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About NAOC 

FAST LAMOST 

The Chinese Academy of Sciences comprises 12 branches, 104 
research institutes, 3 universities （UCAS, USTC, SHTU)， 11 
supporting organizations，20+ companies




Astronomical Facilities in China 



21cm Cosmology 
The observable Universe in comoving scale 
 

Figure inspired by Yi Mao & Max Tegmark 



The challenge: strong foreground 

V. Jelic et al. (2010)


raw signal to noise ration (SNR) ~ 10-5 

X. Wang et al. (2006) 



FAST Intensity Mapping Survey 

Hu et al. in preparation 
 

FAST 



Requirement for 21cm array 
•  interferometer array to get higher angular resolution


•  Each array baseline (u,v) measures a Fourier mode


Visibility: �



Requirement for 21cm array 

•  traditional array does NOT measure 
all modes, but good image can still 
be achived


•  But to use frequency smoothness/
sparseness for foreground 
subtraction, we do need to sample 
the uv space completely


short wavelength 
Long wavelength 



Cylinder Arrays 

feeds


Drift Scan Cylinders (Peterson & Pen):



 Canada: CHIME 

 China: Tianlai (heavenly sound)



   



instant field of view






The Tianlai （Heavenly Sound) Project �

The concept of “tianlai”-- the 
heavenly sound was coined by 
ancient Chinese philosopher 
Zhuang-Zi (Chuang-Tzu, 
369BC-286BC) �

•  NAOC,  CETC-54, Institute of
 Automation, Hangzhou Dianzi U., XAO �

•  US: J. Peterson (CMU), P. Timbie & Das
 Santanu (Wisconsin), A. Stebbins
 (Fermilab)�

•  France: R. Ansari, J.E Campagne, M.
 Moniez (LAL/IN2P3), J.-M. Martin, P.
 Colom(Obs. Paris), �

•  Canada: Pen (CITA)�
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Tianlai pathfinder experiment�

•  A small pathfinder experiment to
 check the basic principles and
 designs, find out potential
 problems  

•  3x15x40m cylinders, 96 dual
 polarization receiver units 

•  16 x 6m dishes 

•  observe 700-800MHz, can be
 tuned in 600-1420MHz 
 
•  If successful: expand to full scale 
 120mx120m,  2500 units 



Array Size 

T. Chang et al. 2008, Seo et al. 2009, Ansari et al. 2012 



Tianlai performance 

Xu et al. (2014)�





Dark Energy Model 



Probing the Origin of Universe 

Current CMB (Planck) Constraints already very tight, can one do better? 

Features produced during inflation: 

inflation feautres: resonance model (e.g. 
axion monodromy  inflation) Xu, Hamann & Chen （2016） 



Collateral Sciences 

•  Continuum and Polarization Sky Survey


•  Transients: Fast Radio Bursts, GRB & GWE radio afterglows


•  Quasar activities


•  21cm absorbers


•  ....... 



Site Selection 

Site Requirements:



To minimize radio 
frequency interference 
(RFI), typically sparsely 
populated area, 
surrounded by mountains 
and hills  



  

  

Candidate Sites near MUSER 



Candidate Sites around FAST 



Pingtang, Guizhou�

Inner Mongolia�

Ali, Tibet�

Huadian, Jilin�



RFI spectrum for some sites 



Hongliuxia （红柳峡）in 
Barkol （巴里坤）�



Balikun (Barkol) town 

relic of ancient watch tower along silk road 

Tianshan mountain 



Site Arrangement 



Station House 



Construction of the Array 



Tianlai Array 



Cylinder Array 



Dish Array 



Receiver and Correlator  





Tianlai First Light Data�

amplitude：�

phase：�



Eigen-Vector Based Calibration 

Each receiver’s gain varies, phase delay—complex gain 

An eigenvector equation! 

