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Abstract

This lecture note contains the introductory material of intergalactic medium, Lyman-« forest,
and 21-cm astrophysics. It is suitable for advanced undergraduate and first year graduate stu-
dents to read and study if he/she wants to enter this research field.
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Figure 1: Two important transitions of the hydrogen atom. The Lyman-« transition is the transition in
between n = 2 and n = 1 levels (n is the principal quantum number), and results in the emission of Lyman-
a photons with wavelength A\, = 1.216 x 107° cm, corresponding to the frequency v, = 2.468 x 10'° Hz.
The 21-cm transition occurs between the hyperfine states of the ground energy level (n = 1), where the
parallel align of the spin in between electron e~ and proton p is on a slightly higher energy state than
anti-parallel. The resulted wavelength of transition is 21 cm, corresponding to 1420 MHz.

1 High-redshift Intergalactic Medium

In this section, we will provide an introduction to high-reshift intergalactic medium through
the measurement of neutral hydrogen absorption line in the Lyman-« forest system. Then we
introduce the 21-cm transition line for the high redshift Universe.

1.1 Lyman-a Absorption

We first study how are the baryons distributed in the Universe inferred from the famous Lyman-
a forecast measurement. Hydrogen is the most abundant element in the Universe (the mass
fraction is X}, ~ 0.74, with the rest almost helium Y}, ~ 0.24.) The predominance of neutral hy-
drogen is now well-understood by the Big-Bang Nucleo-synthesis (BBN) theory, which effectively
combine all neutrons with protons into helium. As a result, the heavier elements are formed inside
the stars during the stellar evolution process. We expect more IGM is dominated by hydrogen
and helium than Milky Way.

Since the lifetime of hydrogen atom with energy level n > 1 is far shorter than the typical
time it takes to excite them in the rarefied environment of the Universe, most of the hydrogen is
in its ground state (lowest energy level n = 1, see Fig. 1), we denote them as Hr.

The most widely discussed transition with hydrogen is the Lyman-a spectral line which is
transition state of hydrogen from n = 2 state to n = 1 state. In 1965, Jim Gunn and Bruce
Peterson [2] realized that then cross-section of Lyman-« transition is so large that even the neutral
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Figure 2: Lyman-« forest. At the top of the panel, the light emitted from the distant quasar passes
through several clouds of neutral hydrogen before seen by an observer. The quasar emitted the a high
flux of radiation at Lyman-« resonance wavelength. As those photons travel, they are redshifted, so the
whole spectrum moves to the right. Photons beginning blue-ward of the Lyman-« transition eventually
redshift through that resonance. If the photons are inside the Lyman-« clouds, they will be absorbed by

Flux

those clouds, producing the absorption features in the spectrum. Therefore the quasar spectrum allows
us to map out the column density of IGM neutral hydrogen and ionization structure.

hydrogen fraction is as small as 1075, the IGM could be looked opaque.

Imagine a photon is emitted at A < Ao, where A\, = 1216A. The photon wavelength will be
stretched as the Universe expands, and eventually its wavelength is lengthened close to Lyman-
aresonance wavelength. Then it could be absorbed by a hydrogen atom and re-emitted in a
different direction. We will therefore need to integrate all the way across resonance line to
compute the optical depth.

1.1.1 Lyman-«a Cross-section

The full cross-section for a single atom is

_3A2AZ (v/va)?
oa(v) = 8w An2(v —va)? + (A2/4)(v/va)®’

(1.1)

where v, = (¢/Aa) = 2.468x10' Hz is the Lyman-a resonance frequency, A, = 8m2€? fo /(3mecA?)
6.25 x 108571 is the Lyman-a (2p — 1s) decay rate, f, = 0.4162 is the oscillation strength. This
is the formula for classical Rayleigh scattering.

In principal, the thermal velocity of IGM also has a finite spread, but those spread is small
comparing to the cosmological redshift, so we safely ignore them.

Since we are mostly interested in absorption close to the resonance, we take the limit of v — 1
and write

C3A2A, 1 (A /47)
%) = = T S + (AafAn ] (12)

Since v, > A, we can use one of the definition of Dirac delta function

op(z) = = lim —— (1.3)
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Figure 3: Observations of the 19 quasar spectra from Slogan Digital Sky Survey in between redshift
5.74 < z < 6.42. For those high-reshift quasars, the spectra show no transmitted flux at the wavelength
shortward of the Lyman-a wavelength at the quasar redshift. This is the so-called Gunn-Peterson trough
which indicates the slight increase of the density of Hiin the IGM. Figure taken from [1].



and convert the optical depth to be

3A2 A,

oa(v) = o (Vv —1y)
2
e
= fa‘SD(V — Va)
MeC
= opladp(V — Vy), (1.4)
where
we? Ao fa
o) = ——5—
MeC
~ 4.15x 107 ¥ cm?. (1.5)

1.1.2 Radiative Transfer, Lyman-a optical depth

Let us suppose a total flux of light F', transverse a region with size Al with neutral hydrogen
density ny;, the flux will lose an amount

AF = —Fny,0,Al. (1.6)
Integrated it over, we have
Fout = e~ Jrmoadl — o7, (1.7)

where Fy is the unattenuated flux, and we define the optical depth as an integration along line-
of-sight towards us

l
TE/ n o (v)dl, (1.8)
0

where the integral is over the proper length di. We need to relate d/ to dz and then dv to carry
out the integral. First we have

dt c da
dl = =c—da = —. 1.
cdt Cdada ) a (1.9)
Then since vops/v = a, we have
c da
T = /nHI (G)O'a (Vobs/a) m;
c da
= /nHI (Q)UOV(X(SD (Vobs/a - Va) m;
c
NH1 (Z)O'Om
c 1
= MNHI (Z)UOFOW, (110)

where we have used the fact that v, /vops = (1 + 2).



Now we can write

n () = (f;) (g) i (2)

X, Qpper(l 3
= xH1(1+5)[ b me( +Z)].
P

(1.11)

Then we substitute Eq. (1.11) into Eq. (1.10), and use the fact that at high redshift E(z) =
[Om(1+2)%+ QA]1/2 ~ ern/Q(l + 2)3/2, we obtain

Quh?\ 77 X, 0\ (k2N (14 2\
= 1.6 x 10° 2 (1 +6) ( o ; o
T 6 x 10° zp; (1 + )(0'147> (0_75) (0.023> ( 4 ) 7 ( )

which is the well-known Gunn-Peterson optical depth. One can see that Lyman-a cloud is very

efficient in absorbing photons, and even a small fraction of zy; (e.g. zp ~ 10*5) would absorb
photons very efficient, producing a large value of optical depth (IGM is opaque). The IGM
optical depth can be enormous even if the neutral fraction is small. Any transmission across
those wavelength is therefore evidence that the diffuse IGM is highly ionized.

It is possible to use higher order Lyman series lines, see Ref. [3], but you only gain a factor of
~ 20 by going into Lyman-y and higher order lines are exceedingly hard to measure accurately
because they blend with lower redshift Lyman-« absorptions.

1.1.3 Lyman-a forest

In the usual cases, the IGM absorption is observed against a luminous background, such as a
bright quasar or bright gamma-ray burst afterglow. The source emitted photons over an extended
continuum, which allows us to see absorption features over a range of wavelength. If the source is
located at redshift zs, then its Lyman-« transition appears at an observed wavelength A, (1 + z5).
Photons redward of this point will be even stretched to longer wavelength, so they will never enter
resonance with Lyman-aline in the IGM (though they might be absorbed by other elements).

Photons blueward of this point eventually redshift into resonance and are absorbed if the gas
is not too highly ionized. Each such photon redshifts into resonance at a particular distance from
the observer and the source that depends on its initial wavelength: photons emitted blueward
of Lyman-«ain the source frame travel a great distance before their wavelength redshifted into
1216A, but those emitted just blueward of it reach the resonance near the source. Therefore,
each observed wavelength samples a different point along the line of sight, this is illustrated in
Fig. 2.

