

A importância da medição

- Acompanhamento Operacional e Controle de Processos
- Determinação de estoques e fechamento de balanços – Lei Sarbanes-Oxley
- Detecção de vazamentos/Derivações clandestinas
- Obrigações legais / contratuais
 - Participações governamentais
 - Royalties
 - Participação especial
 - Impostos
 - Transferência de custódia
- Viabilizadora da Transformação digital

"Não se gerencia o que não se mede"... W. E. Deming

Tipos de Medição

Operacional

Está relacionada ao monitoramento e controle dos processos produtivos

Apropriação

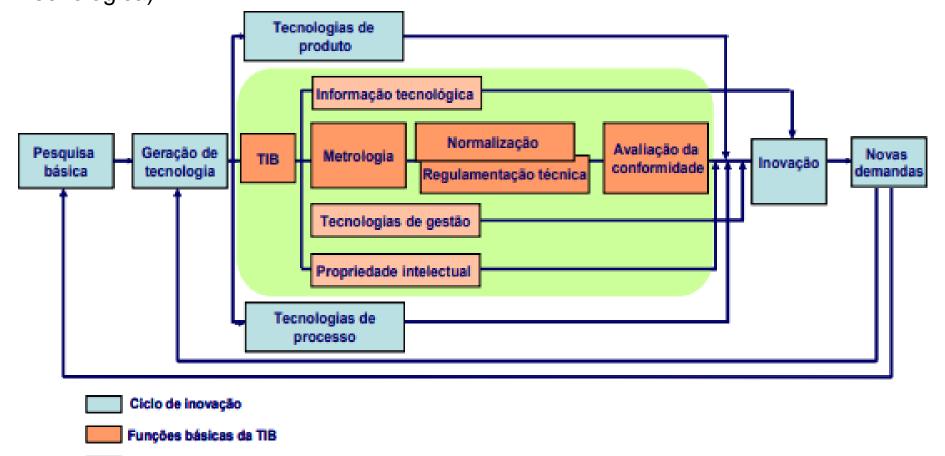
- Define como será feito o rateio das participações entre os entes interessados
- Rateio da produção por poço e campo

Fiscal

- Base para o pagamentos das participações governamentais e outros tributos
- Volume diário produzido

Transf. Custódia

- Regulamenta a transferência dos fluidos produzidos (transferência de titularidade)
- Possui requisitos fiscais



Tecnologias X negócio X regulamentação

Funções da TIB como seu suporte ao ciclo de inovação tecnológica

Tecnologias X negócio X regulamentação

TIB - Funções tecnológicas consideradas fundamentais ao desenvolvimento e à competitividade das empresas. É constituída por funções essenciais (Metrologia, Normalização, Regulamentação Técnica e Avaliação de Conformidade) e funções conexas (Tecnologias de Gestão, Propriedade Intelectual e Informação Tecnológica)

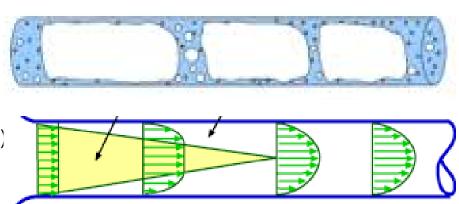
Funções conexas da TIR

Projetos em desenvolvimento

Projetos em desenvolvimento

Medição de vazão multifásica

Medição de vazão de cada fase de uma corrente multifásica (controle operacional e apropriação)


- Fenômenos complexos

Calibração de Medidores de Vazão

Estudo de comportamento e incerteza de medidores de vazão de óleo frente à variação de características físico-químicas (viscosidade, vazão, temperatura, etc.)

Projetos em desenvolvimento

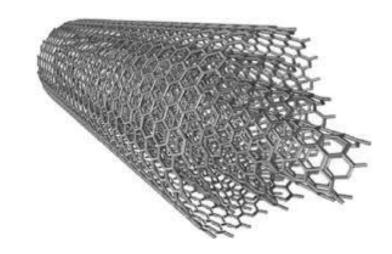
Medidor de teor de óleo em água (TOG) produzida para descarte

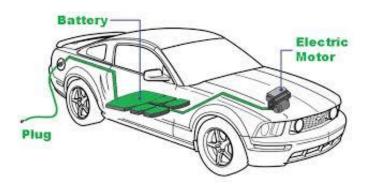
Medidor de teor de água em óleo (BSW) no petróleo

Medição em flares

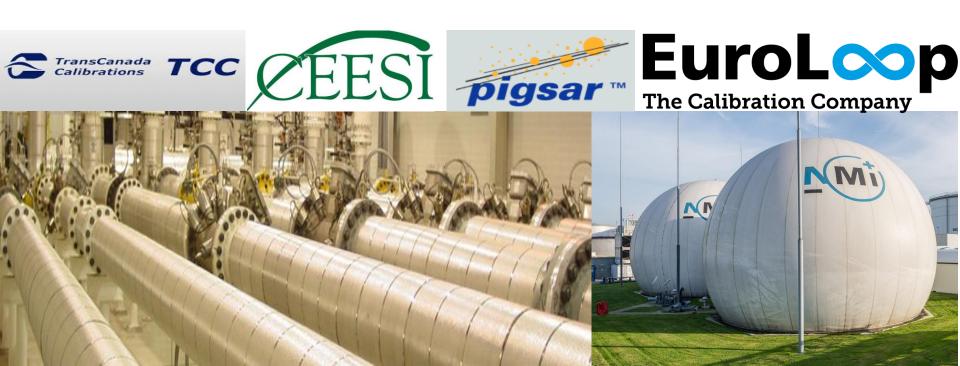
Medição da vazão do gás a ser queimado no flare de refinarias e plataformas por questões ambientais e fiscais.