Single Dominant point Source: 

Zuo et al., arxiv:1807.04590 



A refinement: SPCA 

rank 1 matrix 

S: sparse matrix (outliers)



N: noise, dense 



Practical Application 

•  RFI flagging


•  relative phase calibration by noise source


•  absolute calibration with sky source 



XX 

YY 

Eigenvalues Eigenvector 

magnitude 

Red: PCA (V),  Green: SPCA (V0) 

solve G vector 







Problem: North-South Direction 

Trying use drone for calibration 



Map-making with m-modes�Sky reconstruction from transit visibilities:PAON-4 and Tianlai Dish Array 5

we can write the vector of visibilities for all baselines and for
all observation times as a function of the unknown discretised sky
[I (n̂)] and the noise vector:

f
Vi j (t)

g
= Li j (t) ⇥ [I (n̂)] +

f
ni j (t)

g
(8)

The beam matrix L encodes both the array response and the sky
scan strategy, Li j (t) ⇠ D⇤i (n̂, t)D j (n̂, t)eik ·�ri j . Considering the
visibilities for a single narrow frequency band, the L matrix has
Npixel columns, and Nt (number of time sample) ⇥Nb (number of
baseline) rows. Npixel corresponds to the total number of pixels in
sky. If far sidelobes can be neglected, one can use a partial map
of the sky, limited to the observed region, hence decreasing the
Npixel and the L matrix size, The determination of the unknown sky
I (n̂) is then the solution of a standard inverse linear problem. There
are however two di�culties for solving the above equation. First,
the dimension of the matrix L is very large, typically 105 ⇥ 106

for the current generation of experiment, and can reach 106 ⇥ 107

for the next generation experiments which are being planned, if
the intensity mapping method proves successful. Indeed, the sky
brightness unknown vector will have a size of 105 for a resolution
of a fraction of a degree, determining the number of columns of
the L matrix. CHIME and Tianlai will have ⇠ 103 baselines and
& 103 time samples over 24 hours of observations, leading to& 106

rows for the L. Secondly, for many array configurations and sky
observation strategies, the linear problem is under-determined and
a solution can not be unambiguously determined.

As already shown by Shaw et al. (2014), by working in the
space of spherical harmonic coe�cients and taking advantage of
the full circle transit observation strategy foreseen for the intensity
mapping experiments, the problem can be reduced to a much smaller
set of independent linear systems, one for each spherical m-mode.
The beam pattern associated to each visibility measurement (pair
of antenna) is a complex function ( Li j (n̂, t) 2 C ), and the baseline
enters its expression through the phase factor. Its time dependence
for transit observations is discussed below. Expanding in spherical
harmonics and omitting the time dependence of the beam,

I (n̂) =

+1X

`=0

+X̀

m=�`
Ì ,m Ỳ ,m (n̂) (9)

Li j (n̂) = D⇤i (n̂) D j (n̂) eik�ri j (10)

=

+1X

`=0

+X̀

m=�`
Li j (`,m) Ỳ ,m (n̂) (11)

The spherical harmonics Ỳ ,m are defined through the Legendre
associated polynomials Pm

` (n̂) for which we use the normalisation
convention of Driscoll & Healy (1994)

Ỳ ,m (n̂) =

s
(2` + 1)

4⇡
(` � m)!
(` + m)!

Pm
` (cos ✓)eim'

The sky brightness temperature is real, for which the spherical
harmonic coe�cients satisfy the following symmetry relations,

I (n̂) 2 R! I⇤ = I �! I(`,�m) = (�1)m I⇤(`,m).

Given the orthogonality of Spherical Harmonics when inte-
grated over the whole sky, we can express the visibility for a given
time t as a sum over the spherical harmonics coe�cients. Expanding
both I (n̂) and Li j (n̂, t) in spherical harmonics, use the orthogonal-

ity and the above symmetry relation, we obtain

Vi j (t) =

"

I (n̂) Li j (n̂, t) d n̂ (12)

=

+1X

m=�1

+1X

`= |m |
(�1)m I(`,m) Li j (`,�m, t) (13)

Notice that we have exchanged the order of the two sums, over `
and m. The spherical harmonics coe�cients of the rotated/shifted
beams can be written as:

Li j (`,m, t) = L0
i j (`,m) e�im↵p (t ) (14)

where L0
i j (`,m) denotes the beam spherical harmonics coe�cients

for the reference (t = 0) pointing, i.e the antenna axis pointing
toward ↵ = 0 right ascension. In the following, we will omit the
0 superscript in the beam coe�cients. Li j (`,m) denotes simply
the beam for the reference right ascension ↵p = 0. The recorded
visibilities as a function of right ascension ↵p can then be expressed
as:

Vi j (↵p ) =
+1X

m=�1

+1X

`= |m |
(�1)m I(`,m) Li j (`,�m) eim↵p (15)

We recognise the expression as a Fourier transform for the periodic
functionVi j (↵p ); as the feed response vanishes for large enough `
(Li j (`,m) ! 0 for ` > `max), we can write the following relation
satisfied by the visibility Fourier coe�cients Ṽi j (m), computed
from a set a regularly time sampled visibility measurements.

