Tb(z, n̂))

∆Tb(z, n̂) = δn +
ṅHi

nHi
δη −

(
Ḣ
H
−H

)
δη + ψ + n̂ · v − 1

H
dψ

dη
+

1

H
(φ̇+ ψ̇) +

1

H
n̂ · dv

dη
.

(2.59)

Here we use a few facts to simplify the above equation. The first thing is that if the comoving

number density of Hi is conserved at low redshift (i.e. ionized fraction of hydrogen is constant),

then nHi ∼ a−3, then (nHi a
3) is a constant. But we are not sure whether this is true, so in

general case the following equation represents the change of ionized fraction of Hi

d ln(a3nHi )

dη
=

1

(a3nHi )

d(a3nHi )

dη
= 3H+

ṅHi

nHi
. (2.60)

The second equation is the directional derivative of η can be broken down into two terms

dv

dη
=

∂v

∂η

∣∣∣∣
x

− (n̂ · ~∇)v

dψ

dη
=

∂ψ

∂η

∣∣∣∣
x

− (n̂ · ~∇)ψ, (2.61)

where the first term is partial derivative, and second term is the spatial derivative. The reason

that the second term is negative sign is because η increases if the direction is towards the observer,

while n̂ is the line-of-sight direction leaving from observer to the sky, so the two directions are

opposite.

The third equation we will use is the Euler equation v̇ +Hv +∇ψ = 0, where v̇ = ∂v/∂η.

Therefore, by substituting these three relations into Eq. (2.59), we can simply it as

∆Tb(z, n̂) = δn −
1

H

[
n̂ · (n̂ · ~∇)v

]
+

(
d ln(a3nHi )

dη
− Ḣ
H
− 2H

)
δη +

1

H
φ̇+ ψ (2.62)
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The second term means

n̂ · (n̂ · ~∇)v =
∑
i,j

n̂i(n̂j · ∇j)vi. (2.63)

Each of the term in Eq. (2.62) has special meaning. The first two terms are the usual density and

redshift-space distortion term, the third term comes from the evaluating the zero-order brightness

temperature at the perturbed time corresponding to the observed redshift. The fourth term is

the ISW term. The fifth term (ψ) is due to the conversion between radial distance in gas frame

(dλ) with increments in redshift (dz), i.e. comes from |dλ/dz| term.

2.2.5 Doppler shift

The Eq. (2.62) gives the Hi gas fluctuation as seen by any observer in their own rest frame. The

dependence of observer’s own motion is through Eq. (2.47) into the δη term in Eq. (2.62). This

is equivalent to the frame transformation via

(1 + z′)T ′b(z′, n̂′) = (1 + z)Tb(z, n̂), (2.64)

which follows the invariant distribution function. Since (1 + z) = (1 + z′)(1 + n̂ · vrel), where vrel

is the relative velocity of frame with redshift z′ to the frame with redshift z. From this equation,

we obtain (z−z′) = (1+z′)(1+ n̂ ·vrel). Now we can calculate the relation between perturbation

in two frames.First

T ′b(z′, n̂′) =

(
1 + z

1 + z′

)
Tb(z, n̂) = (1 + n̂ · vrel)Tb(z, n̂). (2.65)

We then expand the l.h.s and r.h.s separately

T ′b(z′, n̂′) ' T b(z′)(1 + ∆′Tb(z′, n̂′)), (2.66)

Tb(z, n̂) ' Tb(z′, n̂) +

(
dTb(z)

dz

)
z′
· (z − z′)

' T b(z′)(1 + ∆Tb(z′, n̂)) +

(
dT b(z)

dz

)
z′
· (z − z′)

= T b(z′)

[
1 + ∆Tb(z′, n̂) +

d lnT b(z′)

dz′
(1 + z′)(1 + n̂ · vrel)

]
. (2.67)

Combining Eqs. (2.65), (2.66) and (2.67), we have

∆′Tb(z′, n̂′) = ∆Tb(z′, n̂) + n̂ · vrel +
d lnT b(z′)

dz′
(1 + z′)(1 + n̂ · vrel). (2.68)

All of the n̂ · vrel terms only affect the ` = 1 moment.

2.2.6 Why lensing isn’t important at first order?

Comparing the perturbation of surface brightness temperature (Eq. (2.62)) with the perturbation

of the source number counts (eq. (28) in [9]), one will find that the source number counts contain
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Figure 12: The measured surface brightness at a given solid angle (i.e. amount of energy per solid angle)

is determined by the product of the number of sources in the solid angle and the flux of the source.

