Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

Perfil Ambiental

S-METOLACLORO CAS 87192-12-9

VERSÃO APROVADA EM: 16/08/2019

Fundamento legal para avaliação ambiental: Lei nº 7.802/89 de 11/07/1989 e suas alterações; Decreto nº 4.074/02 de 04/01/2002

e Portaria nº 84/96 de 15/10/1996.

Ano de aprovação do primeiro produto contendo o i.a. no Brasil: 1999

IDENTIFICAÇÃO

Nome comum	S-metolacloro (S-metolachlor)
Nomenclatura IUPAC	mixture of 80-100% 2-chloro-6'-ethyl-N-[(1S)-2-methoxy-1-methylethyl]acet-otoluidide and 20-0% 2-chloro-6'-ethyl-N-[(1R)-2-methoxy-1-methylethyl]acet-o-toluidide
Nome Químico	Cloroacetanilida
N° CAS	87392-12-9
Sinonímia	CGA 77.102
Grupo Químico	Cloroacetanilida
Classe de uso	Herbicida
Massa molar	283,796 g/mol
Fórmula molecular	$C_{15}H_{22}CINO_2$
Fórmula estrutural	$\begin{array}{c c} CH_2CH_3 & CH_2CH_3 \\ \hline & COCH_2CI \\ \hline & N \\ \hline & CHCH_2OCH_3 \\ \hline & CH_3 \\ \hline & C$
Impurezas relevantes ^a	Não apresenta

^a Impurezas toxicológica e ambientalmente relevantes listadas no Anexo I da Instrução Normativa Conjunta nº 2, de 20 de junho de 2008.

PROPRIEDADES FÍSICO-QUÍMICAS

• Estado físico, aspecto, cor e odor

Resultado e condição	Identificação do estudo	Data
Líquido, amarelo-marrom claro, fraco odor (25 °C)	30847	21/03/1995

• Identificação molecular

Fórmula estrutural	Identificação do estudo	Data
CH ₂ CH ₃ COCH ₂ CI CHCH ₂ OCH ₃ CHCH ₂ OCH ₃ CH ₃	36482	21/11/1995

• Grau de Pureza

Teor de I.A no PT	Identificação do estudo	Data
87,3 a 88 % (do isômero S-metolacloro)	38014	28/11/1995

O produto técnico apresenta no mínimo 84 % do isômero S-metolacloro e no máximo 13 % do isômero R-metolacloro (CGA 77101). Desta forma o produto técnico é composto por dois isômeros, com um mínimo de 96 % de pureza (CGA 77102 +CGA 77101).

• Ponto de Ebulição

Resultado e Condição	Identificação do estudo	Data
334 °C A decomposição térmica do produto inicia por volta de 290 °C	30843	21/03/1995

• Pressão de vapor

Resultado e Condição	Identificação do estudo	Data
3,7 x 10 ⁻³ Pa (25 °C)	95W129	16/11/1995

• Solubilidade

Solvente	Resultado e condição	Identificação do estudo	Data
Água	480 mg/L (25 °C)	30846	29/05/1995

• pH

Resultado e Condição	Identificação do estudo	Data
7,8 (25 °C)	30852	21/03/1995

• Constante de dissociação em meio aquoso

Valor e condição	Identificação do estudo	Data
Não se dissocia na faixa de pH entre 2 e 12	37822	28/11/1995

• Hidrólise

t _{1/2} vida e Condições	Identificação do estudo	Data
Estável (após 5 dias; pH= 4; 50 °C)		
Estável (após 5 dias; pH= 7; 50 °C)	99GN01	18/10/1999
Estável (após 5 dias; pH= 9; 50 °C)		

Fotólise

t _{1/2} vida		Temperatur	Identificação	Data
Irradiado	Não irradiado	a do estudo		
95,21 dias CGA 77102 (S-isômero)	50,2 dias CGA 77102 (S-isômero)	25 ± 1 °C	ABR-95128	21/12/1995
78,8 dias CGA 24705 (mistura racêmica)	40,9 dias CGA 24705 (mistura racêmica)	25 1 0	ADR-93120	21/12/1993