Ṽi j (m) =
+`maxX

`= |m |
(�1)m I(`,m)Li j (`,�m) (16)

The m-mode of the visibility for both positive and negative m (±m)
is given by sky spherical harmonics coe�cients of the same m,

Ṽi j (m) =

+`maxX

`= |m |
(�1)m I(`,m)Li j (`,�m) (17)

Ṽ⇤i j (�m) =

+`maxX

`= |m |
I(`,m)L⇤i j (`,m) (18)

The full linear system of Eq. (8) can thus be decomposed into a
set of much smaller (103 ⇥ 103) independent linear system, one
for each m, with mmax = `max. The beam matrix L has indeed a
block diagonal structure in the harmonic space. Grouping all array
baselines together in a vector, and taking into account the noise
contribution, the visibility measurement equation in the Fourier
space can be written in matrix form as:f

Ṽ
g
m
= Lm ⇥ [I(`)]m + [ñ]m (19)

The sky spherical harmonics coe�cient for a given m and for m 
`  `max are grouped in the sky vector [I(`)]m . We will consider
only positive m values (0  m  `max) for the linear systems
defined above, the two visibility measurements for ±m of equations
17 and 18 will be represented by two rows of the matrix Lm . This
matrix will thus have `max columns and 2 ⇥ nbeams rows. The total
number of beams nbeams will be more precisely defined in the next
paragraph. The [ñ]m represent the noise contribution vector to the
m-mode visibilities, corresponding to the Fourier transform of time
domain noise.

For dish arrays, the instantaneous field of view is a small frac-
tion of the whole sky, and a circular strip of sky along one of the
latitude line can be obtained by carrying out transit observation for
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Figure 1. The PAON-4 interferometer configuration (left), the regular 4 ⇥ 4 array (center) and the circular Tinali array configuration with 16 dishes (right).

si, s j , located at positions ri, r j with �ri j = r j � ri :

si =

"

E(n̂) Di (n̂) eik ·ri d n̂ (2)

Vi j =

"

I (n̂) D⇤i (n̂) D j (n̂) ek ·�ri j d n̂ (3)

where Di, D j denotes the complex response function of each feed,
k = � i2⇡⌫

c n is electromagnetic wave vector at the observation
frequency ⌫ and c the speed of light. For arrays with identical feeds
pointed to the same sky direction, Di (n̂) = D j (n̂) = D(n̂), and the
visibility expression reduces to

Vi j =

"

I (n̂) L(n̂) ek ·�ri j d n̂ (4)

where L(n̂) = D⇤ D is the antenna primary beam or response in
intensity.

3.1 Classical radio interferometry

In what we refer here as classical radio interferometry, in the sense
that it is familiar to the majority of radio astronomers, a set of
identical antennas are used to observe a small region of sky, usually
to obtain a high resolution image of a source. During the observation
period all the antennae track the source, compensating the Earth
rotation. The source intensity I (n̂, t) and beam response L(n̂, t)
generally varies with time. However, even in the case of constant
sources and constant telescope primary beams, the baseline delay
k ·�r (t) would still vary with time, due to the rotation of the baseline
generated by the rotation of the Earth with respect to the inertial
frame of space, as shown in the variation of celestial coordinates of
the baseline direction.

For observations with small field of view, it is possible to
use the flat sky approximation in the vicinity of the source. For a
coplanar array and using the small angle approximation (omitting
the so called w-term), the visibility is given by

V (u0, v0) =
"