The resulting Lyman-a forest is so named because of the strong variability of these absorption
features (Fig. 3). The redward of 1216A(in the source frame), the quasar continuum is largely
unaffected by the IGM, but the blueward of Lyman-a has a highly variable absorption feature
that depends on the detailed structure along the line of sight. These features are due to the fact
that a line of sight passes through sheets, filaments, voids of the cosmic web, so the optical depth
fluctuates.



1.1.4 Gunn-Peterson trough

If a source is observed along the line of sight where the neutral hydrogen fraction is substantial,
then all photons with wavelength shorter than \,(1 + z)Awould redshift to resonance, and are
absorbed by the IGM, and re-emitted into the other direction. Eventually this process would
result in a complete absorption trough blueward of A, in the source spectrum, which is known as
Gunn-Peterson trough.

In Fig. 3, we show the spectra of 19 quasars at redshift z ~ 6. The spectra of highest z ~ 6
show the hint of Gunn-Peterson effect. However, we cannot use it to infer whether the IGM is
highly ionized or not, because as we can see from Eq. (1.12), only a tiny fraction of zy; can make
the optical depth enormous.

The feature of spectral line is that each observational wavelength corresponds to a different
distance to us, the other spectral line also has the similar feature.

1.2 21-cm Line

As the powerful tools to study the high redshift Universe, comparing the 21-cm transition, the
Lyman-« transitions have the following advantages and disadvantages. The advantages are

e Comparing to 21-cm transition of spin-flip, the Lyman-« transition is is several orders of
magnitude stronger than this.

The disadvantages are

e The enormous cross-section. The Gunn-Peterson optical depth is so large that even a small
neutral hydrogen fraction would end up in an enormous optical depth, making it difficult
to study the detail behaviour of hydrogen ionization.

e Since Lyman-a transition lies in the UV band, observing it requires bright UV sources
which are rare at high redshifts, limiting the Lyman-« forest study to be only applicable to
a limited number of line of sight.

e The high excitation energy of the Lyman-« transition prevents us from using it to study
the cold pre-reionization of IGM, because the temperature of IGM before reionization is
too low to collisionally excite the Lyman-« line.

To overcome these disadvantages, we can search for a weaker, lower-energy transition of
neutral hydrogen, which is the spin-flip or hyperfine structure of Hi (Fig. 1). So the transition
between parallel and anti-parallel state of neutral hydrogen corresponds to the energy which
photon’s wavelength is 21-cm. The effective optical depth is roughly 1%, which makes the entire
neutral IGM accessible during the cosmic dawn.

Figure 4 illustrates the observable effect of 21-cm transition with analogy to Swiss cheese.
Each slice of cheese has a different structure, depending on where the air bubbles happen to lie
within it. By slicing the Swiss cheese, the full map of distribution of Hras a function of redshift
would provide a 3D image of the the Swiss-cheese structure. So the tomography of the Hi volume
provides the only way to map the distribution almost entire Universe’s baryonic matter.
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Figure 4: A diagram of 21-cm imaging of ionized bubbles during the epoch of reionization, illustrating
to an analogy of slicing Swiss cheese. The two dimensions on each slice is the sky coordinates, and the
dimension of slicing is the frequency/wavelength /redshift.

Figure 5 is the cartoon version of the different phases of 21-cm. Figure 6 shows a more
concrete and quantitative overview of the evolution of global (sky-averaged) 21-cm brightness
temperature relative to the CMB. One can see that the spin-flip background measures the UV
and X-ray radiation field over a broad swath of cosmic history, complementing the discrete probes
of individual galaxies that are studied by Lyman-« forest.

1.2.1 Preliminary: Einstein coefficients and emission process

In 1916, Albert Einstein proposed that there are three processes occurring in the formation of an
atomic spectral line. The three processes are referred to as spontaneous emission, stimulated
emission, and absorption (Fig. 8). With each is associated an Einstein coefficient which is a
measure of the probability of that particular process occurring. Einstein considered the case of
isotropic radiation of frequency v, and spectral energy density p(v).

1. Spontaneous emission is the process by which an electron “spontaneously” (i.e. without
any outside influence) decays from a higher energy level to a lower one (left upper panel
of Fig. 8). The process is described by the Einstein coefficient A1y (s~!) which gives the
probability per unit time that an electron in state 1 with energy F will decay spontaneously
to state 0 with energy Fjy, emitting a photon with an energy F1 — Ey = hv. If n; is the
number density of atoms in state i, then the change in the number density of atoms in state

1 per unit time due to spontaneous emission will be:

dnl
— =-A 1.13
< de )spon o ( )
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Figure 5: Cartoon of different phases of the 21-cm signal. The signal transitions from the an early phase of
collisional coupling to a later phase of Lyman-a coupling through a short period where there is little signal.
Fluctuations after this phase are dominated by spatial variation in the Lyman-« , X-ray and ionizing UV
backgrounds. After reionization is completed, there is residual signal from neutral hydrogen in the galaxies.
Figure taken from [5].
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Figure 6: Overview of the global 21-cm signal. Top panel: Time evolution of fluctuations in the 21-cm
brightness from just before the first stars form to the end of reionization. The colour indicates the strength
of the 21-cm brightness as it transits from absorption (blue) to emission (red) and finally disappear (black)
due to ionization. Bottom panel: Expected evolution of the sky-averaged 21-cm brightness from the dark
ages at z ~ 150 to the end of reionization z ~ 6. This process is affected by the interplay of gas heating,
the coupling between gas and 21-cm temperatures and ionization of gas. There is a lot of astrophysical
uncertainties associated with this process. Figure taken from [6].
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Figure 7: The 21-cm global signal as a function of redshift, for the 193 different astrophysical models,
by varying cooling channel, star formation efficiency (f), X-ray efficiency of X-ray sources (fx), spectral
energy distribution of X-ray sources (SED), and the total CMB optical depth (7). The color (see the color
bar on the right) indicates the ratio between the Lyman-c intensity (in units of ergs™  ecm =2 Hz !sr—!)
and the X-ray heating rate (in units of eV s~!baryon~!) at the minimum point. Figure taken from [4].
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where the same process results in increasing of the population of the state 0:

d
(TL()) = Alonl, (114)
dt spon

2. Stimulated emission (also known as induced emission) is the process by which an electron
is induced to jump from a higher energy level to a lower one by the presence of electromag-
netic radiation at (or near) the frequency of the transition (right upper panel of Fig. 8). This
process is regarded as negative absorption (or inverse absorption). The process is described
by the Einstein coefficient Byg (J~'m3s~2), which gives the probability per unit time per
unit spectral energy density of the radiation field that an electron in state 1 with energy E}
will decay to state 0 with energy Ej, emitting a photon with an energy Fq — Ey = hv. The
change in the number density of atoms in state 0 per unit time due to induced emission
will be:

dno
-0 =B ” 1.15
(), = 5o a2

again, for conservation
dm
—_— =-—-B , 1.16
(), = 2o 119

where p,, denotes the spectral energy density of the isotropic radiation field at the frequency
of the transition, i.e.

0% 1
Pv = "3 GhwlksT _ 1

= F(v)N,, (1.17)

where we have defined F(v) = 8rhv?/c3 and photon occupation number N, = 1/(exp(hv/kgT)—
1) in the above equation.

3. Absorption is the process by which a photon is absorbed by the atom, causing an electron
to jump from a lower energy level to a higher one (see lower panel of Fig. 8). The process is
described by the Einstein coefficient Bo; (J~'m3s~2), which gives the probability per unit
time per unit spectral energy density of the radiation field that an electron in state 0 with
energy Fy will absorb a photon with an energy E; — Ey = hv and jump to state 1 with Fj.
The change in the number density of atoms in state 0 per unit time due to absorption will
be:

dno
o — — Byinopy. 1.18
( de >absor oior ( )

Note that from the MaxwellBoltzmann distribution we have for the number of excited atomic
species i

n; _ gie Fi/keT (1.19)
n 7 ’ ’
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where n is the total number density of the atomic species, excited and unexcited, g; is the
degeneracy (also called the multiplicity) of state i, and Z is the partition function.