• Coeficiente de partição (n-octanol/água)

Resultado e Condição	Identificação do estudo	Data
Log Kow = 3,05 ± 0,02 (25 °C)	30845	12/09/1995

Densidade

Resultado e Condição	Identificação do estudo	Data	
1,117 g/cm³ (20 °C)	30844	21/03/1995	

• Tensão superficial de soluções

Resultado e Condição	Identificação do estudo	Data
58,2 a 60,2 mN/m (filtrado de emulsão 0,44 g/L)	30854	18/05/1995

65,5 mN/m (filtrado de emulsão 0,04 g/L)	
--	--

Viscosidade

Resultado e Condição	Identificação do estudo	Data
113,8 ± 3,7 mPa.s (20 °C)		
33,5 ± 0,85 mPa.s (40 °C)	33113	04/07/1995

Corrosividade

Resultado	Identificação do estudo	Data
Não corrosivo ao aço ferroso ST 37, aço DIN 14541, ferro e polietileno	33114	24/08/1995

• Estabilidade térmica e ao ar

Resultado	Identificação do estudo	Data	
Estável em temperaturas entre 20 e 150 °C	30855	25/07/1995	

• Ponto de fulgor

Resultado	Identificação do estudo	Data
190 °C	30855	25/07/1995

• Propriedades Oxidantes

Resultado	Identificação do estudo	Data
2,2 x 10 ⁻³ Pa/mol (25 °C)	PP 2.505 NB	17/11/1995

BIOACUMULAÇÃO

• Bioconcentração em peixes

Espécie	Parâmetro	Resultado	Concentrações testadas	Duração e condições	Grau de pureza	Identificação do estudo	Data
	FBC (Peixe inteiro)	103		28 dias (acumulação)			
Lepomis macrochirus	FBC (Partes não-comestíveis)	186	0,03 e 0,003 mg/L	14 dias (depuração) 985	985 g/L	991585	24/01/2001
	FBC (Partes comestíveis)	19			(22,2 °C) Sistema de fluxo contínuo		

TOXICIDADE PARA ORGANISMOS NÃO-ALVO

• Microorganismos do solo

Solo	Concentrações testadas (mg/L)	Parâmetro	Resultado	Duração e condições	Grau de pureza	Identificação do estudo	Data
Areno-argiloso	5,82 e 14,55 mg/kg	Respiração	Não afeta	42 dias	985 g/L	961569	26/11/1996
Argiloso	5,02 e 14,55 mg/kg	Nitrificação	Não afeta	(20 ± 1 °C)	900 g/L	901309	20/11/1990

Algas

Espécie	Parâmetro	Resultado	Duração e condições	Grau de pureza	Identificação do estudo	Data
Pseudokirchneriella subcapitata	CE ₅₀	0,008 mg/L	120 horas (24 ± 1 °C)	976 g/L	95-8-6031	20/09/1995

• Minhoca

Espécie	Parâmetro	Resultado	Duração e condições	Grau de pureza	Identificação do estudo	Data
Eisenia foetida	CE ₅₀	570 mg/kg	14 dias (21 a 22 °C)	985 g/L	961570	23/10/1996

Abelhas

Espécie	Parâmetro	Resultado	Duração e condições	Grau de pureza	Identificaçã o do estudo	Data
Apis mellifera	DL ₅₀ oral	> 85 µg/abelha	72 horas 985 g/L		97-137-1008 0	03/02/1997
Αριο πιειιπετα	DL ₅₀ contato	> 200 µg/abelha	(23,5 a 25,5 °C)	900 g/L	37-137-1000	03/02/1997

Microcrustáceos

Espécie	Parâmetro	Resultado	Duração e condições	Grau de pureza	Identificação do estudo	Data
Daphnia magna	CE ₅₀	26 mg/L	48 horas (19 a 22 °C) Sistema estático	976 g/L	95-9-6082	29/09/1995
Daphnia magna	CE ₅₀	35 mg/L	48 horas (20 ± 2 °C) Sistema estático	985 g/L	2001884	17/02/2003
	CENO (crescimento / sobrevivência)	5,2 mg/L	21 dias			
Daphnia magna	CEO (crescimento / sobrevivência)	10 mg/L	(20 ± 1 °C) Sistema de fluxo	989 g/L	528A-130	07/01/2004
	VC (crescimento / sobrevivência)	7,2 mg/L contínuo				