I (⇠, ⌘) L(⇠, ⌘) e2i⇡(⇠u0+⌘v0) d⇠ d⌘ (5)

where (u0, v0) = (�x/�,�y/�) is the coordinates of the baseline
vector in wavelength units, and ⇠, ⌘ denotes the direction cosines of
the baseline vector with respect to the reference point. The visibility
in this approximation is simply the Fourier transform of the sky seen
by a single antenna I (⇠, ⌘) ⇥ L(⇠, ⌘) for the angular frequencies
(u0, v0). Given the number of available baselines in a real array, and
that the baselines of such an array are usually large compared to the

antenna size, the (u, v) frequency plane is only sparsely sampled
at any moment. However, each baseline changes as the antennae
follow the source direction on the sky, the (u0, v0) follows an arc-
shaped track in the (u, v) plane, enhancing greatly the frequency
plane sampling. It is possible to obtain a local sky map (dirty map)
around the targeted position using an inverse Fourier transform.
Additional processing is required to correct and compensate for the
partial coverage of the angular frequencies. Iterative deconvolution
algorithms, e.g. CLEAN (Högbom 1974; Clark 1980), are applied to
recover the map of the sky (Sault & Oosterloo 2007). Map of a large
area of sky can be obtained by mosaicking of small areas(Kim 2007;
McEwen & Scaife 2008). However, if the field of view is large, the
w-term can not be neglected. A number of formalisms have been
developed to deal with this, such as faceting (Cornwell & Perley
1992), 3D Fourier transform (Perley 1999), w-projection (Cornwell
et al. 2008), A-projection(Tasse et al. 2013), w-stacking (O�ringa
et al. 2014), etc. Other refinement of the CLEAN method have
also been developed, such as the the software holography (Morales
& Matejek 2009) which can deal with direction-dependent beam
e�ects in large field of view interferometer arrays. Its application to
the analysis of MWA observations can be found in (Sullivan et al.
2012).

3.2 Non-tracking transit interferometers

↵p (t) = !e t (6)
Li j (n̂, t) = Li j (✓, ' � ↵p (t)) (7)

For interferometers operating in the transit mode, the baselines
do not change with time in the ground coordinates, at least during
an observation period spanning a sidereal day, but the visibilities
recorded as a function of time correspond to observation of di�erent
parts of the sky. We will work in the equatorial coordinates, with
right ascension ↵ and declination �. We also introduce the spherical
coordinates (✓, '), with ✓ = ⇡/2 � � and ' = ↵. The earth rotation
makes the beams time dependent and the e�ect corresponds to a
shift of the beams Li j (n̂) by an o�set angle ↵p (t) along the right
ascension direction:

↵p (t) = !e t t : sidereal time (8)
Li j (n̂, t) = Li j ((✓, '), t) = Li j (✓, ' � ↵p (t)) (9)

where !e is the Earth angular rotation rate (2⇡/24 sidereal hours).
In the celestial coordinates, the visibility of a baseline at any

given time corresponds to the convolution of sky with the beam
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pattern for this baseline Li j (n̂, t). Indeed, discretising the time and
the angular directions on the sky and using [] to denote vectors,
we can write the vector of visibilities for all baselines and for

all observation times as a function of the unknown discretised sky
[I (n̂)] and the noise vector:f

Vi j (t)
g
= Li j (t) ⇥ [I (n̂)] +

f
ni j (t)

g
(10)

The beam matrix L encodes both the array response and the sky
scan strategy, Li j (t) ⇠ D⇤i (n̂, t)D j (n̂, t)eik ·�ri j . Considering the
visibilities for a single narrow frequency band, the L matrix has
Npixel columns, and Nt (number of time sample) ⇥Nb (number of
baseline) rows. Npixel corresponds to the total number of pixels in
sky. If far sidelobes can be neglected, one can use a partial map
of the sky, limited to the observed region, hence decreasing the
Npixel and the L matrix size, The determination of the unknown sky
I (n̂) is then the solution of a standard inverse linear problem. There
are however two di�culties for solving the above equation. First,
the dimension of the matrix L is very large, typically 105 ⇥ 106

for the current generation of experiment, and can reach 106 ⇥ 107

for the next generation experiments which are being planned, if
the intensity mapping method proves successful. Indeed, the sky
brightness unknown vector will have a size of 105 for a resolution
of a fraction of a degree, determining the number of columns of
the L matrix. CHIME and Tianlai will have ⇠ 103 baselines and
& 103 time samples over 24 hours of observations, leading to& 106

rows for the L. Secondly, for many array configurations and sky
observation strategies, the linear problem is under-determined and
a solution can not be unambiguously determined.