In the thermodynamic equilibrium, detailed balance (valid only at equilibrium) requires that
the change in time of the number of atoms in level 0 (or 1) due to the above three processes be

Z€ero, i.e.
dn
(dto> = Aioni1 + Bionipy — Boinopy = 0. (1.20)
total

Then we substitute Eq. (1.19) and Eq. (1.17) into the above equation, we can arrive:
A10g1 (e}w/kBT — 1) + BloglF(V) = BglgOF(V)th/kBT. (121)

This equation must valid at any given temperature, therefore

Bo1go = Biogi, (1.22)
and
Aog1 = Biog1 F(v). (1.23)
Therefore, we arrive
Bio g0 Ao 8why®
N A i 1.24
Bor g1 B ¥) c3 (1.24)

For the ground state and first excitation state of 21-cm neutral hydrogen, gi/g0 = 3, i.e.
BlO/B01 = 1/3

Therefore, if we count all three processes, in the frame of the gas, the net change in the
number of photons per unit volume with energy in between F and E + dFE propagating within a
solid angle d€) in proper time dt is

dQ2
dnemit = E [A10n1 + Bionip, — Bglnopy] dtdE(S(E — Egl), (1.25)
then we substitute Egs. (1.24) and (1.17) into the above equation and simplify, one can reach
1
dnemit = 4*1410 [n1 + (m — 3TL0)N7] dtdEé(E — Egl)dQ, (1.26)
T

which is Eq. (2.1).

1.2.2 Radiative Transfer

More radiative transfer to be added in.
The brightness temperature of 21-cm can be written as

T,—T
0y (v) = (1 —e ™)
142
~ H Tomb\ (1+2 0.15 \'/2 [ Quh?
~ 2am (146 [ ) (1 K,
v (14 ‘><dv1./dr+H>( T, )( 10 Qmiz2> 0.023) ™

(1.27)
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Figure 9: Evolution of spin temperature T, gas temperature Tx and CMB temperature 7,. This figure
is taken from [11].

where Ty is the gas spin temperature, 7, is the optical depth at the 21-cm frequency vy, dy(x, 2) =
p/p—11is the evolved (Eulerian) density contrast of baryons, H(z) is the Hubble parameter, dv, /dr
is the comoving gradient of the line of sight component of the comoving velocity, and all quantities
are evaluated at redshift z = vy/v — 1. Therefore the brightness temperature of 21-cm is very
sensitive to the spin temperature of gas and CMB temperature [11]. In addition, we have marked
the factors that are related to cosmology as red, and factors that are astrophysical determined as
blue. Once can see the rich dependence of astrophysics and cosmology for this global brightness
temperature.

1. Collisional coupling; Ti = Ty < Temp: At high redshifts, the IGM is dense, so the spin
temperature is collisionally coupled to the gas kinetic temperature. The gas temperature is
originally coupled to the CMB, but after decoupling cools adiabatically as o< (142z)~2, faster
than the CMB. The 21-cm brightness temperature offset from the CMB in this regime starts
at zero, when all three temperatures are equal, and then becomes increasingly negative as T
and Ty diverge more and more from 7T¢,,. The fluctuations in 673, are driven by the density
field, as collisional coupling is efficient everywhere In the fiducial model, this corresponds
to z 2 100.

2. Collisional decoupling; Ti < T < T,: The IGM becomes less dense as the Universe ex-
pands. The spin temperature starts to decouple from the kinetic temperature, and begins
to approach the CMB temperature again, thus 073, starts rising towards zero. Decoupling
from T occurs as a function of the local gas density, with underdense regions decoupling
first. The power spectrum initially steepens, as small-scale density fluctuations drive the
additional fluctuations of the collisional coupling coefficient. As the spin temperature in
even the overdense regions finally decouples from the kinetic temperature, the power spec-
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trum flattens again, and the mean signal drops as Ty — 0. In the fiducial model, this epoch
corresponds to 35 < z < 100.

. Collisional decoupling — WF coupling transition; T < T, ~ T,: As the spin
temperature throughout the IGM decouples from the kinetic temperature, the mean signal
is faint and might disappear, if the first sources wait long enough to ignite. In the fiducial
model, this transition regime doesn’t really exist. In fact our first sources turn on before
the spin temperature fully decouples from the kinetic temperature.

. WF coupling; T < T} < T, : The first astrophysical sources turn on, and begin coupling
the spin temperature of the nearby IGM to the kinetic temperature through the WF effect
(Lya coupling), i.e. the UV resonant scattering couples Ty to Ti. As the requirements for
Lya coupling are more modest than those to heat the gas through X-ray heating, the kinetic
temperature keeps decreasing in this epoch. The mean brightness temperature offset from
the CMB starts becoming more negative again and can even reach values of §73, < —100
mK. In the fiducial model, this epoch corresponds to 25 < z < 35.

. WF coupling — X-ray heating transition; T} ~ T, < T, : Lya coupling begins
to saturate as most of the IGM has a spin temperature which is strongly coupled to the
kinetic temperature. The mean spin temperature reaches a minimum value, and then begins
increasing. A few underdense voids are left only weakly coupled as X-rays from the first
sources begin heating the surrounding gas in earnest, raising its kinetic temperature. The
21-cm power spectrum steepens dramatically as small-scale overdensities now host hot gas,
while on large scales the gas is uniformly cold as Ly« coupling saturates. As inhomogeneous
X-ray heating continues, the large-scale power comes back up. In our fiducial model, this
transition occurs around z ~ 25.

. X-ray heating; T}, = Ty < T, : X-rays start permeating the IGM. The fluctuations in 67},
are now at their maximum, as regions close to X-ray sources are heated above the CMB
temperature, 07}, > 0, while regions far away from sources are still very cold, T}, < 0. A
“shoulder” in the power spectrum, similar to that seen in the epoch of reionization, moves
from small scales to large scales. X-rays eventually heat the entire IGM, and 21-cm can
only be seen in emission. The power spectrum falls as this process nears completion. In
our fiducial mode, this epoch corresponds to 18 < z < 25.

. X-ray heating — reionization transition; T = T, > T.,: X-rays have heated all of
the IGM to temperatures above the CMB. The 21-cm signal becomes insensitive to the
spin temperature. Emission in 21-cm is now at its strongest before reionization begins in
earnest. The 21-cm power spectrum is driven by the fluctuations in the density field. In
our fiducial model, this epoch corresponds to 16 < z < 18.

. Reionization : Ionizing photons from early generations of sources begin permeating the
Universe, wiping-out the 21-cm signal inside ionized regions. The power spectrum initially
drops on large scales at Zy; 2 0.9 as the first regions to be ionized are the small-scale
overdensities. The mean signal decreases as Hilregions grow, and the power spectrum is
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governed by Hil morphology. This epoch can have other interesting features depending on
the detailed evolution of the sources and sinks of ionizing photons, as well as feedback
processes, but as the focus of this section is the pre-reionization regime, we shall be brief
in this point. In our fiducial model, this epoch corresponds to 7 < z < 16. So eventually
all gases have been ionized and there is no source to provide kinetic temperature, the Tg
comes back to TouvB.

The reason that step 6 is later than step 4 is because the X-rays is only emitted when the
violent astrophysics starts to happen inside the galaxies, so it takes some time for structure to
form. It also takes some time for emitted X-rays to be absorbed by the Hi.

The late time 21-cm intensity mapping signal comes out of the Hisynthesized during structure
evolution.

2 Low-redshift Universe: 21-cm Intensity Mapping

In the following calculation we take ¢ = 1, and metric convention (+,—, —, —).