• Peixes

Espécie	Parâmetro	Resultado	Duração e condições	Grau de pureza	Identificação do estudo	Data
Oncorhynchus mykiss	CL ₅₀	12 mg/L	96 horas (10 a 12 °C) Sistema estático	976 g/L	95-9-6117	12/12/1995
Oncorhynchus mykiss	CENO (crescimento)	3,0 mg/L	28 dias (13,5 ± 1 °C)	985 g/L	2011771	29/11/2001
	CEO (crescimento)	4,8 mg/L	Sistema de fluxo contínuo			

Aves

Espécie	Parâmetro	Resultado	Duração e condições	Grau de pureza	Identificação do estudo	Data
Anas platyrhynchos	DL ₅₀ (agudo)	> 2510 mg/kg	14 dias (22,7 ± 3 °C)	874 g/L	108-219	27/06/1983
Anas platyrhynchos	CL ₅₀ (dieta)	> 5620 mg/kg	8 dias (37,7 °C)	874 g/L	108-218	13/06/1983
Colinus virginianus	CENO (reprodução)	1000 ppm	7 meses (22,3 ± 2,7 °C)	986 g/L	29901	06/12/1999

Mamíferos

Mamífero	Parâmetro	Resultado	Duração e condições	Grau de pureza	Identificação do estudo	Data
Ratos	DL ₅₀	> 2000 mg/kg	14 dias (24 °C)	956 g/L	941056	21/07/1994

COMPORTAMENTO NO SOLO

• Biodegradabilidade imediata

Fonte de microorganismos	% de CO ₂ desprendido	Duração e condições	Identificação do estudo	Data
Lodo ativado	0	29 dias (21 ± 2 °C)	961567	19/12/1996

• Biodegradabilidade em solos

Solo	% de CO ₂ desprendido	t _½ vida	Duração e condições	Identificação do estudo	Data
Glei húmico - GH	0,50	96,2 dias			
Latossolo roxo - LR	0,40	62 dias	120 dias (20 °C)	BS-014	08/06/1998
Latossolo Vermelho Escuro Álico - LE	0,78	89,3 dias			

Mobilidade

Solo	Rf	Duração e condições	Identificação do estudo	Data
Glei húmico - GH	Mais de 90 % da	Conforme metodologia descrita no Manual de testes para		
Latossolo roxo - LR	radioatividade	avaliação da ecotoxicidade de	Lch-004	08/06/1998
Latossolo Vermelho Escuro Álico - LE	aplicada foi retida nos três tipos de solo.	agentes químicos IBAMA/DIRCOF		

• Adsorção/Dessorção

Solo	Kads	Kdes	Duração e condições	Identificação do estudo	Data
Glei húmico - GH	8,9	15,1	Conforme metodologia descrita no Manual de testes para avaliação da		
Latossolo roxo - LR	1,1	1,1	ecotoxicidade de agentes químicos	AD-019	08/06/1998
Latossolo Vermelho Escuro Álico - LE	1,3	1,4	IBAMA/DIRCOF		

ORIENTAÇÃO PARA INTERPRETAÇÃO DOS DADOS

Comportamento A	Comportamento Ambiental							
TRANSPORTE								
Dados	Fonte	Limite	Classe de produtos					
Solubilidade	Procedimento interno do setor	$X \ge 500$ mg/L = Altamente solúvel $50 \le X < 500$ mg/L = Muito solúvel $5 \le X < 50$ mg/L = Medianamente solúvel $0 \le X < 5$ mg/L = Pouco solúvel	I II III IV					
Mobilidade	Procedimento interno do setor	$0,65 \le Rf < 1,00 = Altamente móvel$ $0,35 \le Rf < 0,65 = Muito móvel$ $0,10 \le Rf < 0,35 = Medianamente móvel$ $0,00 \le Rf < 0,10 = Pouco móvel$	I II III IV					
Adsorção	Procedimento interno do setor	0 ≤ Kads < 5 = Pouca adsorção 5 ≤ Kads < 15 = Média adsorção	I II					