As already shown by Shaw et al. (2014), by working in the
space of spherical harmonic coe�cients and taking advantage of
the full circle transit observation strategy foreseen for the intensity
mapping experiments, the problem can be reduced to a much smaller
set of independent linear systems, one for each spherical m-mode.
The beam pattern associated to each visibility measurement (pair
of antenna) is a complex function ( Li j (n̂, t) 2 C ), and the baseline
enters its expression through the phase factor. Its time dependence
for transit observations is discussed below. Expanding in spherical
harmonics and omitting the time dependence of the beam,

I (n̂) =

+1X

`=0

+X̀

m=�`
Ì ,m Ỳ ,m (n̂) (11)

Li j (n̂) = D⇤i (n̂) D j (n̂) eik�ri j (12)

=

+1X

`=0

+X̀

m=�`
Li j (`,m) Ỳ ,m (n̂) (13)

I (n̂) =
+1X

`=0

+X̀

m=�`
Ì ,m Ỳ ,m (n̂) (14)

Li j (n̂) =
+1X

`=0

+X̀

m=�`
Li j (`,m) Ỳ ,m (n̂) (15)

The spherical harmonics Ỳ ,m are defined through the Legen-
dre associated polynomials Pm

` (n̂) for which we use the normali-
sation convention of Driscoll & Healy (1994)

Ỳ ,m (n̂) =

s
(2` + 1)

4⇡
(` � m)!
(` + m)!

Pm
` (cos ✓)eim'

The sky brightness temperature is real, for which the spherical
harmonic coe�cients satisfy the following symmetry relations,

I (n̂) 2 R! I⇤ = I �! I(`,�m) = (�1)m I⇤(`,m).

Given the orthogonality of Spherical Harmonics when inte-
grated over the whole sky, we can express the visibility for a given
time t as a sum over the spherical harmonics coe�cients. Expanding
both I (n̂) and Li j (n̂, t) in spherical harmonics, use the orthogonal-
ity and the above symmetry relation, we obtain

Vi j (t) =

"

I (n̂) Li j (n̂, t) d n̂ (16)

=

+1X

m=�1

+1X

`= |m |
(�1)m I(`,m) Li j (`,�m, t) (17)

Notice that we have exchanged the order of the two sums, over `
and m. The spherical harmonics coe�cients of the rotated/shifted
beams can be written as:

Li j (`,m, t) = L0
i j (`,m) e�im↵p (t ) (18)

where L0
i j (`,m) denotes the beam spherical harmonics coe�cients

for the reference (t = 0) pointing, i.e the antenna axis pointing
toward ↵ = 0 right ascension. In the following, we will omit the
0 superscript in the beam coe�cients. Li j (`,m) denotes simply
the beam for the reference right ascension ↵p = 0. The recorded
visibilities as a function of right ascension ↵p can then be expressed
as:

Vi j (↵p ) =
+1X

m=�1

+1X

`= |m |
(�1)m I(`,m) Li j (`,�m) eim↵p (19)

We recognise the expression as a Fourier transform for the periodic
functionVi j (↵p ); as the feed response vanishes for large enough `
(Li j (`,m) ! 0 for ` > `max), we can write the following relation
satisfied by the visibility Fourier coe�cients Ṽi j (m), computed
from a set a regularly time sampled visibility measurements.

Ṽi j (m) =
+`maxX

`= |m |
(�1)m I(`,m)Li j (`,�m) (20)

The m-mode of the visibility for both positive and negative m (±m)
is given by sky spherical harmonics coe�cients of the same m,

Ṽi j (m) =

+`maxX

`= |m |
(�1)m I(`,m)Li j (`,�m) (21)

Ṽ⇤i j (�m) =

+`maxX

`= |m |
I(`,m)L⇤i j (`,m) (22)

The full linear system of Eq. (10) can thus be decomposed into
a set of much smaller (103 ⇥ 103) independent linear system, one
for each m, with mmax = `max. The beam matrix L has indeed a
block diagonal structure in the harmonic space. Grouping all array
baselines together in a vector, and taking into account the noise
contribution, the visibility measurement equation in the Fourier
space can be written in matrix form as:f

Ṽ
g
m
= Lm ⇥ [I(`)]m + [ñ]m (23)

The sky spherical harmonics coe�cient for a given m and for m 
`  `max are grouped in the sky vector [I(`)]m . We will consider
only positive m values (0  m  `max) for the linear systems
defined above, the two visibility measurements for ±m of equations
19 and 20 will be represented by two rows of the matrix Lm . This
matrix will thus have `max columns and 2 ⇥ nbeams rows. The total
number of beams nbeams will be more precisely defined in the next
paragraph. The [ñ]m represent the noise contribution vector to the
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pattern for this baseline Li j (n̂, t). Indeed, discretising the time and
the angular directions on the sky and using [] to denote vectors,
we can write the vector of visibilities for all baselines and for

all observation times as a function of the unknown discretised sky
[I (n̂)] and the noise vector:f