2.1 21-cm Brightness Temperature

Much of the following materials are presented in [8], but here we present a more detail calculation
through each step. Let the rest-frame (proper) number density of neutral hydrogen atoms at
redshift z along some line-of-sight be ny;, with a fraction ny /ny; being in the excited states and
no/nm in the singlet state of the 21-cm hyperfine transition. One should notice that the excited
state has S = 1 thus it has three degenerated state 25 + 1. Therefore, the net change in the
number of photons per volume with energy between £ and F + dE propagation within a solid
angle d€) in proper time dt due to 21-cm transition is

dnemit = % [(m — 3n0) N7 + ’I”Ll] A105(E — Egl)dEdtdQ, (2.1)
where Ajp ~ 2.869 x 101951 is the spontaneous emission coefficient, and Fy; = 5.88ueV is the
rest-frame energy of 21-cm photon. N, is the photon occupation number, and in the Black-body
case, it is in the Planck form N, = (e"*/kBTrad — 1)_1 = (/T - 1)_1. The first term (n1Ny)
is the stimulated emission, where the incident photons causing the first excited state to emit a
photon and jumps into ground state, and it also has the inverted process where the ground state
atom absorbs a photon and jumps up to the first excited state. The second term —3ngN, is
the absorption term which corresponds to the case where a ground state atom absorbs photon
and jumps onto first excitation state. The third term nq is just the spontaneous emission from
1 — 0. One can verify that, in case of thermal equilibrium (ni/ng = 3e~"2/T) the square
bracket in Eq. (2.1) is equal to zero, i.e. no emission at all. The detail derivation is shown in
Appendix 1.2.1.

The level of population defined by the spin temperature Ty by ni/ng = 3e , where
Ty1 = E91/kp = 0.068K. We assume that the radiation field consists of CMB and addition
21-cm photons. At low redshift Tk ~ Ty > Tovmp > T51. In this limit, n; ~ 3ng, therefore

—T51/Ts
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Figure 10: The congruence of the light-ray bundles, the area of wavefront and the observer’s focal plane.

nm = (4/3)n1. Equation (2.1) becomes
dnemit ~ %nHlAwé(E — Egl)dEdtdQ, (22)
T

which is independent of spin temperature. Note that dnemit defined by Eqgs. (2.1) and (2.2) have
the dimension of number density.

The number of photons collected by an observer with 4-velocity u® along the line-of-sight n,
with energies between E and F + dF in an area dA subtending a solid angle at the observer of
d€) in a proper time dt is

dngec = f(E,n)E*dEAQdAdt, (2.3)

note that because photon distribution function f(E,n) has the unit of 1/ hg, the dngec is dimen-
sionless. Therefore, in order to relate dnemit and dnge., we need to multiply a dV factor onto
dnemit.

We relate the dnge. and dnemis by considering the propagation of the bundle of null geodesics
that focus on the observer. Referring to Fig. 10, one can see that dA is the invariant? area of
the wavefront, i.e. the surface of the constant phase at null surface, orthogonal to the central
ray. So dA is the observer’s area at given point z% k% = dz® /dA is the wave vector and z® is
the spacetime position along the light ray. In an interval of affine parameter d\, the wave-front
sweeps a volume dAulk,d\, where ug is the source 4-velocity. Note that the volume is observer-
dependent, and dAdz, = dAk,d)\ is the volume at each position of the beam, and dzzlugk‘ad/\ is
the volume projected onto the source system, i.e. volume measured by the source. One can easily
see this recovers the ordinary volume in Minkowski spacetime, because in Minkowski spacetime,
if the source is at rest, uy = (1,0,0,0). This is because the ug is just the tangential vector along
the source worldline, i.e.

- (8- () () () ()

2dA is invariant under Lorentz transformation, independent of local observer, because dA = detDodo.
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where the second term is zero because of at rest. Thus,
_ _ [ dt -
dAuik,d\ = dA <d)\> d\ = dAdt = dV. (2.5)

Now we can relate Eq. (2.2) with Eq. (2.3), we first multiply with the volume (remember the
dimension is different between the two, dV is the local volume, and dnep;t is the photons emitted
per volume), and note that Eq. (2.2) is about everything from the emission point

dngec = / dVdnemit

_ / (dAkqued)) <1§’> ntts A0S (Ee — Eon )dEodtedS, (2.6)
T

where F, is the emitted energy, which is related to the measured energy (redshifted energy) E
by Ee = E(1 + z). dte is the increment of time at the source, which is related with the time
measured by observer at z = 0 with dt, = dt/(1+ z). dQ is the solid angle of the observer’s area
(focal plane) dA measured from the source. Now we substitute these relations into Eq. (2.6), we
have

dt
+z

kquldQdA| . (2.7)

dnyec = % /d)\ [nHIAm(S (E(1+2z)— E91) xdE(1+ 2) 1
T

We now use the relation d\ = |dA\/dz|dz, and the following Dirac-delta function property

0 (2 — 225E)

(S(E(l—i-Z)—EQl) = 5 ,

(2.8)

and kqul = E9; (energy of the photon measured from the source) and Es9;/E = 1+ z to simplify
the above equation. Then Eq. (2.7) becomes

3 dA
rec — T, _ A 1 4
dnree = qgmm Aw(l+2) |70

‘ dEdtdQdA. (2.9)

Now we use the reciprocity relation (Sec. A) dAdQ = dAdQ/(1 + 2)?, and again Ey /E =1+ z,
to combine Eq. (2.9) with Eq. (2.3), and we obtain

dA

16 E%

. (2.10)

In Rayleigh-Jeans regime, kpT}, = th f/2, where h;, is Planck constant 3. Tt follows that

3 hinm Ao
T A — = _p T
b(Z, n) 327 k‘BEgl

dx

< (2.11)

Now if we only consider FRW universe, i.e. ignoring perturbation, then the affine parameter
A can be arbitrarily re-scaled, but it needs to be fixed at the source since kq,u? = Ea;. Note

3
3This is because f(x,p) = Mgﬁ, where hg is to make sure [ fd3xd3p is dimensionless, and factor of

2 is due to that photon has two polarization state. In Rayleigh-Jeans regime, exp(z) ~ 14 z so one can obtain the
equation in the text.
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that |[dA/dz| in Eq. (2.11) is at emission point, and each 21-cm emission has fixed energy FEoq,

therefore
dz) _ |4 (L) _| adn] _|Hdn) . idy
d\[,  |dix\a/| | edX\| |ad)| T |d)A|,
€ E
_ H<a2>e_H<a>e_H(1+z)E21, (2.12)

where at the second line we have used the definition of photon 4-momentum, i.e. Eq. (2.31) with
P =0.

Now we substitute Eq. (2.12) into Eq. (2.11) and adding on ¢® to make correct the dimension
to be in temperature, we have

— o 3 (hpC)‘gﬁHI A
To(2) = <327r) kB2 (L+ 2)H(z) (2.13)

We then use

_ Qi (2)pe(0) T _ Qi (2)pc(0)
mp a3 mp

A = 7 (2) (1+2)3, (2.14)

where Qpy; (2) is the comoving mass density in HIin unit of current critical density. By substituting
Eq. (2.14) into Eq. (2.13), we obtain

Tb(z) = 0.188K (QHI (Z)h)

= 0.127 (oh7> (%‘g_@) <(1EJE;))2> mK, (2.15)

which is clear of its cosmological parameter dependence. For the most general case where curva-

ture is non-zero and dynamical dark energy,
1/2
E(z) = |:Qm(1 +2)% + (1 + 2)? + Qae(1 + z)3(1+“’0+w“)e*3w“'z/(1+z)} : (2.16)

where Qp, + Q + Qqe = 1 [7]. The above z dependence on dark energy is because, for CPL
parametrization, w(a) = wy + we(1 — a),

pde(a) _ pdeoa—3(l+wo+wa)e3wa(a—l). (217)

2.2 Relativistic Perturbation to 21-cm brightness temperature

The above Egs. (2.13) and (2.15) are for the average brightness of 21-cm emission. Now we want
to calculate the perturbation of the brightness temperature so that we can do power spectrum
estimation and cross-correlation studies.
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2.2.1 Metric perturbation

In the following we only consider the the spacetime metric with sign (4, —,—, —). The most
general perturbation to the background metric is

ds® = a*(n) (1 + 2¢)dn? — 2B;da’dn — [(1 — 2¢)0;; + 2E;;] dz'da’) (2.18)

where the coordinate transformation is like

; > o oxk 9z!
o' -’ B — 5 Bj, Ejj — ————Ep,
Ox* Oz'J

2.1
oz’ (2.19)

and F;; is a symmetric (E;; = Ej;) and trace-free (64 E;; = 0) three-tensor.