		15 ≤ Kads < 80 = Muita adsorção Kads > 80 = Alta adsorção	III IV
PERSISTÊNCIA			
Dados	Fonte	Limite	Classe de produtos
Hidrólise	Procedimento interno do setor	t $_{1/2}$ vida \geq 120 dias = Pouco hidrolisável $30 \leq$ t $_{1/2}$ vida $<$ 120 dias = Medianamente hidrolisável $1 \leq$ t $_{1/2}$ vida $<$ 30 dias = Muito hidrolisável $0 \leq$ t $_{1/2}$ vida $<$ 1 dia = Altamente hidrolisável	I II III IV
Fotólise	Procedimento interno do setor	t _{1/2} vida > 96 horas = Não sofre fotólise t _{1/2} vida ≤ 96 horas = Sofre fotólise	I IV
Biodegradabilidade (quanto à porcentagem de CO ₂ em 28 dias)	Procedimento interno do setor	$0 \le \% CO_2 < 1$ = Altamente persistente $1 \le \% CO_2 < 10$ = Muito persistente $10 \le \% CO_2 < 25$ = Medianamente persistente $\% CO_2 \ge 25$ = Pouco persistente	I II III IV
Biodegradabilidade (quanto à meia vida)	Procedimento interno do setor	t $_{1/2}$ vida \geq 360 dias = Altamente persistente 180 \leq t $_{1/2}$ vida $<$ 360 dias = Muito persistente 30 \leq t $_{1/2}$ vida $<$ 180 dias = Medianamente persistente 0 \leq t $_{1/2}$ vida $<$ 30 dias = Pouco persistente	I II III IV
BIOACUMULAÇÃO			
Dados	Fonte	Limite	Classe de produtos
FBC	Procedimento interno do setor	FBC > 1000 = Altamente bioconcentrável 100 < FBC ≤ 1000 = Muito bioconcentrável 10 < FBC ≤ 100 = Medianamente bioconcentrável FBC ≤ 10 = Pouco ou não-bioconcentrável	I II III IV

.

Dados	Fonte	Limite	Classe de produtos
Microorganismos do solo	Procedimento interno do setor	Observação de efeitos Não observação de efeitos	I IV
Minhocas	Procedimento interno do setor	$0 \le CL_{50} < 10$ mg/kg = Altamente tóxico $10 \le CL_{50} < 100$ mg/kg = Muito tóxico $100 \le CL_{50} < 1000$ mg/kg = Medianamente tóxico $CL_{50} \ge 1000$ mg/kg = Pouco tóxico	I II III IV
Organismos aquáticos (microcrustáceos, algas e peixes)	Procedimento interno do setor	$0 \le CL_{50}/CE_{50} < 1$ mg/kg = Altamente tóxico $1 \le CL_{50}/CE_{50} < 10$ mg/kg = Muito tóxico $10 \le CL_{50}/CE_{50} < 100$ mg/kg = Medianamente tóxico $CL_{50}/CE_{50} \ge 100$ mg/kg = Pouco tóxico	I II III IV
Aves (dose única)	Procedimento interno do setor	$0 \le DL_{50} < 50$ mg/kg = Altamente tóxico $50 \le DL_{50} < 500$ mg/kg = Muito tóxico $500 \le DL_{50} < 2000$ mg/kg = Medianamente tóxico $DL_{50} \ge 2000$ mg/kg = Pouco tóxico	I II III IV
Aves (dieta)	Procedimento interno do setor	$0 \le CL_{50} < 500$ mg/kg = Altamente tóxico $500 \le CL_{50} < 1000$ mg/kg = Muito tóxico $1000 \le CL_{50} < 5000$ mg/kg = Medianamente tóxico $CL_{50} \ge 5000$ mg/kg = Pouco tóxico	I II III IV
Abelhas	Procedimento interno do setor	$0 \le DL_{50} < 2 \mu g/abelha = Altamente tóxico$ $2 \le DL_{50} \le 11 \mu g/abelha = Medianamente tóxico$ $DL_{50} > 11 \mu g/abelha = Pouco tóxico$	I III IV
Mamíferos (estado físico: líquido)	Procedimento interno do setor	$DL_{50} \le 20$ mg/kg = Altamente tóxico 20 < $DL_{50} \le 200$ mg/kg = Muito tóxico	I II

