6th INPE Advanced School on Astrophysics 21cm Cosmology in the 21st Century

The Tianlai 21cm Intensity Mapping Experiment

National Astronomical Observatories, Chinese Academy of Sciences

> INPE, São José dos Campos, Brazil, 2018.08.15

About NAOC

The Chinese Academy of Sciences comprises 12 branches, 104 research institutes, 3 universities (UCAS, USTC, SHTU), 11 supporting organizations, 20+ companies

Astronomical Facilities in China

21cm Cosmology

Figure inspired by Yi Mao & Max Tegmark

The challenge: strong foreground

V. Jelic et al. (2010)

X. Wang et al. (2006)

FAST Intensity Mapping Survey

FAST

Hu et al. in preparation

Requirement for 21cm array

- interferometer array to get higher angular resolution
- Each array baseline (u,v) measures a Fourier mode

Requirement for 21cm array

- traditional array does NOT measure all modes, but good image can still be achived
- But to use frequency smoothness/ sparseness for foreground subtraction, we do need to sample the uv space completely

short wavelength

Long wavelength

Cylinder Arrays

Drift Scan Cylinders (Peterson & Pen):

Canada: CHIME China: Tianlai (heavenly sound)

The Tianlai (Heavenly Sound) Project

- NAOC, CETC-54, Institute of Automation, Hangzhou Dianzi U., XAO
- US: J. Peterson (CMU), P. Timbie & Das Santanu (Wisconsin), A. Stebbins (Fermilab)
- France: R. Ansari, J.E Campagne, M. Moniez (LAL/IN2P3), J.-M. Martin, P. Colom(Obs. Paris),
- Canada: Pen (CITA)

The concept of "tianlai"-- the heavenly sound was coined by ancient Chinese philosopher Zhuang-Zi (Chuang-Tzu, 369BC-286BC)

宋亚芳

刘涛

王有刚

左世凡

徐怡冬

刘东昊

高长军

黄启志

王维侠

李毅超

孙士杰 张兢予

陈志平

朱博勤

岳斌

程功

徐文啸 胡文凯

王荣礼 俞凯峰

丛艳平

李吉夏

曹烨

牛晨辉

汪群雄

巩岩

李佳威

Tianlai pathfinder experiment

- A small pathfinder experiment to check the basic principles and designs, find out potential problems
- 3x15x40m cylinders, 96 dual polarization receiver units
- 16 x 6m dishes
- observe 700-800MHz, can be tuned in 600-1420MHz
- If successful: expand to full scale 120mx120m, 2500 units

Array Size

T. Chang et al. 2008, Seo et al. 2009, Ansari et al. 2012

Tianlai performance

Dark Energy Model

Probing the Origin of Universe

Current CMB (Planck) Constraints already very tight, can one do better? $f_{\text{NL}}^{\text{local}} = 0.8 \pm 5.0, \quad f_{\text{NL}}^{\text{equil}} = -4 \pm 43 \qquad f_{\text{NL}}^{\text{ortho}} = -26 \pm 21$

Collateral Sciences

- Continuum and Polarization Sky Survey
- Transients: Fast Radio Bursts, GRB & GWE radio afterglows
- Quasar activities
- 21cm absorbers

Site Selection

Site Requirements:

To minimize radio frequency interference (RFI), typically sparsely populated area, surrounded by mountains and hills

The Selected Site Hongliuxia

Candidate Sites near MUSER

Candidate Sites around FAST

RFI spectrum for some sites

Balikun (Barkol) town

Tianshan mountain

relic of ancient watch tower along silk road

Site Arrangement

Station House

Construction of the Array

Tianlai Array

Cylinder Array

Dish Array

Receiver and Correlator

Experiment of Cylinder array

phase for channel ch9-25

and the second second

Tianlai First Light Data

amplitude:

phase:

Eigen-Vector Based Calibration

Zuo et al., arxiv:1807.04590 Each receiver's gain varies, phase delay—complex gain $F_i = g_i \int d^2 \hat{n} A_i(\hat{n}) \mathcal{E}(\hat{n}) e^{-2\pi i \hat{n} \cdot \boldsymbol{u}_i} + n_i \qquad \boldsymbol{u}_{ij} = (r_i - r_j)/\lambda$ $V_{ij} \equiv \langle F_i F_j^* \rangle$ $= g_i g_j^* \int d^2 \hat{n} A_i(\hat{n}) A_j^*(\hat{n}) e^{-2\pi i \hat{n} \cdot \boldsymbol{u}_{ij}} I(\hat{n}) + \langle n_i n_j^* \rangle,$

An eigenvector equation!

$$R_{ij} = V_{ij}^{\text{obs}}/V_{ij}^{\text{model}} = g_i g_j^*$$
, $\mathbf{R} = g g^{\dagger}$, $\mathbf{R} g = (g g^{\dagger})g = g(g^{\dagger} \cdot g)$

Single Dominant point Source:

 $G_i = g_i A_i(\hat{n}_0) e^{-2\pi i \hat{\boldsymbol{n}}_0 \cdot \boldsymbol{u}_i}; \qquad \mathbf{V}_0 = S_c \, \boldsymbol{G} \boldsymbol{G}^{\dagger}.$

A refinement: SPCA

 $\mathbf{V} = \mathbf{V}_0 + \mathbf{S} + \mathbf{N},$

 $\mathbf{V}_0 = S_c \, G G^\dagger$ rank 1 matrix

S: sparse matrix (outliers)