Vi j (t)
g
= Li j (t) ⇥ [I (n̂)] +

f
ni j (t)

g
(10)

The beam matrix L encodes both the array response and the sky
scan strategy, Li j (t) ⇠ D⇤i (n̂, t)D j (n̂, t)eik ·�ri j . Considering the
visibilities for a single narrow frequency band, the L matrix has
Npixel columns, and Nt (number of time sample) ⇥Nb (number of
baseline) rows. Npixel corresponds to the total number of pixels in
sky. If far sidelobes can be neglected, one can use a partial map
of the sky, limited to the observed region, hence decreasing the
Npixel and the L matrix size, The determination of the unknown sky
I (n̂) is then the solution of a standard inverse linear problem. There
are however two di�culties for solving the above equation. First,
the dimension of the matrix L is very large, typically 105 ⇥ 106

for the current generation of experiment, and can reach 106 ⇥ 107

for the next generation experiments which are being planned, if
the intensity mapping method proves successful. Indeed, the sky
brightness unknown vector will have a size of 105 for a resolution
of a fraction of a degree, determining the number of columns of
the L matrix. CHIME and Tianlai will have ⇠ 103 baselines and
& 103 time samples over 24 hours of observations, leading to& 106

rows for the L. Secondly, for many array configurations and sky
observation strategies, the linear problem is under-determined and
a solution can not be unambiguously determined.

As already shown by Shaw et al. (2014), by working in the
space of spherical harmonic coe�cients and taking advantage of
the full circle transit observation strategy foreseen for the intensity
mapping experiments, the problem can be reduced to a much smaller
set of independent linear systems, one for each spherical m-mode.
The beam pattern associated to each visibility measurement (pair
of antenna) is a complex function ( Li j (n̂, t) 2 C ), and the baseline
enters its expression through the phase factor. Its time dependence
for transit observations is discussed below. Expanding in spherical
harmonics and omitting the time dependence of the beam,

I (n̂) =

+1X

`=0

+X̀

m=�`
Ì ,m Ỳ ,m (n̂) (11)

Li j (n̂) = D⇤i (n̂) D j (n̂) eik�ri j (12)

=

+1X

`=0

+X̀

m=�`
Li j (`,m) Ỳ ,m (n̂) (13)

I (n̂) =
+1X

`=0

+X̀

m=�`
Ì ,m Ỳ ,m (n̂) (14)

Li j (n̂) =
+1X

`=0

+X̀

m=�`
Li j (`,m) Ỳ ,m (n̂) (15)

The spherical harmonics Ỳ ,m are defined through the Legen-
dre associated polynomials Pm

` (n̂) for which we use the normali-
sation convention of Driscoll & Healy (1994)

Ỳ ,m (n̂) =

s
(2` + 1)

4⇡
(` � m)!
(` + m)!

Pm
` (cos ✓)eim'

The sky brightness temperature is real, for which the spherical
harmonic coe�cients satisfy the following symmetry relations,

I (n̂) 2 R! I⇤ = I �! I(`,�m) = (�1)m I⇤(`,m).

Given the orthogonality of Spherical Harmonics when inte-
grated over the whole sky, we can express the visibility for a given
time t as a sum over the spherical harmonics coe�cients. Expanding
both I (n̂) and Li j (n̂, t) in spherical harmonics, use the orthogonal-
ity and the above symmetry relation, we obtain

Vi j (t) =

"

I (n̂) Li j (n̂, t) d n̂ (16)

=

+1X

m=�1

+1X

`= |m |
(�1)m I(`,m) Li j (`,�m, t) (17)

Notice that we have exchanged the order of the two sums, over `
and m. The spherical harmonics coe�cients of the rotated/shifted
beams can be written as:

Li j (`,m, t) = L0
i j (`,m) e�im↵p (t ) (18)

where L0
i j (`,m) denotes the beam spherical harmonics coe�cients

for the reference (t = 0) pointing, i.e the antenna axis pointing
toward ↵ = 0 right ascension. In the following, we will omit the
0 superscript in the beam coe�cients. Li j (`,m) denotes simply
the beam for the reference right ascension ↵p = 0. The recorded
visibilities as a function of right ascension ↵p can then be expressed
as:

Vi j (↵p ) =
+1X

m=�1

+1X

`= |m |
(�1)m I(`,m) Li j (`,�m) eim↵p (19)

We recognise the expression as a Fourier transform for the periodic
functionVi j (↵p ); as the feed response vanishes for large enough `
(Li j (`,m) ! 0 for ` > `max), we can write the following relation
satisfied by the visibility Fourier coe�cients Ṽi j (m), computed
from a set a regularly time sampled visibility measurements.