This figure shows that, while lensing is turned on, although the total number of sources per solid angle

decreases, lensing magnification increases the flux of each source. This is equivalent to the decrease of

angular diameter distance. Therefore, the surface brightness one measures stay the same.

the perturbed equation of Jacobi map, which contains lensing. However, for surface brightness, it

does not contain lensing contribution. To see lensing has no contribution to the surface brightness

variation, one use Fig. 12 to understand this point. Suppose you observe a patch of the sky for

a given solid angle with volume dV = (detDo)dΩdl ∼ dNsource. The flux of the source is

dF ∼ L/detDo. Therefore dTb ∼ dFdNsource ∼ LdΩdl. The meaning is this: If you turn on

lensing, the number of sources that you measure (dNsource) is going down, but the flux of the

source is going up due to the lensing magnification effect (just like you place the source at smaller

angular diameter distance but with same dΩ, shown in Fig. 12). Therefore the surface brightness

you measure is not changed.

One can see this more quantitatively through the perturbation of luminosity distance. In

Eq. (2.11), the nHi is the physical density of Hi in the source, which is related to the observed

Hi atom density per solid angle and per redshift nobs
Hi (z, n̂) through nobs

Hi (z, n̂)dzdΩ = nHi dV ,

where dV = dÃ(uaska)dλ. Therefore, one can transform Eq. (2.11) into

Tb(z, n̂) =
3h3

pA10

32πkBE21

(
nobs

Hi (z, n̂)dzdΩ

dÃ(uaska)dλ

) ∣∣∣∣dλdz

∣∣∣∣ , (2.69)

and note that uaska = E21 and dÃ/dΩ = detDo, where Do is the determinant of the Jacobi map

in the observer’s frame [10]. Therefore, Eq. (2.69) can be simplified as

Tb(z, n̂) =
3h3

pA10

32πkBE2
21

nobs
Hi (z, n̂)

detDo
, (2.70)

which is exactly the sense we show in Fig. 12, i.e. surface brightness is equal to the product of

observed number density times the flux of each source.
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To further see the cancellation of luminosity diameter distance perturbation, which include

lensing, we notice that d2
L = (1 + z)4detDo, therefore

∆Tb(z, n̂) = ∆n(z, n̂)− δ(detDo)

detDo
= ∆n(z, n̂)− 2

δdL(z, n̂)

d̄L(z)
. (2.71)

The perturbation of the determinant of the Jacobian map at observer’s rest frame is given by

eq. (20) in [9], where the 5 terms after 1 are the perturbations. The last term is the abberation

effect. One can see that, by subtracting this term from the number count perturbation (eq. (28)

in [9]), we will end up in surface brightness fluctuation (Eq. (2.62) here).

2.2.7 From theory to observables

We now want to transform the real-space density contrast (Eq. (2.62)) into the k-space, and

figure out the angular power spectrum in `-space.

In general, we have

∆Tb(z, n̂) =

∫
d3k

(2π)3/2
∆Tb(z,k, n̂)eik·r(n̂,z)

=

∫
d3k

(2π)3/2
∆Tb(z,k, n̂)

[
4π
∑
`m

i`j`(kχ)Y ∗`m(k̂)Y`m(n̂)

]
,

=
∑
`m

[∫
d3k

(2π)3/2
∆Tb(z,k, n̂)(4πi`)j`(kχ)Y ∗`m(k̂)

]
Y`m(n̂)

≡
∑
`m

[
(4πi`)

∫
d3k

(2π)3/2
∆Tb,`(z,k)Y ∗`m(k̂)

]
Y`m(n̂). (2.72)

The last line is our definition, and we want to move all of the dependence of n̂ into Y`m(n̂) so

that ∆Tb,`(z,k) is really the Fourier space density contrast of `-mode.

We now start to figure out how each term in Eq. (2.62) is transformed. For the first, fourth

and fifth term in Eq. (2.62), it is the density contrast, ISW and potential term in the real-space,

therefore its Fourier transform is

∆
(1,4,5)
Tb

(z, n̂) =

∫
d3k

(2π)3/2
F
[
δn +

1

H
φ̇+ ψ

]
eik·r, (2.73)

where F just represents the Fourier transformation. In the following, we will use a “∼” to

represent the Fourier function.