2.2.2 Orthogonal Frame Vectors

It is very useful to construct explicitly an orthonormal frame of 4-vectors, (Ep)* and (E;)*, in the
perturbed metric (the upper index p is known as Penrose Abstract Index). Taken the timelike
(Eo)" to be the 4-velocity u* of an observer at rest relative to the coordinate system. It follows
that (Ep)* must be parallel to &) and normalizing gives, at linear order

(Eg)* = a~ (1 —4)d, (2.20)
since then
G (Eo)*(Eo)” = a™2(1 — 2¢)goo = a~2(1 — 2¢p)a’(1 + 2¢) = 1, (2.21)

where we have dropped the second order (and above) term here.
The spacelike (E;)* is a little more involved, since the coordinate vectors 8! are not orthogonal
to u* unless B; = 0. The following construction has the required property

(B =a~t [ Bl + (1+ ¢)ot — E{&ﬂ : (2.22)
one can easily verify the following two properties at the first order
9w (Eo)*(E;)” = 0,Orthogonality

g (E:)"(E;)Y = —0d;j, Normalization. (2.23)

2.2.3 Scalar perturbations in conformal Newtonian gauge

We only consider scalar perturbation here, and we can also choose two gauge functions so that
metric perturbation F and B are zero. This defines conformal Newtonian gauge

ds* = a*(n) [(1 + 2¢)dn® — (1 — 2¢)d;;dx"'dz’] (2.24)

In this gauge, the physics appears to be simple because the hypersurfaces of constant time are
orthogonal to the worldlines of observers at rest in the coordinate (go; = B; = 0), and the induced

geometry of the constant-time hypersurface is isotropic.
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To derive the particle geodesic equation, we first derive the Christoffel symbol. Generally

1
Flljp = Eglm (az/gmp + 6pgmx - 5591/,)) 5 (2.25)

and the metric is diagonal and simple to invert:

, 1 (1-2) 0
=2 < 0 —(1+26)0Y ) (2.26)

Then we can work out the all of the nonzero Christoffel symbols (the dot is referring to the
derivative to )

gy = H+ W
ng‘ = oy
60 = oY aj ¢

TY, = Hoy— |d+2H(o+ 1/})] 0ij

o = (H=0);
e = —20(;000+ 68" 010, (2.27)

where the round bracket in the last line means A(;;) = (1/2)(Ai; + Aji). In addition, all of the
over-dot means the partial derivative with respective to conformal time 7, i.e. () = 0y.

The metric perturbation leads to changes in a photon’s energy during propagation relative
to the change in an unperturbed cosmology. This effect, in turn, leads to the 21-cm fluctuations
(CMB anisotropy is the same reason) on the sky. We shall do the perturbation calculation in
conformal Newtonian gauge. We parameterise the photon 4-momentum in terms of the energy F
seen by an observer at rest in the coordinates, and by the direction cosines e’ of the propagation
direction seen by the same observer on the (E;)* orthogonal frame of vectors (Egs. (2.20) and
(2.22)). Note that d;je’e’ = 1, the photon 4-momentum is

P = E[(Eo)"+ e (E)]
= Ea '[(1—v)df +e'(1+¢)0t]. (2.28)

Using the 3-vector notation, and identifying e’ with vector e, we can write

P = Ba'[(1-9),(1+9¢)e]
= e ?[(1-9),(1+ )], (2.29)

where we have introduced comoving energy ¢ = Fa which is a constant in the background.
Photons move on geodesic of the perturbed metric so

— +10,p"p” =0, (2.30)
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where \ is an affine parameter such that p* = da*/d\. Using the parameterisation of Eq. (2.29)
in p# = dax*/d\, we have

dnp € _

a = (1—14) (2.31)

da? .

d‘i = §(1+¢)ez (2.32)
;‘ify = (1+¢+9)e, (2.33)

at linear order.
Then the geodesic equation in conformal time (change from d\ to dn) is

dp*
<L LT PP =0, (2.34)

1-v5T

We now want to find out what are the 0-component and i-component of this geodesic equation.
We need to use the fact that the derivative di/dn is along the path of photon so

dy

Wi, (2.35)

to the first order. In addition, we need to use the perturbed connection coefficients (Eq. (2.27)),
so finally by simplifying the © = 0 component of Eq. (2.34), we have

Lde 40 G4, (2.36)

edn  dp

This equation tells us how the comoving energy of a photon evolves along the photon path in
the presence of metric perturbations. In the background, € is a constant, but this is modified
by the variation of ¢ along the path (the first term on the right) and by the time evolution of
gravitational potential (second term on the right). The second term is the ISW effect which is
important when the dark energy starts to dominate the Universe.

By using the i-component of Eq. (2.34) and Eq. (2.29), we will find that the direction of
photon propagation evolves along the photon path according to the first-order equation

det

=0V =de) (0 +). (2.37)

Just a note, in the vector format, Eq. (2.33) and Eq. (2.37) can be written as

dx

—=0+o+v)e,

e
z L _Vi(o+v), (2:38)

dn
where V; =V —e(e- V).
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Ny =1gbutz, >z,

Figure 11: The diagram illustrates that, although two objects could form at the same time, and have
the same evolutionary history (same n) but they could have different redshifts due to the potential effect.
Therefore, the surface of constant n could have z fluctuations and the surface of constant z could have n
fluctuations.

Solving for the photon path, we integrate Eq. (2.33), we have

nq U
x(fm) = /d’;dnzj (1+ 6+ )edn
n

UIN A
n n
= / (¢+w)edn’+/ edn
UIN UIN
n n d
o~ eA/ (¢4 )dn + (en) |7, —/ n (d:’> dn/
771:7 nA ; }
~ ex / (6 +0)d + (en — eana) + / VL (6 + )
772 1777A .
= eA/ (¢+¢)dn’+eA(n—nA)—/ (n—n")Vi(o+v)dy, (2.39)
nA UIN

where the second term indicates the radial displacement and corresponds to (Shapiro) time-delay,
and the third term is the transverse (lensing) displacement. The reason that in the first term
we approximate e = ep is the Born Approrimation in the sense that for small perturbation,
the lensing integral can be evaluated on the unperturbed light path. At first-order this is fine
because the e is multiplied with (¢ + 1), so it is fine to assume e takes its zeroth-order value, i.e.
a constant ep.

Born Approximation: In Quantum Mechanics, if the potential V' (r) is weak enough, it
will distort only slightly the incident plane wave. Therefore one can replace the scattered wave
function ¥(r) by a plane wave.

2.2.4 Brightness temperature fluctuation

Now we can calculate the brightness temperature fluctuation as a function of redshift z and
direction n on the sky. According to Eq. (2.11), we need to expand ny; and |[d\/dz| since other
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terms are constants.

nyr term. First of all, we have to make clear that z is observed redshift and 7 is the conformal
time. The perturbed conformal time at redshift z along the line-of-sight n is n(f, z) = 7, + dn,
where 77, is the unperturbed value (see Fig. 11). So 07 is the time variation at a given z at a
particular direction. This is similar to the CMB where if you look at different parts of the sky
you see different temperature, although local temperature at the decoupling time is the same.