N: noise, dense

Practical Application

- RFI flagging
- relative phase calibration by noise source

$$\begin{split} V_{ij}^{\text{on}} &= G_{ij} (V_{ij}^{\text{sky}} + V_{ij}^{\text{ns}} + n_{ij}) \\ V_{ij}^{\text{off}} &= G_{ij} (V_{ij}^{\text{sky}} + n_{ij}), \\ V_{ij}^{\text{on}} &- V_{ij}^{\text{off}} &= G_{ij} V_{ij}^{\text{ns}} + \delta n_{ij} \\ &\approx C |G_{ij}| e^{-ik\Delta L_{ij}} e^{-ik(r_i - r_j)} \end{split}$$

• absolute calibration with sky source

Red: PCA (V), Green: SPCA (V_0)

(a) East-West pol

(a) XX polarization, FWHM = 3.6°

(b) North-South pol

Problem: North-South Direction

Trying use drone for calibration

Map-making with m-modes

R. Shaw et al. (2014, 2015); Zhang et al. (2016a,b)

$$\mathcal{V}_{ij}(t) = \iint_{L_{ij}(\hat{\boldsymbol{n}}, t)} I(\hat{\boldsymbol{n}}) \underbrace{L_{ij}(\hat{\boldsymbol{n}}, t)}_{\boldsymbol{\Lambda}} d\hat{\boldsymbol{n}}$$

$$L_{ij}(\theta, \dot{\varphi} - \alpha_p(t))$$

$$\tilde{V}_{ij}(m) = (-1)^m \sum_{\ell=|m|}^{+\ell_{max}} \mathcal{I}_{\ell,m} \mathcal{L}_{\ell,-m} + \text{noise}$$

$$I(\hat{\boldsymbol{n}}) = \sum_{\ell=0}^{+\infty} \sum_{m=-\ell}^{+\ell} I_{\ell,m} Y_{\ell,m}(\hat{\boldsymbol{n}})$$

$$L_{ij}(\hat{\boldsymbol{n}}) = \sum_{\ell=0}^{+\infty} \sum_{m=-\ell}^{+\ell} \mathcal{L}_{ij}(\ell,m) Y_{\ell,m}(\hat{\boldsymbol{n}})$$

Invertion:

 $\begin{bmatrix} \tilde{V} \end{bmatrix}_m = \mathbf{L}_m \times [\mathcal{I}(\ell)]_m + [\tilde{\mathbf{n}}]_m$ $[\widehat{\mathcal{I}}]_m = \mathbf{L}_m^{-1} [\tilde{V}]_m$

$$\begin{split} \mathbf{A} &= \mathbf{U} \boldsymbol{\Sigma} \mathbf{Q}^{\dagger}, \\ \tilde{\mathbf{A}}^{-1} &= \mathbf{Q} \tilde{\boldsymbol{\Sigma}}^{-1} \mathbf{U}^{\dagger} \end{split}$$

Cylinder Array simulation

2 4

0

regular1 cylinder

primary beam

irregular1 cylinder

4

Sky Map

NVSS (1.4GHz) bright sources

First light image with 5 frequency channels (0.1MHz each) from data taken during first light 2016.09.27-2016.09.30

S. Zuo et al., in preparation

Comparison of all-day vs. night data

All Day

Night Only

Comparison with NVSS sources

Summary

- 21cm Intensity mapping has great potential to become a very powerful tool for cosmology
- Foreground Subtraction remains a big challenge, may take at least a few years to overcome it
- A number of ongoing dedicated experiments, such as BINGO, CHIME, HERA, HIRAX, Tianlai, quite a few in BRICS countries!
- FAST and SKA may also conduct 21cm intensity observation
- Big Data Challenge!

Ultra-long wavelength satellite array

- Below 10MHz, due to ionosphere absorption, ground observation is nearly impossible.
- Dark Age & Cosmic Dawn may produce feature in 21cm global spectrum, but frequency-dependent ionosphere refraction introduce freatures in global spectrum


```
RAE-2 sky map (1979)
```


Discovering Sky at Longest (DSL) wavelength

- A linear array (5-8) of satellites moving around the moon, take observation at the backside of the moon, then transmit data back at the front side of the moon.
- A mother satellite measure the position of the daughter satellites
- Low frequency aims for imaging, high frequency aims to detect cosmic dawn signal by precise global spectrum measurement

Problems with Lunar Array

Traditional imaging algorithm can not work!

- short dipole $(l << \lambda)$ antenna have very wide field of view (almost whole sky), traditional synthesis algorithm only for small field of view (flat sky, small w-term)
- A mirrow symmetry w.r.t. orbital plane, can be broken by 3D baselines (produced by orbital plane precession)
- Different baselines have different part of sky blocked by Moon

Brute force map-making (i.e. invertion)

$$\mathbf{V} = \mathbf{B} \mathbf{T} + \mathbf{n}. \qquad \hat{\mathbf{T}} = (\mathbf{B}^{\dagger} \mathbf{N}^{-1} \mathbf{B})^{-1} \mathbf{B}^{\dagger} \mathbf{N}^{-1} \mathbf{V} \equiv \mathbf{B}^{-1} \mathbf{V}$$

simulated reconstruction map

Thanks!

天籁实验阵列