In addition, we will frequently use the following plane-wave expansion

eik·r(n̂,z) =
∑
`m

(4πi`)j`(kχ)Y ∗`m(k̂)Y`m(n̂), (2.74)

where χ(z) is the comoving distance to redshift z.
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By using Eq. (2.74), Eq. (2.73) becomes

∆
(1,4,5)
Tb

(z, n̂) =

∫
d3k

(2π)3/2

[
δ̃n +

1

H
˙̃
φ+ ψ̃

][∑
`m

(4πi`)j`(kχ)Y ∗`m(k̂)Y`m(n̂)

]

=
∑
`m

Y`m(n̂)

[
(4πi`)

∫
d3k

(2π)3/2

(
δ̃n +

1

H
˙̃
φ+ ψ̃

)
j`(kχ)Y ∗`m(k̂)

]
⇒ ∆

(1,4,5)
Tb,`

(z,k) =

(
δ̃n +

1

H
˙̃
φ+ ψ̃

)
j`(kχ), (2.75)

where the last line is by comparing Eq. (2.75) with Eq. (2.72).

For the second term, i.e. Redshift-Space-Distortion term (RSD), we first define the velocity

field in real and Fourier space

v(r) =

∫
d3k

(2π)3/2
ṽ(k)eik·r. (2.76)

Here note the dimension. v(r) has the dimension [LT−1], so ṽ(k) has the dimension [L3T−1]. In

order to preserve the dimension, we define the scalar ṽ(k) as [8]

v(k) = −ik̂ṽ(k), (2.77)

so that it has the same dimension as v(k). Therefore, the Fourier transformation of the RSD

term is

F
[
− 1

H
n̂ · (n̂ · ~∇v)

]
= − 1

H
(k̂ · n̂)2kṽ(k) (2.78)

Therefore,

∆
(2)
Tb

(z, n̂) =

∫
d3k

(2π)3/2
F
[
− 1

H
n̂ · (n̂ · ~∇v)

]
eik·r

= − 1

H

∫
d3k

(2π)3/2
(ṽ(k)(k̂ · n̂)2k)eik·r. (2.79)

Since

∂

∂χ
eik·r =

∂

∂χ
ei(k·n̂)χ = (in̂iki)e

ik·r ⇒ ∂2

∂χ2
eik·r = −(n̂iki)(n̂

jkj)e
ik·r = −(k · n̂)2eik·r, (2.80)

then Eq. (2.79) becomes

∆
(2)
Tb

(z, n̂) =
1

H

∫
d3k

(2π)3/2
ṽ(k)

(
1

k

∂2

∂χ2
eik·r

)
=

∑
`m

[
(4πi`)

∫
d3k

(2π)3/2

(
1

H
ṽ(k)kj′′` (kχ)

)
Y ∗`m(k̂)

]
Y`m(n̂)

⇒ ∆
(2)
Tb,`

(z,k) =
1

H
ṽ(k)kj′′` (kχ). (2.81)
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For the third term in Eq. (2.62), the bracket is just a redshift-dependent term, and the spatial

dependent is encoded in δη, so from Eq. (2.47) we want to calculate

F(δη) =
1

H(η̄z)
F
[
ψA − ψ +

∫ η̄z

ηA

(φ̇+ ψ̇)dη′ + n̂ · (v − voA)

]
. (2.82)

Here we throw out the two constant terms, since they only affect the ` = 1 moment. The ψ term

is easy, since it is just the ψ̃. For the velocity term, again we have

F(n̂ · v) = n̂ · v(k) = −i(k̂ · n̂)ṽ(k)

⇒ ∆Tb,`(z,k) ∼ −ṽ(k)j′`(kχ). (2.83)

Finally, for the ISW term, we need to use dχ ' −dη (neglecting higher order perturbation),

and also we need to bear in mind that inside the ISW term in Eq. (2.47), the φ(r, η) and ψ(r, η)

are functions of spatial hyper-surface at each conformal time η. Therefore we have (For the first

line r′ means the 3D hyper-surface at conformal time η′)∫ η̄z

ηA

(φ̇(r′, η′) + ψ̇(r′, η′))dη′

=

∫ η̄z

ηA

dη′
[∫

d3k

(2π)3/2
(

˙̃
φ(k, η′) +

˙̃
ψ(k, η′))eik·r

′(z′,n̂)

]
=

∫ η̄z

ηA

dη′

[∫
d3k

(2π)3/2
(

˙̃
φ(k, η′) +

˙̃
ψ(k, η′))

(∑
`m

(4πi`)j`(kχ
′)Y ∗`m(k̂)Y`m(n̂)

)]

=
∑
`m

[
(4πi`)

∫
d3k

(2π)3/2

(
−
∫ χ

0
dχ′(

˙̃
φ(k, η′) +

˙̃
ψ(k, η′))j`(kχ

′)

)
Y ∗`m(k̂)

]
Y`m(n̂)

⇒ ∆Tb,`(z,k) ∼ −
∫ χ

0
dχ′(

˙̃
φ+

˙̃
ψ)j`(kχ

′). (2.84)

Note that j` function is just to tell how different Fourier modes project onto different angular

scales.