We now calculate the perturbation of neutral hydrogen density at redshift z at a given direc-
tion

S T

ny (z,0) = gy (77,) (1 + Op + — 577) , (2.40)
NH1

where the second term is the intrinsic brightness fluctuation, and the third term is due to the

perturbation of conformal time.

Preparation for calculating |d\/dz| term. Let us write the source 4-velocity as u? = u®+v%,
i.e.uf = a1 — 9, v'], where v' is the orthonormal-triad component of v®. Similarly, observer’s
4-velocity at point A can be written as ul, = a;l[l — QSA,vg A Therefore, the physical energy
of the photon at emission time E and at receiving time FEa (Fa is the energy of a fundamental

observer with rest to the FRW frame) is related to the observed redshift through

(142) = <E> (1+5- (v = vor)), (2.41)
EA
where z is the observed redshift which contains both physical redshift factor and the local motion
contribution. One can see that if a photon is moving away from the observer, i - v > 0, then
it make z increase (redshift) and vice versa. For local motion, if observer moves towards the
observing line-of-sight direction, i.e. fi-vya > 0, it makes the line-of-sight direction z decrease
(blueshift). i = —ey is the line-of-sight direction of the photon seen by the observer. Using the
definition of comoving energy, we have

142= (?;) (140 (v —vor)). (2.42)

Integrating Eq. (2.36), we obtain the ratio of Newtonian gauge energies

€ L .
— =14+1YPr —+ / (¢ +2p)dn, (2.43)
€A

nA

which has the usual Sachs-Wolfe (first term) and integrated Sachs-Wolfe (ISW) (second term)
contributions. Substituting Eq. (2.43) into Eq. (2.42), we have the redshift at 7 along the line-
of-sight 1 as

l—i—z:;zz)<1+¢A—¢+/T]Z(§.b+@/})d77,+ﬁ'(V—VoA)>a (2.44)
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note that this z is the redshift at n. Again, we use n(i, z) = 77, + én, where 77, is the unperturbed
value (see Fig. 11). Therefore, we have

_ %A _ %A B TV

1+z= )~ a() <1+¢A w+/m<¢>+¢)dn +0-( OA)> (2.45)
a(n) _ B T h (v

= o) 1+ 9a 1/’+/77A(¢+¢)d77 +h-( oA (2.46)

since a(n) = a(7,)(1 + #Hdn), one can obtain

n. . .
H(m)on = b — o + / ($+9)d + 8- (v — Voa), (2.47)

na
where we have substituted n — 7, into the above equation since the difference is second order.
H = a/a is the conformal Hubble parameter. Note that in Eq. (2.47) the ISW term ¢ and ¢ are
functions of spatial hyper-surface r at each conformal time 7/, so dn is both a function of fi on
the sky and a function of redshift z.

|d\/dz| term. Now we can calculate |[d\/dz|. We first calculate |[d\/dz|(n) and then expand

n(f, z) =1, + dn. First, we have
dA d\\ [dn
_ (AN (dny 9.48
1@ @) =

dz

From Eq. (2.31), we have

- 0o (3) (2o
- <aaA> Y1 =t —h-(v—vor)), (2.49)
:32 = <6A(1iz)> (I4+4+n-(v—vor)) (2.50)

where in the second line of Eq. (2.49) we have used the Eq. (2.42). Then by using Eq. (2.45) we
have

d d d . ; / .
o = ——+ (9+1) + d;]—j;df; [1+¢A_¢+/7A(¢+¢)dn +n~<v—voA>]
B 7—[(17) oo 1dyp 1 1. dv
- M. <1+¢ vt [ e v vor) 4 - (0 0= 5 )
(2.51)
We invert Eq. (2.51) and multiply with Eq. (2.50), we obtain
dx| a%(n) oL 1 dy 1, dv
@n = _7{(77)6A(1+2)[1_¢A+2w_ nA(d)—i_d})d _ﬁd7+ (¢+¢)+* dﬁ]
_ @) SR S AN
— e [t - M A v von) = 3 @)+ e G
(2.52)

24



where in the second line we have used Eq. (2.47) to get rid of the integral term. Now we need to
calculate |[d\/dz| at a given redshift z, therefore we need to expand the front term in Eq. (2.52)

dm) a(m)*(1+2(a(7,)/a(ms,))én)
H(n)ea(l + 2) H(7,) (1 X (7.'[/9.[)577> ex(l+ 2)

_ a(7.)? H
M@ )ea(l+2) (1 + (2% H) 577) : (2.53)

(ea/a(7,)) term. We now need to calculate (ea/a(7,)) to proceed. This is non-trivial and easy

to be incorrect, and one has to bear in mind that ep is the comoving energy of the fundamental
observer A at rest in the Newtonian gauge, so we can call it “Newtonian gauge observer”. In fact,
all es are comoving energy measured by Newtonian gauge observer, so that is why in Eq. (2.43),
when we compare the two comoving energies, there is no Doppler term in it. But in reality
neither observers or emitters are at rest in the Newtonian gauge because of the peculiar motion.
Therefore €/a = E9;(1 — i1+ v) because the 21-cm emitter (gas) has motion v. Now we have two
ways to calculate it

e We can write

(a(e"/;z)>

() (o)
= L= FHEaQ =RV L+ F(n) + 8 (v = vou)]
= Ey(1—1i-vop). (2.54)

On the second line of above equation, f(n) =1 — ¥ + :A(q.ﬁ +4))dny. (ea/€) is the ratio
between the comoving energy of fundamental receiver and emitter so we used Eq. (2.43).
For a/a(7,) we used Eq. (2.46).

()~ (2) )

ea/an = Ea, which is the energy received by fundamental observer, and Ea/FE2; = (1 —

e We can also write

n-v)/(1+ %), where Z is the redshift of only-cosmic expansion effect (no peculiar motion
effect), and v is the peculiar velocity of emitter. This is because € /ap is the photon energy
measured by a Newtonian gauge observer, whereas Fo7 is the energy measured by emitter,
whose velocity differs from that of Newtonian gauge observers by the peculiar velocity of
the gas v.

In addition,

20.) =(14+2)=01+2)(1+n-(v—voar)), (2.56)

where the first equality comes from Eq. (2.45), and the second equality is just a summation
effect of pure cosmic expansion and peculiar motion. Therefore, by combining the above
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equations, one can find

<a<67/;z)> N <Z:> <a?7?)> = Far X ll_iv(l +2)(1+n-(v—vor))
= En(l-10-vos), (2.57)

which is the same conclusion as Eq. (2.54). Note that This cancels the Doppler term of
observer’s motion in Eq. (2.52).

Putting together for T}, (z,n). Therefore, combining Egs. (2.53) with (2.52) and ((2.54) or
(2.57)), we have

dx| . a(7,) H A 1dy 1.. .. 1_ dv
- = 1— [ == 5 oV — — T —f—
| P = G En (52 (H H) e v AR e
(2.58)
Combining Eq. (2.11) with Eq. (2.40) and Eq. (2.58), we obtain
. 3\ (hpe)®nm (77,) Aro )
T = (= z 1+ A
bz, 1) (3%) kB2, (1 + 2)H(2) (14 A, (=)
L ot H X ldgp 1, - 1 dv
Agq (z,0) = 5”+ﬁH1577 (’H H) m+v+n-v H dn + H(¢+¢)+ Th a
(2.59)

Here we use a few facts to simplify the above equation. The first thing is that if the comoving
number density of Hris conserved at low redshift (i.e. ionized fraction of hydrogen is constant),
then Mg, ~ a3, then (P a3) is a constant. But we are not sure whether this is true, so in
general case the following equation represents the change of ionized fraction of Hi

= =3H + —. 2.60
a (@) dn . (2.60)

The second equation is the directional derivative of n can be broken down into two terms

dv ov

W oo o
WooW wo, (261)

where the first term is partial derivative, and second term is the spatial derivative. The reason
that the second term is negative sign is because 7 increases if the direction is towards the observer,
while 01 is the line-of-sight direction leaving from observer to the sky, so the two directions are
opposite.

