

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Seminário em Tecnologia da Informação do Programa de Capacitação Institucional (PCI) * XIII Seminário PCI Campinas, outubro de 2023 *

Avaliação do processo de reticulação de hidrogéis de alginato utilizando microtomografia de raios X

Gustavo Henrique de Magalhães Gomes Juliana Kelmy Macário Barboza Daguano

Kaline N. Ferreira; Marcos A. Sabino; Jorge V. Silva

ggomes @cti.gov.br

INTRODUÇÃO

Hidrogéis de alginato de sódio têm atraído atenção devido suas propriedades únicas, como alta biocompatibilidade, hidrofilicidade, e propriedades reológicas ideais para sua manufatura aditiva por impressão 3D (I3D). Entretanto, para melhorar as suas aplicações na I3D, é preciso modular suas propriedades mecânicas e reológicas, afim de se obter um material ideal [1]. A reticulação do alginato com cátions divalentes é essencial para que essa forma se mantenha. A estrutura final do material vai depender do grau de reticulação e do método de secagem, mudando de forma considerável a morfologia, tamanho e conectividade de poros formados durante os processos citados [2]. Por isso, a técnica de microtomografia de raios X (µCT) é fundamental para o estudo desses materiais, sendo possível realizar os cálculos quantitativos em relação à porosidade, e também reconstruir modelos 3D dos materiais em estudo.

OBJETIVO

O principal objetivo do trabalho é avaliar através da técnica de μCT como o processo de reticulação de géis de alginato, utilizando cátions divalentes (Ca²+, Zn²+, e Co²+), influencia na estrutura porosa obtida por liofilização.

Reticulação com: Ca²⁺ Zn²⁻ Zn²⁻ Zn²⁻ Zn²⁻ Co²⁺ Alginato 4% v/v Alginato 5% v/

Alginato Alginato Ca²⁺ Alginato Zn²⁺ Alginato Co²⁺

RESULTADOS

Figura 1. Imagens de projeções de raios X das amostras

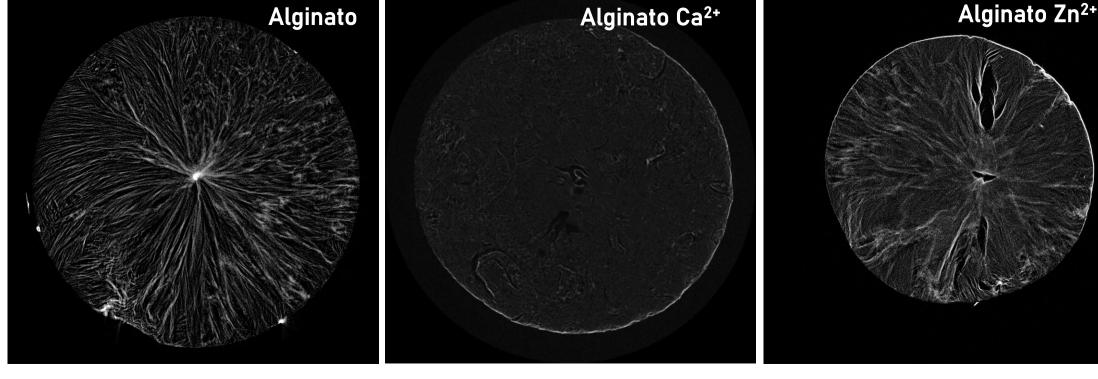


Figura 2. Seção transversal da reconstrução das amostras

Tabela 1. Dados quantitativos de porosidade obtidos pelo software CTAn.

Amostra	Porosidade Total / %	Porosidade Aberta / %	Porosidade Fechada / %	Tamanho médio de poro / um
Alginato	70.00	69.99	0.01	22 ± 13
Alginato Ca ²⁺	64.72	64.71	0.01	9 ± 5
Alginato Zn ²⁺	49.45	49.28	0.17	18 ± 9
Alginato Co ²⁺	45.71	45.43	0.28	43 ± 36

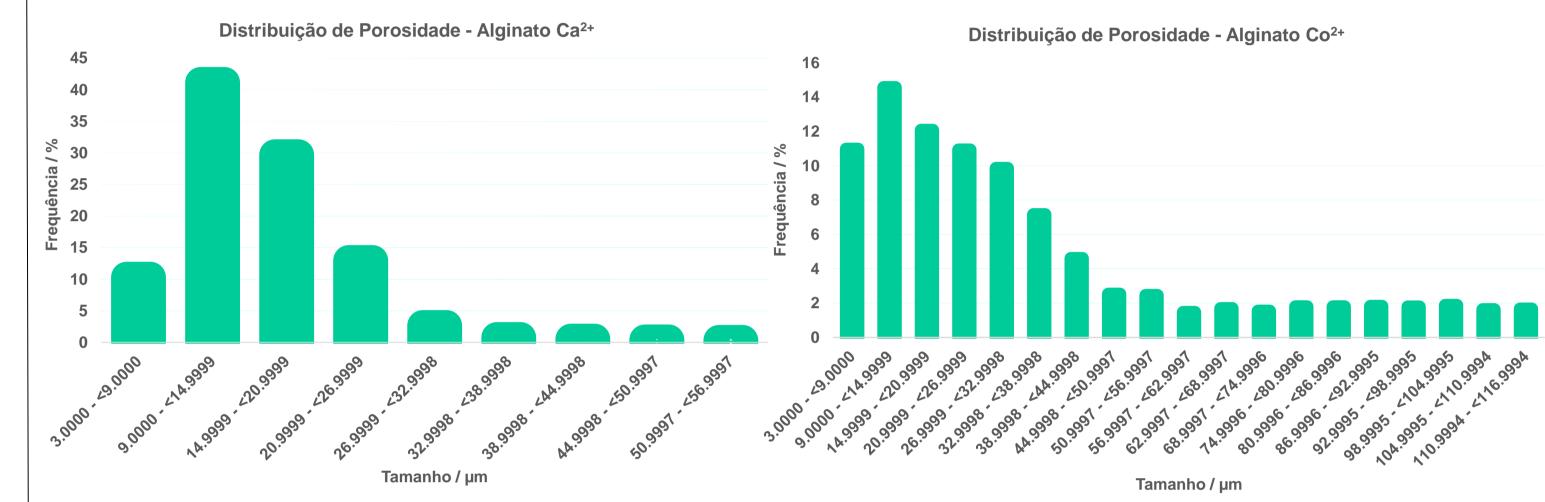


Figura 3. Distribuições de porosidade do material reticulado com Ca²⁺ e Co²⁺.