Therefore, the third term in Eq. (2.62) all together becomes

∆
(3)
Tb,`

(z,k) = −

(
1

H
d ln(a3n̄Hi )

dη
− Ḣ
H2
− 2

)
×
[
ψ̃j`(kχ) + ṽ(k)j′`(kχ) +

∫ χ

0
(

˙̃
φ+

˙̃
ψ)j`(kχ

′)dχ′
]
.(2.85)

Therefore, the whole ∆Tb,`(k, z) is

∆Tb,`(k, z) = ∆
(1)
Tb,`

(k, z) + ∆
(2)
Tb,`

(k, z) + ∆
(3)
Tb,`

(k, z) + ∆
(4)
Tb,`

(k, z) + ∆
(5)
Tb,`

(k, z)

=

(
δ̃n +

1

H
˙̃
φ+ ψ̃

)
j`(kχ) +

1

H
ṽ(k)kj′′` (kχ)

−

(
1

H
d ln(a3n̄Hi )

dη
− Ḣ
H2
− 2

)
×
[
ψ̃j`(kχ) + ṽ(k)j′`(kχ) +

∫ χ

0
(

˙̃
φ+

˙̃
ψ)j`(kχ

′)dχ′
]
.

(2.86)

The square bracket “[× × ×]” has clear physical meaning. The first term, second term and

third term in the square bracket is just the usual SW, Dopper shift and ISW contributions,
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which are the usual contribution from CMB. It has to multiply with the front factor, which is

basically dT̄b/dη. For the second term, if Hi is not moving, and the observer collects photons at

a frequency ν, then the observer knows it was emitted at at certain time; if Hi is moving, then

the observer collects photons at a frequency ν, then the observer knows that it was emitted at

earlier or later time. Therefore the signal that the observer collects depends on whether Hi is

moving or not. This is analogous to the CMB where the photons were emitted at a thin shell

at fixed epoch. In brief, the second term arises because emitting gas with peculiar velocity lies

at a different comoving distance than the FRW prediction for its observed redshift. So when

we observe temperature fluctuations across the sky at fixed redshift, we are observing gas at

different conformal distances. The background temperature monopole is hence different too,

since it evolves with time, and so the observed fluctuation is given by the time-shift multiplied

by the time-derivative of the background, evaluated at the background time corresponding to the

observed redshift. This is clearly gauge-dependent as it depends on how events in the perturbed

universe are mapped to those in the background, but the sum of all terms is Eq. (2.86) is gauge

invariant.

In the first bracket, δn is the intrinsic fluctuation. The second v term is the usual redshift-

space distortion term. But the (
˙̃
φ/H+ ψ̃) does not have the usual meaning.

The contribution to the large angular part (small `) of angular power spectrum of 21-cm

comes from small physical scales (large k-value), also the large angular scale (small `), the power

spectrum of 21-cm is almost a constant. To see this, we expand the linear density field into

spherical harmonics, and then expands the exponential in Spherical Harmonic/Bessel functions

which gives

δ`m(z) = 4πi`
∫

d3k

(2π)3
δ(k, z)j`(kχ)Y`m(k̂). (2.87)

Now squaring this and using the definition of the 3D power spectrum, one can find

C` = (4π)

∫
d ln k

(
k3P (k)

2π2

)
j`(kχ)2, (2.88)

where the dimensionless power spectrum k3P (k)/2π2 ∼ k4 on large physical scales (here we

distinguish angular scale (in `) and physical scales (in k)). Therefore, because k3P (k) is rising

rapidly, most of the contribution to this integral comes from scales having k � `/χ when ` is

small. When is ` is of order a few, `/χ is of order the horizon, and horizon-scale power is very

small compared to sub-horizon power when dealing with the density field. Therefore we can

approximate the Bessel function with its asymptotic form at `� kχ, which is

j`(x) =
1

x
sin

(
x− `π

2

)
. (2.89)

On the small physical scales relevant for this integral, kχ � 1, so this sinusoidal function is

rapidly oscillating. Therefore, when we do the integral

C` ∼
∫

dkk3j2
` (kχ) ∼

∫
dkk3 1

(kχ)2
sin2

(
kχ− `π

2

)
=

1

χ2

∫
dkk

[
1

2
(1− cos (2kχ− `π))

]
,(2.90)
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Figure 13: Fractional brightness temperature (dimensionless) perturbation power spectrum at z = 1 with

a 2 MHz bandwidth. The auto-spectra of the full signal (black dashed line) and of each individual term

in Eq. (2.86) are shown, generically grouped (solid lines, top to bottom respectively) as Newtonian-gauge

density (red), redshift-space distortions (green), velocity terms (blue), all potential terms evaluated at the

source position (cyan) and the ISW term (magenta). Figure taken from [8].

where the rapid oscillation part averaged over a period and left with 1/2, and as the only `-

dependence was in the phase of the sine, the `-dependence disappears and we’re left C` = constant.