The third equation we will use is the Euler equation v + Hv + V¢ = 0, where v = dv/In.
Therefore, by substituting these three relations into Eq. (2.59), we can simply it as

o 1r. . = dIn(a’nm ) H 1.
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The second term means

- (h-V)v=> fh;- V). (2.63)
i,
Each of the term in Eq. (2.62) has special meaning. The first two terms are the usual density and
redshift-space distortion term, the third term comes from the evaluating the zero-order brightness
temperature at the perturbed time corresponding to the observed redshift. The fourth term is
the ISW term. The fifth term (7)) is due to the conversion between radial distance in gas frame
(dA) with increments in redshift (dz), i.e. comes from |d\/dz| term.

2.2.5 Doppler shift

The Eq. (2.62) gives the Higas fluctuation as seen by any observer in their own rest frame. The
dependence of observer’s own motion is through Eq. (2.47) into the dn term in Eq. (2.62). This
is equivalent to the frame transformation via

(1+ 2T (2, d") = (1 + 2)Ty (2, 1), (2.64)

which follows the invariant distribution function. Since (1 +2) = (14 2')(1 + 11 - vye]), Where Vg
is the relative velocity of frame with redshift 2’ to the frame with redshift z. From this equation,
we obtain (z —2') = (14 2')(1+11-v,). Now we can calculate the relation between perturbation
in two frames.First

R 1+2 R . R
T, i) = (1 : ) Ti(z8) = (14 B viel)Th (2, ). (2.65)

We then expand the 1.h.s and r.h.s separately

T (7,8 ~ Ty(Z)(1+ A/Tb (2, n")), (2.66)
Ty(z,0) =~ Ty(2,h)+ (dI:L(z)> (z—2)
~ To()(1+ Ag (. 8)) + (dt(z)) (=)
= Tp(7) [1 + Ag, (¢, 1) + (“Il(iT;(Z/)(l + 21 +h-vea)] (2.67)
Combining Eqgs. (2.65), (2.66) and (2.67), we have
AT (2,0") = Ag (2, 0) + 1 vie + W(l + 21+ 1 vie). (2.68)

All of the 01 - v, terms only affect the £ = 1 moment.

2.2.6 Why lensing isn’t important at first order?

Comparing the perturbation of surface brightness temperature (Eq. (2.62)) with the perturbation
of the source number counts (eq. (28) in [9]), one will find that the source number counts contain
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Figure 12: The measured surface brightness at a given solid angle (i.e. amount of energy per solid angle)
is determined by the product of the number of sources in the solid angle and the flux of the source.
This figure shows that, while lensing is turned on, although the total number of sources per solid angle
decreases, lensing magnification increases the flux of each source. This is equivalent to the decrease of
angular diameter distance. Therefore, the surface brightness one measures stay the same.

the perturbed equation of Jacobi map, which contains lensing. However, for surface brightness, it
does not contain lensing contribution. To see lensing has no contribution to the surface brightness
variation, one use Fig. 12 to understand this point. Suppose you observe a patch of the sky for
a given solid angle with volume dV = (detD,)dQ2dl ~ dNgource. The flux of the source is
dF ~ L/detD,. Therefore dT}, ~ dFdNsource ~ LdQdl. The meaning is this: If you turn on
lensing, the number of sources that you measure (dNgource) is going down, but the flux of the
source is going up due to the lensing magnification effect (just like you place the source at smaller
angular diameter distance but with same df2, shown in Fig. 12). Therefore the surface brightness
you measure is not changed.

One can see this more quantitatively through the perturbation of luminosity distance. In
Eq. (2.11), the nyy; is the physical density of Hiin the source, which is related to the observed
Hratom density per solid angle and per redshift nb(z, i) through n¢s(z,#)dzdQ = ny, dV,
where dV = dA(ulk,)d\. Therefore, one can transform Eq. (2.11) into

Tb(za ﬁ)

3 obs ~
3hy Ao <nHk; (z,n)dde) dA | (2.60)

~ 32nkp B dA(usk,)dx /) |dz

and note that ulk, = E2; and dA /dQ = detD,, where D, is the determinant of the Jacobi map
in the observer’s frame [10]. Therefore, Eq. (2.69) can be simplified as
3h%A10 nObS(Z,ﬁ)

T A — Hi
b= 0) = o knED  detD,

(2.70)

which is exactly the sense we show in Fig. 12, i.e. surface brightness is equal to the product of
observed number density times the flux of each source.
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To further see the cancellation of luminosity diameter distance perturbation, which include
lensing, we notice that d? = (1 + z)*detD,, therefore

d(detDy)

_9 5dL(Z7 ﬁ)
detD, '

CiL(Z)

The perturbation of the determinant of the Jacobian map at observer’s rest frame is given by

Agy (2, 8) = An(z, ) — = An(z,0) (2.71)

eq. (20) in [9], where the 5 terms after 1 are the perturbations. The last term is the abberation
effect. One can see that, by subtracting this term from the number count perturbation (eq. (28)
in [9]), we will end up in surface brightness fluctuation (Eq. (2.62) here).

2.2.7 From theory to observables

We now want to transform the real-space density contrast (Eq. (2.62)) into the k-space, and
figure out the angular power spectrum in ¢-space.
In general, we have

" 4’k L\ iker(d,2)

ATb(Z,n) = WATb(Z,k, n)e ’
d3k . "y . T .

_ / Byt n) 1703 i () Vi (R) Yo ()

Im

)

3 ~
= 3| [ G e 4 b)Y )] Vi )

Im

3 ~
5 [4n1) [ s e 0 )] i), (2.72)

Im

The last line is our definition, and we want to move all of the dependence of i into Yz, () so
that A, ¢(z,k) is really the Fourier space density contrast of /-mode.

We now start to figure out how each term in Eq. (2.62) is transformed. For the first, fourth
and fifth term in Eq. (2.62), it is the density contrast, ISW and potential term in the real-space,
therefore its Fourier transform is

R d3k 1. ik-r

where F just represents the Fourier transformation. In the following, we will use a “~” to
represent the Fourier function.
In addition, we will frequently use the following plane-wave expansion

T 2) =3 (i) o (kx) Vi (B) Vi (), (2.74)

Im

where x(z) is the comoving distance to redshift z.
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By using Eq. (2.74), Eq. (2.73) becomes

3 - F. o
ARy = [ B 5 0] [ S0y @Yin @)

27)3/2 —
3 . L R
= > Vin(d) [(m’f) / (gi)l;/z (6n - %d} + ¢> je(kX)Yé;z(k)}
Im
= AL (k) = <5n + %é + 1[}) Je(kx), (2.75)

where the last line is by comparing Eq. (2.75) with Eq. (2.72).
For the second term, i.e. Redshift-Space-Distortion term (RSD), we first define the velocity
field in real and Fourier space

3 .
v(r) = / (;r)l;/zv(k)ezk'r. (2.76)

Here note the dimension. v(r) has the dimension [LT™1], so v(k) has the dimension [L3T~!]. In

order to preserve the dimension, we define the scalar o(k) as [8]

v(k) = —iko(k), (2.77)
so that it has the same dimension as v(k). Therefore, the Fourier transformation of the RSD
term is

Fl-Za - 9v)| = -2 (k- 8)%ki(k) (2.78)
R . . —_ — . v .
H H
Therefore,
3
(2) ~ d°k 1. = ik-r
Ay (z,0) = / 2n)i72 [—Hn (i Vv)} e
1 d3k ~ L. )2 ik-r
Since
aaxe“” = ;Xe“k X = (i k)T = ;XQe“” = —(A'k;) (A k;)e™T = —(k - i)2e’®T, (2.80)

=5 AD (k) = Za(k)ki (k). (2.81)
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For the third term in Eq. (2.62), the bracket is just a redshift-dependent term, and the spatial
dependent is encoded in 7, so from Eq. (2.47) we want to calculate