Ṽi j (m) =
+`maxX

`= |m |
(�1)m I(`,m)Li j (`,�m) (20)

The m-mode of the visibility for both positive and negative m (±m)
is given by sky spherical harmonics coe�cients of the same m,

Ṽi j (m) =

+`maxX

`= |m |
(�1)m I(`,m)Li j (`,�m) (21)

Ṽ⇤i j (�m) =

+`maxX

`= |m |
I(`,m)L⇤i j (`,m) (22)

The full linear system of Eq. (10) can thus be decomposed into
a set of much smaller (103 ⇥ 103) independent linear system, one
for each m, with mmax = `max. The beam matrix L has indeed a
block diagonal structure in the harmonic space. Grouping all array
baselines together in a vector, and taking into account the noise
contribution, the visibility measurement equation in the Fourier
space can be written in matrix form as:f

Ṽ
g
m
= Lm ⇥ [I(`)]m + [ñ]m (23)

The sky spherical harmonics coe�cient for a given m and for m 
`  `max are grouped in the sky vector [I(`)]m . We will consider
only positive m values (0  m  `max) for the linear systems
defined above, the two visibility measurements for ±m of equations
19 and 20 will be represented by two rows of the matrix Lm . This
matrix will thus have `max columns and 2 ⇥ nbeams rows. The total
number of beams nbeams will be more precisely defined in the next
paragraph. The [ñ]m represent the noise contribution vector to the

MNRAS 000, 1–17 (2016)

R. Shaw et al. (2014, 2015); Zhang et al. (2016a,b) 

Invertion：�



Cylinder Array simulation 
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NVSS（1.4GHz）bright sources 
First light image with 5 frequency 
channels (0.1MHz each) from data taken 
during first light 2016.09.27-2016.09.30 

Sky Map�

S. Zuo et al., in preparation 



All Day� Night Only�

Comparison of all-day vs. night data�



Comparison with NVSS sources�



Summary 

•  21cm Intensity mapping has great potential to become a very 
powerful tool for cosmology


•  Foreground Subtraction remains a big challenge, may take at 
least a few years to overcome it 


•  A number of ongoing dedicated experiments, such as BINGO, 
CHIME, HERA, HIRAX, Tianlai, quite a few in BRICS countries!


•  FAST and SKA may also conduct 21cm intensity observation


•  Big Data Challenge!    



Ultra-long wavelength satellite array 

•  Below 10MHz, due to ionosphere 
absorption, ground observation is 
nearly impossible. 


•  Dark Age & Cosmic Dawn may 
produce feature in 21cm global 
spectrum, but frequency-dependent 
ionosphere refraction introduce 
freatures in global spectrum 

RAE-2 sky map (1979) 



Discovering Sky at Longest (DSL)
 wavelength 

•  A linear array (5-8) of satellites 
moving around the moon, take 
observation at the backside of 
the moon, then transmit data 
back at the front side of the 
moon.




•  A mother satellite measure the 

position of the daughter 
satellites




•  Low frequency aims for imaging, 

high frequency aims to detect 
cosmic dawn signal by precise 
global spectrum measurement


  
baselines formed by an orbital array 



Problems with Lunar Array 
Traditional imaging algorithm can not work!


•  short dipole (l<<λ) antenna have very wide 
field of view (almost whole sky), traditional 
synthesis algorithm only for small field of 
view (flat sky, small w-term) 




•  A mirrow symmetry w.r.t. orbital plane, can 

be broken by 3D baselines (produced by 
orbital plane precession)


•  Different baselines have different part of 
sky blocked by Moon 

Brute force map-making (i.e. invertion) 

mirrow symmetry 

3D baselines 

simulated reconstruction map 

Huang et al., arXiv:1805.08259 



Thanks! Thanks! 