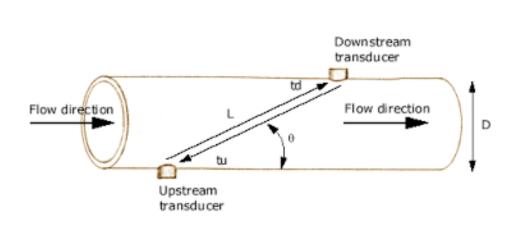
 Grande faixa de vazão e pressão, grandes diâmetros, baixa intrusividade ao processo, variações na composição do gás, dificuldade em garantir longos trechos retos e impossibilidade do uso de condicionadores de fluxo.

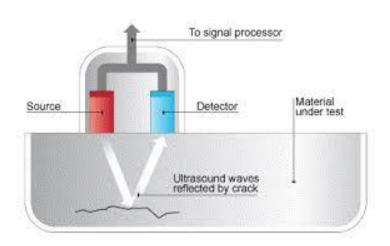

 Estudos de metodologia de ensaio de laboratorial de Teor de óleos e graxas (TOG).


 Certificação de equipamentos de monitoramento da qualidade do ar no Brasil

 metrologia , normalização e regulamentação de nano materiais como grafeno.

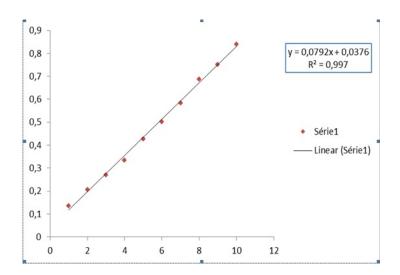

• Certificação de Bateria e carregador elétrico


Infraestrutura laboratorial para Rastreabilidade metrológica de medição de vazão de gás natural


Infraestrutura laboratorial

- Calibração de medidores de GN
- Estudos e Testes
- TIB (Avaliação da conformidade, normalização, certificação)

- Aplicação industrial do ultrassom
- -Medição de vazão não-intrusiva
- -Medição de nível de vasos e tanques não intrusiva
- -Separação água-óleo
- -Inspeção de equipamentos
- Limpeza de equipamentos

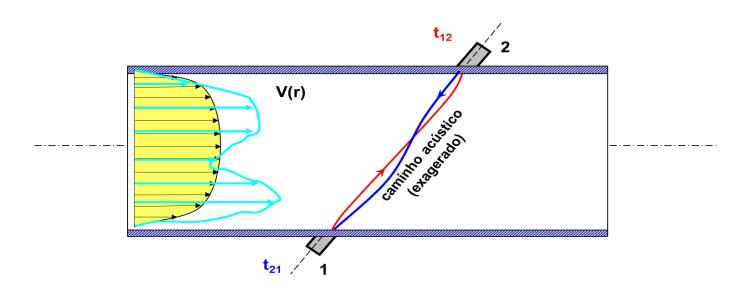


Modernização dos regulamentos técnicos de medição fiscal, apropriação e transferência de custódia buscando viabilizar o uso de novas tecnologias e novas metodologias de verificação metrológica.

Estudar critério para escolha do número de pontos da curva de calibração de medidores de vazão:

- O RTM exige que a diferença entre a vazão do ponto da curva de calibração e o ponto de operação seja no máximo 10%.
- Isso gera custos elevados de calibração por realizar uma calibração com um número excessivo de pontos.
- O estudo busca verificar metodologia para determinar o número de pontos da curva de calibração sem perda de desempenho da medição.

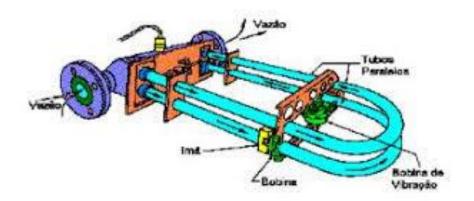
Calibração de medidores ultrassônicos com Reynolds


Vantagens:

Compensa modificações de massa específica, viscosidade e vazão no campo Diminui o custo de calibração por evitar a compra diversos fluidos.

Medidores ultrassônicos de vazão medem tempo de trânsito.

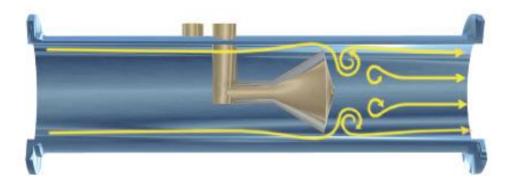
São dependentes do perfil de velocidade.