Fom = 5557 [m v+ [T bt +a - vo)|. (2.82)

nA

Here we throw out the two constant terms, since they only affect the £/ = 1 moment. The v term
is easy, since it is just the 1. For the velocity term, again we have

F-v) = a-v(k)=—i(k-0)o(k)
= A e(z,k) ~ —o(k)jp(kx). (2.83)

Finally, for the ISW term, we need to use dy ~ —dn (neglecting higher order perturbation),
and also we need to bear in mind that inside the ISW term in Eq. (2.47), the ¢(r,n) and ¥(r,n)
are functions of spatial hyper-surface at each conformal time 7. Therefore we have (For the first
line r’ means the 3D hyper-surface at conformal time 7’)

[ty + i e
-/ ar ] (Q‘f)ﬂfﬂ(%(k, o)+ e

7= ! dgk 9" ! o’ / AN / * (1 ~
~ "y [ / @y O 1)+ 00 1) (Z(m m<kxmm<kmm<n>>]

Im

=3 [t (Qj‘:’)‘; (= [ @iy + btk ) Vi )| i)

Im
X B B
= Age(z k)~ —/0 dx' (¢ + ) je(kX). (2.84)

Note that j, function is just to tell how different Fourier modes project onto different angular
scales.
Therefore, the third term in Eq. (2.62) all together becomes

n(a3nm, . 5 ~ 1) S PSTIAN: Ndy'
Af(z?;),e(za K)=— <1dl(H) Tt 2) X [¢jg(k‘x) + (k) (kx) + /OX(¢ + ) je(kx')dx"|(2.85)

Therefore, the whole Ag, ¢(k, 2) is
Aqelk,z) = AR (k2)+ A (k2) + AF (k,2) + AF (k. 2) + AP (k. 2)
= (Bt g4 5) i) + 5009hi 0
. (1<ﬂn<a‘°’nm> A 2) [ + 2003400 + [ 6+ D]
(2.86)

The square bracket “[x X x]” has clear physical meaning. The first term, second term and
third term in the square bracket is just the usual SW, Dopper shift and ISW contributions,
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which are the usual contribution from CMB. It has to multiply with the front factor, which is
basically d73,/dn. For the second term, if Hiis not moving, and the observer collects photons at
a frequency v, then the observer knows it was emitted at at certain time; if Hiis moving, then
the observer collects photons at a frequency v, then the observer knows that it was emitted at
earlier or later time. Therefore the signal that the observer collects depends on whether HIis
moving or not. This is analogous to the CMB where the photons were emitted at a thin shell
at fixed epoch. In brief, the second term arises because emitting gas with peculiar velocity lies
at a different comoving distance than the FRW prediction for its observed redshift. So when
we observe temperature fluctuations across the sky at fixed redshift, we are observing gas at
different conformal distances. The background temperature monopole is hence different too,
since it evolves with time, and so the observed fluctuation is given by the time-shift multiplied
by the time-derivative of the background, evaluated at the background time corresponding to the
observed redshift. This is clearly gauge-dependent as it depends on how events in the perturbed
universe are mapped to those in the background, but the sum of all terms is Eq. (2.86) is gauge
invariant.

In the first bracket, d,, is the intrinsic fluctuation. The second v term is the usual redshift-
space distortion term. But the (¢/H + 1) does not have the usual meaning.

The contribution to the large angular part (small ¢) of angular power spectrum of 21-cm
comes from small physical scales (large k-value), also the large angular scale (small ¢), the power
spectrum of 21-cm is almost a constant. To see this, we expand the linear density field into
spherical harmonics, and then expands the exponential in Spherical Harmonic/Bessel functions
which gives

3

Oom(z) = 4771'6/ ((217:){3

Now squaring this and using the definition of the 3D power spectrum, one can find
k3P (k
Cy = (47r)/d1nk< 5 (2 )> Ge(kx)?, (2.88)
s

where the dimensionless power spectrum k3P(k)/27? ~ k* on large physical scales (here we

5(k, 2)je(kx) Yo (k). (2.87)

distinguish angular scale (in £) and physical scales (in k)). Therefore, because k3P(k) is rising
rapidly, most of the contribution to this integral comes from scales having k > ¢/x when ¢ is
small. When is ¢ is of order a few, ¢/y is of order the horizon, and horizon-scale power is very
small compared to sub-horizon power when dealing with the density field. Therefore we can
approximate the Bessel function with its asymptotic form at ¢ < ky, which is

i) = %Sin (ac - g”) | (2.89)

On the small physical scales relevant for this integral, kx > 1, so this sinusoidal function is
rapidly oscillating. Therefore, when we do the integral

1 I 1 1
3.:2 3 2 _ _ 21— _
Cy /dkk Ji (kx) /dkk 2 sin (kx 2) 2z /dkk [2 (1 — cos (2kx — ¢))|(2.90)



Figure 13: Fractional brightness temperature (dimensionless) perturbation power spectrum at z = 1 with
a 2MHz bandwidth. The auto-spectra of the full signal (black dashed line) and of each individual term
in Eq. (2.86) are shown, generically grouped (solid lines, top to bottom respectively) as Newtonian-gauge
density (red), redshift-space distortions (green), velocity terms (blue), all potential terms evaluated at the
source position (cyan) and the ISW term (magenta). Figure taken from [8].

where the rapid oscillation part averaged over a period and left with 1/2, and as the only /-
dependence was in the phase of the sine, the £-dependence disappears and we’re left Cy = constant.
For a simple example which demonstrates this, consider doing the integral

/d:z: sin(az) * cos?(bx), (2.91)
if b > a, this reduces to — cos(z)/(2a), i.e. half the integral of sin(az).

2.2.8 Power spectra and its relative components

Once we obtain the Ap 4(k, z), we can integrate it over the frequency band and calculate the
projected A, ¢ for each k for band W.

Do) = [ oW (), (k. 2), (2.92)
and then we define
To(k) = Aqy o(k)/R(K), (2.93)
and power spectrum is
CPW' = ar / dInkPr (k)AL (k) A, (K). (2.94)

We plot the different components of the relativistic power spectra in Fig. 13 for z = 1 and
Av = 2MHz. The RSD term will drop if one has very large frequency band width, because the
radial integral of line-of-sight over many peaks and troughs will turn to be close to zero.
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Figure 14: The spacetime diagram for an observer locating at ¢ at spatial coordinate » = 0 observing an
invariant area (of galaxies) emitting signal at t, at comoving spatial distance r.. Also for the same galaxy
observing an invariant area emitting a signal at tg.

3 Observational prospects for 21-cm intensity mapping

Please read the presentation slides for this section.

3.1 BAO reconstruction
3.2 Forecasts for BINGO, FAST and SKA

3.3 Foreground removal technique

3.4 1/f noise
A Etherington’s Reciprocity relation

Suppose you place a known object of physical size [ at an early time t, at a place with comoving
distance r.. The observer sees the object through the light bundle shown in the lower red dashed
in Fig. 14. The comoving size of the object is [/ae, where a. = 1/(1 + z). Therefore, the angle
subtended by the object at t, seen by the current day observer is 8 = (I/ae)/re, therefore

dA\'? 1
<dQ ) = 5 = DA(te) = QeTe- (Al)
o

Then we ask a question, what is the solid angle seen by the galaxy if we place the same object
at observer’s position at time to?7 (upper red dashed line in Fig. 14)

The comoving size of the object now becomes [/ag, and the angle subtended by the object at
to is 6 = (I/ap)/re (note that the comoving distance has not changed), therefore

dA, 1/2 I dA, 1/2
(dQ ) = @ = agle = (aere)(a(}/ae) = (dQ > (1 + Z)v (A2)
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where z is the galaxy’s redshift. Therefore we proved the Etherington’s reciprocity relation, i.e.
dAdQ = dAdQ/(1 + 2)2. In the notation of this note, it is dAdQ = dAdQ/(1 + z)2.
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