		$200 < DL_{50} \le 2000$ mg/kg = Medianamente tóxico $DL_{50} > 2000$ mg/kg = Pouco tóxico	III IV
Mamíferos (estado físico: sólido)	Procedimento interno do setor	$DL_{50} \le 5$ mg/kg = Altamente tóxico $5 < DL_{50} \le 50$ mg/kg = Muito tóxico $50 < DL_{50} \le 500$ mg/kg = Medianamente tóxico $DL_{50} > 500$ mg/kg = Pouco tóxico	 ≥

METODOLOGIAS UTILIZADAS NA CONDUÇÃO DOS ESTUDOS

- Físico-químicos

ABNT - Associação Brasileira de Normas Técnicas. NBR 8511:1984 - Defensivos agrícolas - Ensaios - Método de ensaio.

Brasil (1991). Ministério da Agricultura . Pesticidas: Métodos de Análise e Informações técnicas. Ministério da Agricultura/Universidade Federal do Paraná.

CIPAC (2017). Collaborative International Pesticides Analytical Council - CIPAC. MT 2 - Melting Point. Content Handbook F.

OECD (1981). Test No. 108: Complex Formation Ability in Water, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264069640-en. Acesso em: 07/11/2017.

OECD (1981). Test No. 110: Particle Size Distribution/ Fibre Length and Diameter Distributions, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264069688-en>. Acesso em: 07/11/2017.

OECD (1981). Test No. 112: Dissociation Constants in Water, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264069725-en>. Acesso em 07/11/2017.

OECD (1981). Test No. 113: Screening Test for Thermal Stability and Stability in Air, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264069749-en>. Acesso em: 07/11/2017.

OECD (1995). Test No. 102: Melting Point/ Melting Range, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264069527-en>. Acesso em: 06/11/2017.

OECD (1995). Test No. 115: Surface Tension of Aqueous Solutions, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264069787-en>. Acesso em: 07/11/2017.

OECD (2008). Test No. 316: Phototransformation of Chemicals in Water – Direct Photolysis, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264067585-en>. Acesso em: 13/11/2017.

US-EPA (1982). U.S. Environmental Protection Agency. EPA Guideline 560/6-82-003 - Chemical Fate Testing Guidelines.

US-EPA (1982). U.S. Environmental Protection Agency. EPA-540/9-82-21, Pesticide Assessment Guidelines Subdivision N Chemistry: Environmental Fate, Guideline 161-1: Hydrolysis Studies.

US-EPA (1982). U.S. Environmental Protection Agency. EPA-540/9-82-21, Pesticide Assessment Guidelines Subdivision N Chemistry: Environmental Fate, Guideline 161-2: Photodegradation Studies on Water.

US-EPA (1992). U.S. Environmental Protection Agency. Pesticide Assessment Guideline. Subdivision D: Product Chemistry. EPA 540-9-82-018. Guideline 63-10. Dissociation constant.

US-EPA (1992). U.S. Environmental Protection Agency. Pesticide Assessment Guideline. Subdivision D: Product Chemistry. EPA 540-9-82-018. Guideline 63-12. pH.

US-EPA (1992). U.S. Environmental Protection Agency. Subdivision D: Product Chemistry. EPA 540-9-82-018. Guideline 63-9. Vapor Pressure. Outubro, 1992.

US-EPA (1998). U.S. Environmental Protection Agency. EPA 712-C-98-310. Product Properties Test Guidelines OPPTS 830.1000. Background for Product Properties Test Guidelines. Guideline 63-14: Oxidation/reduction: chemical incompatibility.

US-EPA (1998). U.S. Environmental Protection Agency. EPA 712-C-98-310. Product Properties Test Guidelines OPPTS 830.1000. Background for Product Properties Test Guidelines. Guideline 63-20: Corrosion characteristics.