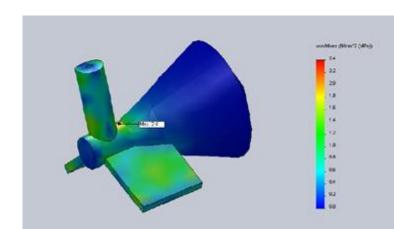

Medidores com diversos transdutores conseguem estimar bem o perfil de velocidade

Tempo de trânsito à junsante (t12) < Tempo de trânsito a montante (t21)

Calibração de Medidores Coriolis com água, para uso em óleo ou GN (transferability)

- Depende somente da massa que passa da seção de medição. Não depende da viscosidade e massa específica do fluido.
- Transferability viabiliza a aplicação de coriolis na medição de vazão de gás.
- Não existe no Brasil laboratório para calibração de medidores com GN




Verificação dimensional para o medidor V-Cone na medição de vazão de gás

- adequação à erosão e presença de líquidos no gás,
- menor perda de carga total,
- menores trechos retos recurso crítico em plataformas de produção

A verificação dimensional é adequada a medidores deprimogênios como placa de orifício e venturi;

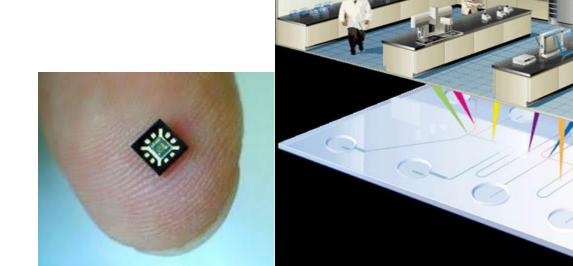
Possibilita a redução de tempo e custo para manutenção da rastreabilidade metrológica (calibração).

Oportunidades da aplicação de tecnologias digitais em metrologia

Oportunidade

wedição na Transformação digital

- IoT Internet da coisas
- 1) Gestão da medição:
- Inventário dos instrumentos e dos padrões de trabalho.
- Plano de calibração.
- Certificados de calibração.
- Histórico das manutenções
- localização/Rastreabilidade do medidor
- 2) Disponibiliza dados e sinais do instrumento:
- -diagnóstico do equipamento,
- -informações do processo

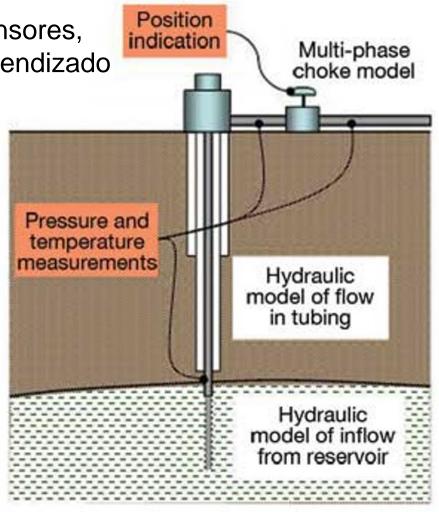


Oportunidade-

· Lab-on-a-chip

Nova geração de sensores analíticos em linha

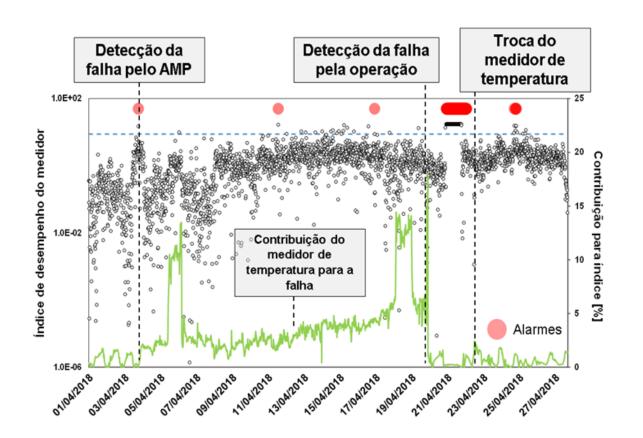
Nano sensores para medir CO2, H2S, umidade em gás, teor de água em petróleo.


Oportunidade

Medição na Transformação digital

Medição virtual + Data Science + Machine Learning

-Medição baseada em sinais de vários sensores, Modelos matemáticos, data Science e aprendizado de máquinas.


Exemplo medição de vazão de poços por medição virtual.

Oportunidade

Medição na Transformação digital

- Digital twin + Data Science + Machine Learning
- -Predição de falhas
- -Predição de deriva na medição
- -Nova Calibração determinada pelo desempenho ou estatística,

Conclusões

- A inovação em metrologia depende da atuação conjunta da indústria, Institutos de ciência e tecnologia e órgãos reguladores,
- Todos tem que estar na "mesma página" = quanto ao conhecimento do: estado-da-arte, realidade da indústria e interesse da sociedade,
- A Petrobras vem desenvolvendo tecnologia com diversos universidades e centros de P&D do Brasil, e reconhece o Inmetro como um bom parceiro para atuação em P&D,I.