For a simple example which demonstrates this, consider doing the integral∫
dx sin(ax) ∗ cos2(bx), (2.91)

if b� a, this reduces to − cos(x)/(2a), i.e. half the integral of sin(ax).

2.2.8 Power spectra and its relative components

Once we obtain the ∆Tb,`(k, z), we can integrate it over the frequency band and calculate the

projected ∆Tb,` for each k for band W .

∆Tb,`(k) =

∫
dzW (z)∆Tb,`(k, z), (2.92)

and then we define

∆′Tb,`(k) = ∆Tb,`(k)/R(k), (2.93)

and power spectrum is

CWW ′
` = 4π

∫
d ln kPR(k)∆′WTb,`(k)∆′W

′
Tb,`

(k). (2.94)

We plot the different components of the relativistic power spectra in Fig. 13 for z = 1 and

∆ν = 2 MHz. The RSD term will drop if one has very large frequency band width, because the

radial integral of line-of-sight over many peaks and troughs will turn to be close to zero.
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Figure 14: The spacetime diagram for an observer locating at t0 at spatial coordinate r = 0 observing an

invariant area (of galaxies) emitting signal at te at comoving spatial distance re. Also for the same galaxy

observing an invariant area emitting a signal at t0.

3 Observational prospects for 21-cm intensity mapping

Please read the presentation slides for this section.

3.1 BAO reconstruction

3.2 Forecasts for BINGO, FAST and SKA

3.3 Foreground removal technique

3.4 1/f noise

A Etherington’s Reciprocity relation

Suppose you place a known object of physical size l at an early time te at a place with comoving

distance re. The observer sees the object through the light bundle shown in the lower red dashed

in Fig. 14. The comoving size of the object is l/ae, where ae = 1/(1 + z). Therefore, the angle

subtended by the object at te seen by the current day observer is θ = (l/ae)/re, therefore(
dAs

dΩo

)1/2

=
l

θ
= DA(te) = aere. (A.1)

Then we ask a question, what is the solid angle seen by the galaxy if we place the same object

at observer’s position at time t0? (upper red dashed line in Fig. 14)

The comoving size of the object now becomes l/a0, and the angle subtended by the object at

t0 is θ′ = (l/a0)/re (note that the comoving distance has not changed), therefore(
dAo

dΩs

)1/2

=
l

θ′
= a0re = (aere)(a0/ae) =

(
dAs

dΩo

)1/2

(1 + z), (A.2)
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where z is the galaxy’s redshift. Therefore we proved the Etherington’s reciprocity relation, i.e.

dAsdΩs = dAdΩ/(1 + z)2. In the notation of this note, it is dÃdΩ̃ = dAdΩ/(1 + z)2.

Acknowledgements

I would like to thank the discussion with Anthony Challinor, Alex Hall, Yi-Chao Li, and Xiaodong

Xu.

References

[1] X. Fan et al., Astron. J., 132, 117 (2006)

[2] J. Gunn, & B. Peterson, The Astrophysical Journal, 142, 1633, (1965)

[3] X. Fan et al., ARA& A, 44, 415, (2006)

[4] Cohen, A., Fialkov, A., Barkana, R., & Lotem, M. 2017, Monthly Notices of the Royal

Astronomical Society, 472, 1915

[5] Pritchard, J. R., & Loeb, A. 2012, Reports on Progress in Physics, 75, 086901

[6] Pritchard, J., & Loeb, A. 2010, Nature, 468, 772

[7] E. Komatsu et al., 2009, ApJS, 180, 330

[8] A. Hall, C. Bonvin, A. Challinor, 2013, Phys. Rev. D., 87, 064026.

[9] A. Challinor, & A. Lewis, 2011, Phys. Rev. D., 84, 3516

[10] P. Schneider, J. Ehlers, & E. E. Falco, Gravitational Lenses (Springer-Verlag, Berlin, 1992)

[11] A. Mesinger, S. Furlanetto, & R. Cen, 2011, MNRAS, 411, 955

35


