

Biological recycling and treatment processes - Climate impacts

Klaus Fricke and Christiane Pereira

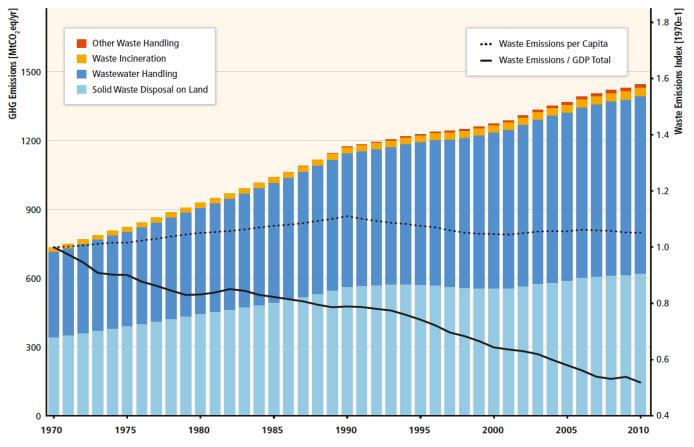
O ProteGEEr é um projeto de cooperação técnica entre o Brasil e a Alemanha para promover uma gestão sustentável e integrada dos resíduos sólidos urbanos, articulada com as políticas de proteção do clima.

> www.protegeer.gov.br www.teach4waste.com

POR ORDEM DO

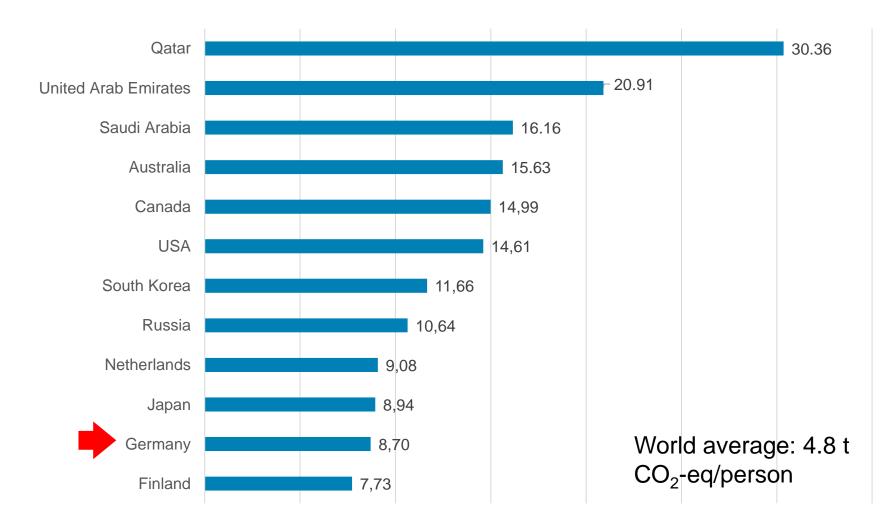
Ministério Federal do Ambiente, Proteção da Natu e Segurança Nuclear

Climate impacts of waste management sector - Learning objectives


- Students should acquire basic knowledge of the climate impact of the various waste management measures and be able to use this knowledge to carry out weak-point analyses
- With the options for action learned, they should be able to develop climatefriendly measures

Climate impacts of waste management sector - Subareas of waste management

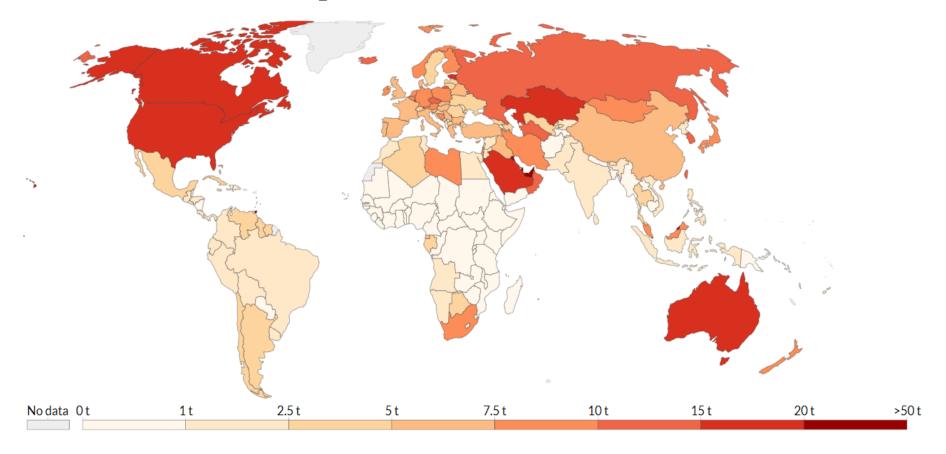
Global waste GHG emissions Mt CO_2 -eq per year and GDP per capita, referred to 1970