US-EPA (1998). U.S. Environmental Protection Agency. EPA 712-C-98-310. Product Properties Test Guidelines OPPTS 830.1000. Background for Product Properties Test Guidelines. Guideline 63-5: Melting point/Melting range.

US-EPA (1998). U.S. Environmental Protection Agency. EPA 712-C-98-310. Product Properties Test Guidelines OPPTS 830.1000. Background for Product Properties Test Guidelines. Guideline 63-7: Density/relative density/bulk density.

US-EPA (1998). U.S. Environmental Protection Agency. Pesticide Assessment Guideline. Subdivision D: Product Chemistry. EPA 540-9-82-018. Guideline 63-11. Partition coefficient (n-octanol/water), shake flask method.

US-EPA (1998). U.S. Environmental Protection Agency. Pesticide Assessment Guideline. Subdivision D: Product Chemistry. EPA 540-9-82-018. Guideline 63-13. Stability to normal and elevated temperatures, metals and metal ions.

Bioacumulação

Brasil (1988). Ministério do Interior. Secretaria Especial do Meio Ambiente - MINTER/SEMA. Manual de testes para avaliação da ecotoxicidade de agentes químicos, 1ª edição.

Brasil (1990). Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA/DIRCOF. Manual de testes para avaliação da ecotoxicidade de agentes químicos, 2ª edição.

Organismos não-alvo

AFNOR (1984). Assossiation Francatse De Normatization - Afnor. Determination de la toxicite d'une substance VIS-AVIS deslombriciens (especié *Eisenia foetida*). Methode "Artisol" Norme experimentale: X31/250.

Brasil (1988). Ministério do Interior. Secretaria Especial do Meio Ambiente - MINTER/SEMA. Manual de testes para avaliação da ecotoxicidade de agentes químicos, 1ª edição.

Brasil (1990). Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA/DIRCOF. Manual de testes para avaliação da ecotoxicidade de agentes químicos, 2ª edição.

OECD (1984). Test No. 205: Avian Dietary Toxicity Test, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264070004-en. Acesso em: 13/11/2017.

OECD (1984). Test No. 207: Earthworm, Acute Toxicity Tests, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264070042-en>. Acesso em: 07/11/2017.

OECD (1998). Test No. 214: Honeybees, Acute Contact Toxicity Test, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264070189-en>. Acesso em: 13/11/2017.

OECD (2000). Test No. 216: Soil Microorganisms: Nitrogen Transformation Test, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264070226-en>. Acesso em: 07/11/2017.

OECD (2000). Test No. 217: Soil Microorganisms: Carbon Transformation Test, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264070240-en>. Acesso em: 07/11/2017.

OECD (2010). Test No. 223: Avian Acute Oral Toxicity Test, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264090897-en>. Acesso em: 13/11/2017.

OECD (2011). Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Publishing, Paris. Disponível em: http://dx.doi.org/10.1787/9789264069923-en. Acesso em: 13/11/2017.

US-EPA (1982). U.S. Environmental Protection Agency. EPA-540/9-82-024, Pesticide Assessment Guidelines Subdivision E Hazard Evaluation: Wildlife and Aquatic Organisms. Guideline 71-2: Avian Dietary LC50 Test.

US-EPA (1982). U.S. Environmental Protection Agency. EPA-540/9-82-024. Pesticide Assessment Guidelines Subdivision E Hazard Evaluation: Wildlife and Aquatic Organisms. Guideline 72-3: Acute toxicity test for estuarine and marine organisms.

- Comportamento no solo

Brasil (1988). Ministério do Interior. Secretaria Especial do Meio Ambiente - MINTER/SEMA. Manual de testes para avaliação da ecotoxicidade de agentes químicos, 1ª edição.

Brasil (1990). Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA/DIRCOF. Manual de testes para avaliação da ecotoxicidade de agentes químicos, 2ª edição.

- Mamíferos

US-EPA (1984). U.S. Environmental Protection Agency. Pesticide Assessment Guidelines: Subdivision F: Hazard Evaluation: Human and Domestic Animals (Revised Edition). Guideline 81-1: Acute Oral Toxicity Study.