

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA EINOVAÇÃO

Seminário em Tecnologia da Informação do Programa de Capacitação Institucional (PCI) do CTI Renato Archer Campinas, outubro de 2023 * * XII Seminário PCI

Estabilização de Perovskitas para aplicações em células solares de múltipla junção

Rosalva dos Santos Marques

Fernando Ely

rsmarques@cti.gov.br

Eliane Namikuchi; Fernando Echeverrigaray; Kayo Oliveira Vieira; Maria Fernanda Santos Alves

INTRODUÇÃO

Células solares de perovskitas (PSCs) têm chamado a atenção da comunidade científica nos últimos anos por chegar à eficiências superiores a 20% com apenas meia década de estudos^[1] Além da alta eficiência já alcançada, as PSCs apresentam vantagens como baixo custo de produção e possibilidade de junção com as já conhecidas células de silício em configuração do tipo tandem^[2]. Porém a baixa estabilidade quando expostas à umidade, oxigênio e radiação UV ainda é um empecilho para aplicações comerciais.

Figura 1. a) Estrutura geral de uma perovskita tipo ABX₃, **b)** Estrutura geral de uma célula solar de perovskita e c) estratégias de estabilização de filmes PVK

OBJETIVO

Desenvolvimento e estabilização de perovskitas (PVK) CsDMAPbl₃ e CsPbIBr para aplicação em células solares de múltipla junção.

Figure 4. a) Imagens de microscopia eletrônica de varredura da superfície dos filmes de perovskita CsPbDMAI₃ não passivados e passivados com monômeros polimerizados. **b**) esquema de um filme de pvk passivado e c) Fotos mostrando a conversão/degradação da fase perovskita (preta) para fase não perovskita (amarela) em condições ambientais.

Adição de Estanho (Sn) à Perovskita CsPbl_{2.25}Br_{0.75}

MÉTODOS

Figura 2. Esquema geral do processo de deposição dos materiais perovskitas por spincoating.

As estratégias de estabilização empregadas para as PVKs foram a passivação de superfície com monômeros catiônicos vinilbenzil termopolimerizáveis (para CsDMAPbl₃) e adição de cátions metálicos, como Estanho (Sn²⁺) para CsPbIBr.

RESULTADOS

Passivação da superfície de filmes da perovskita CsPbDMAI₃

Tabela 1. Taxas e perfis de degradação dos

Figura 5. Imagens de microscopia eletrônica de varredura da superfíce de filmes de perovskita (**a** e **b**) e monitoramento da degradação da fase perovskita por UV-Vis ao longo do tempo (**c** e **d**)

Os espectros de transmitância dos filmes de perovskita no tempo mostraram que a adição de Sn à PVK proporcionou maior estabilidade ao material. A morfologia se apresentou mais compacta, com grãos maiores e bem conectados. O bandgap diminui de 1,85 eV para 1,77 eV tornando o material um potencial candidato para integração com silício e obtenção de células tandem Si-PVK.

Figura 3. Monitoramento da degradação da fase perovskita CsPbDMAI₃ (passivada e não passivada) por UV-Vis ao longo do tempo.

De modo geral, todos os polímeros utilizados tiveram efeito positivo no retardamento da degradação dos filmes de perovskita CsPbDMAI₃ sendo que o V19 foi o melhor com uma T_D 4 vezes menor que o filme não passivado. Filmes passivados com V19 não apresentaram sinais de degradação após 50h, enquanto filmes não passivados aceleram a degradação de forma exponencial logo após 20h.

As estratégias empregadas para estabilizar os filmes de perovskita se mostraram eficientes. Para a perovskita CsPbDMAI₃ o efeito da passivação aumentou a estabilidade do filme de PVK sem alterar o bandgap (1,69 eV), a morfologia e o espectro de absorção. A adição do estanho à perovskita CsPbI_{2.25}Br_{0.75} aumentou a estabilidade da PVK bem como melhorou a morfologia e ajuste do bandgap para uma possível junção tandem Si-PVK.

[1] Green, M. A.; Ho-Baillie, A.; Snaith, H. J.; *Nat. Photonics* **2014**, 8, 506. [2] Jean, J.; Brown, P. R.; Jaff, R. L.; Buonassisid, T.; Bulović, V.; Energy Environ. *Sci.* **2015**, 8, 1200