Up to 12 % of total GHG emissions in developing countries and emerging markets originate from the waste sector

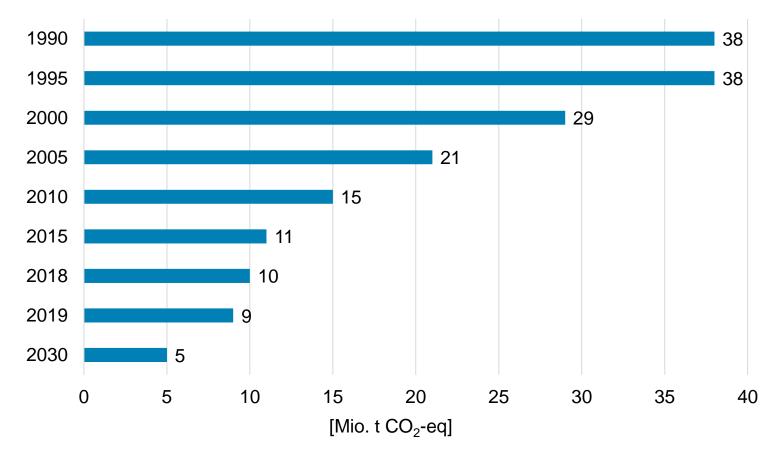
Source: IPCC, 2014

GHG emissions in t CO₂-eq per citizen in selected countries (status 2018)



Source: Statista, 2020: https://de.statista.com/statistik/daten/studie/167877/umfrage/co-emissionen-nach-laendern-je-einwohner/

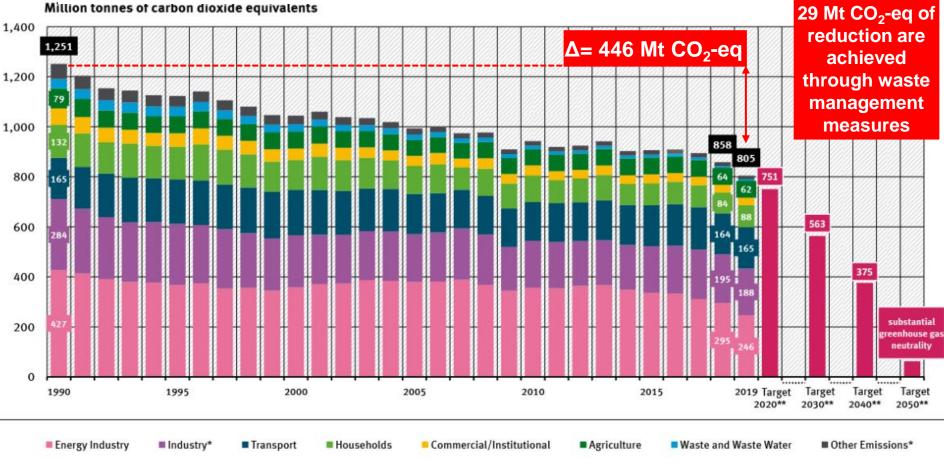
CO₂ emissions per capita in 2017



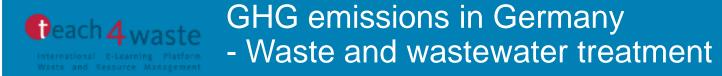
Source: OWID based on the Global Carbon Project; Carbon Dioxide Information Analysis Centre (CDIAC); Gapminder and UN population estimates

GHG emissions in Germany in the waste sector - GHG reduction

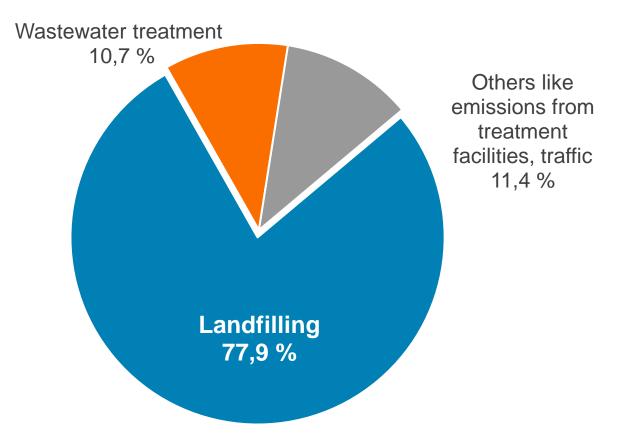
Development of GHG emissions from the waste sector in Germany, 1990 - 2019 – without credits