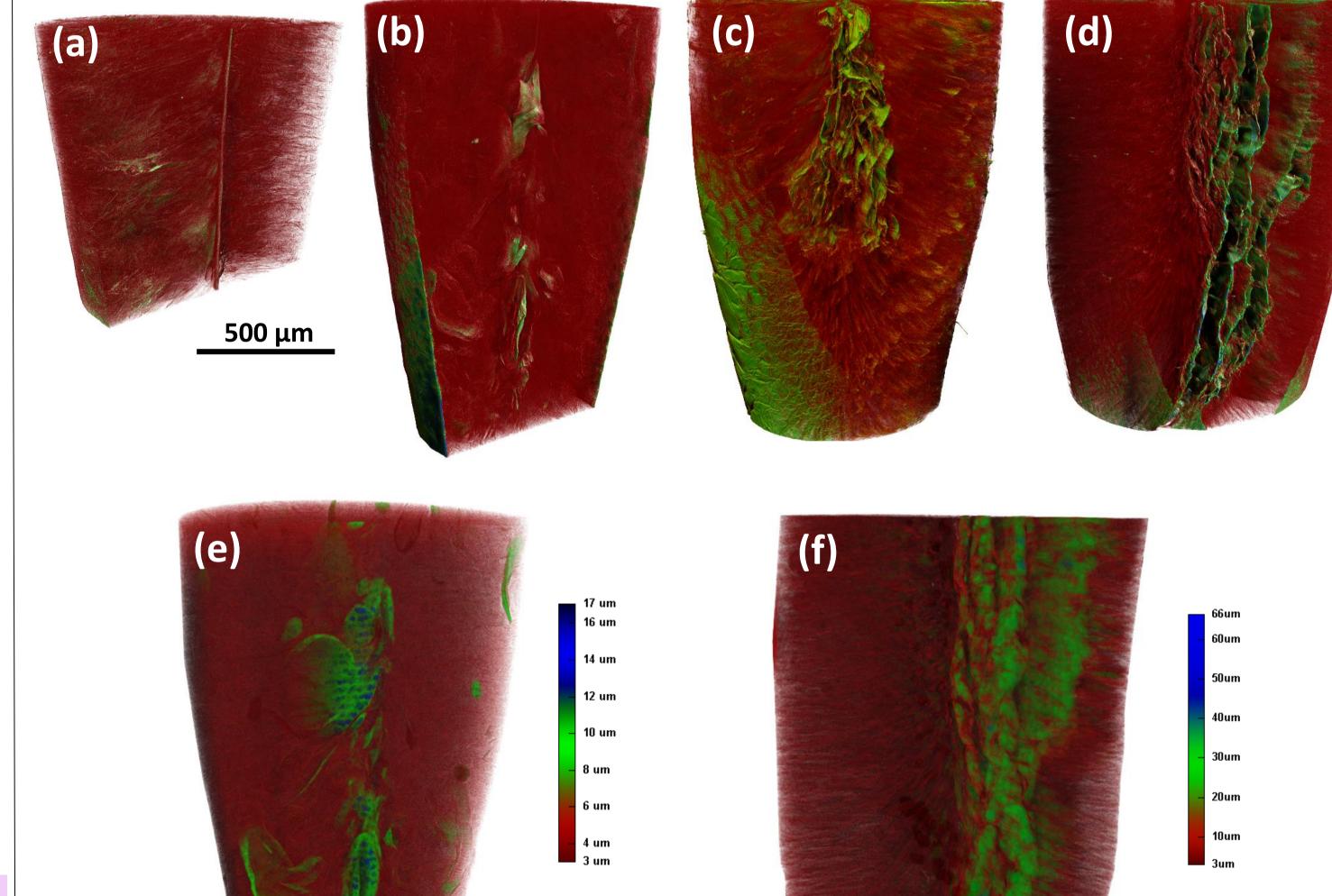


Figura 4. Imagens de reconstrução 3D das amostras obtidas pelo CTVox para o (a) alginato puro e reticulado com (b) Ca²⁺, (c) Zn²⁺ e (c) Co²⁺. Reconstrução dos poros com distribuição de tamanho em cores para o material reticulado com (e) Ca²⁺ e (f) Co²⁺.

500 μm

CONCLUSÕES

O processo de reticulação dos hidrogéis de alginato ocorreu de forma diferente para os três cátions utilizados. Uma melhor penetração do Ca²⁺ na estrutura do material promoveu uma melhor reticulação, formando um material com distribuição de poros mais homogênea, e sem a formação de canais dentro da estrutura, como observado para os materiais com Zn²⁺ e Co²⁺.

REFERÊNCIAS

- [1] Song, X et al. (2022). *International Journal of Biological Macromolecules*, 207, 140–151. https://doi.org/10.1016/j.ijbiomac.2022.03.015
- [2] Shahriari-Khalaji et al. (2020). *Polymers*, *12*(11), 1–20. https://doi.org/10.3390/polym12112683