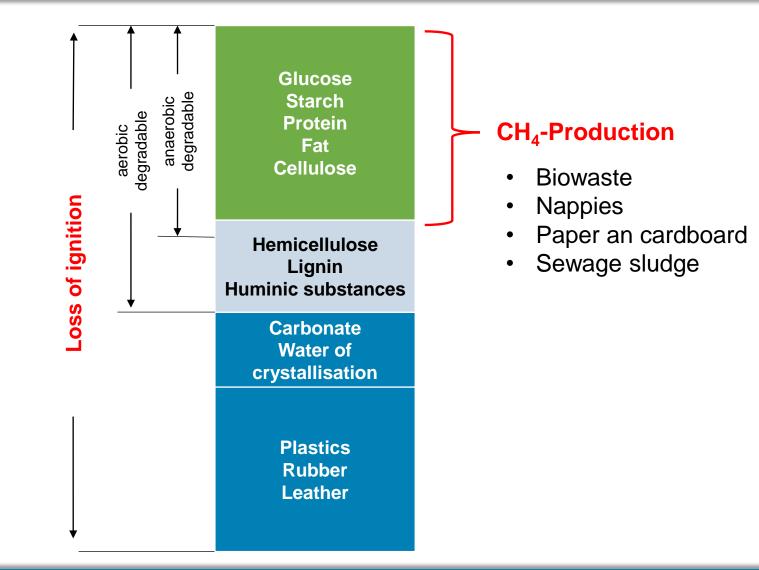
Source: UBA, 2020a (modified)


Mitigation of GHG emissions in Germany - Sector waste management

Development GHG emissions in Germany 1990 - 2019



Source: UBA, 2020


GHG sources from the sector waste and wastewater treatment in 2018 - without CO_2 from biomass use

Source: BMU, 2020

GHG emissions from landfills - Relevant raw materials

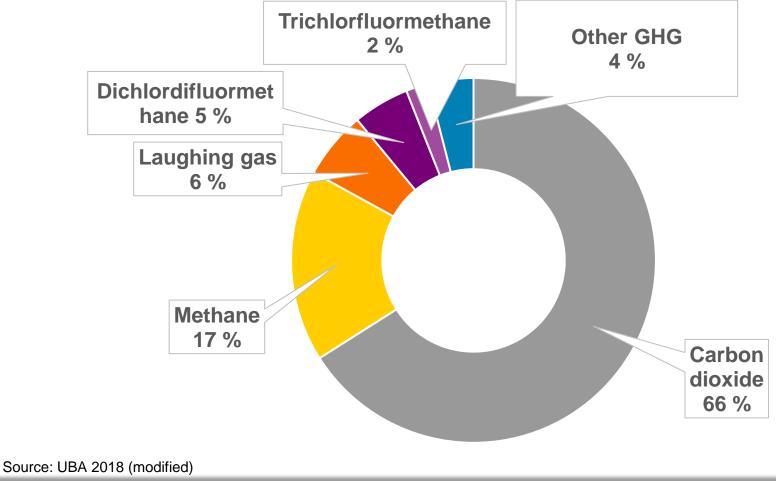
International E-Learning Platform Waste and Resource Management

The total effect of waste management measures results from the sum of GHG credits and GHG emissions:

$$CO_{2,eq,total} = \sum_{i=1}^{n} Emissions_i - \sum_{k=1}^{n} Emissions Credits_k$$

GHG mitigation in Germany from the sector of waste management from 1990 up to 2018:

- By GHG emissions
- 29 Mio. t CO₂-eq/a
- By GHG credits through recycling and energy recovery 20 Mio. t CO₂-eq/a
- GHG avoidance through waste management measures 0.61 t CO₂-eq/person*a


GHG credits of individual waste management measures as of 2011 and projected for 2030

Waste management	2011 Satus quo	2030 Status quo	2030 optimised	
measures	[1,000 t CO ₂ -eq/a]			
Landfill	163	0	0	
Waste incineration	-1,691	-14	-2	
MBT	-951	-1,246	-5,473	
Recycling				
 Biowaste 	-180*	-180*	2,600*	
Greenwaste	-14	61	-183	
 Paper and cardboard 	-6,120	-7,457	-9,290	
Glass	-1,232	-1,155	-1,155	
 Light packages 	-2,100	-2,840	-5,301	
Metals	-1,781	-1,842	-1,842	
Electronic waste	-764	-764	1,076	
Wood (biomass power	-5.060	-3,108	-5,624	
plants)				
(Ök Total ıt, 2014, * Own data)	-19.731	-18,188	-32,546	

Contribution of different greenhouse gases to the greenhouse gas effect

Specifications of GHG - Global warming potential (GWP)

GHG	Concentration today	Average lifespan	GWP	Global share greenhouse effect	Share greenhouse effect in GER
Units	[ppm]*	[a]	[weight unit over 100 a]	[%]	[%]
Carbon dioxide (CO_2)	407.38	120	1	66	88.2
Methane (CH ₄)	1.92	15	25	17	6
Nitrous oxide (N ₂ O)	0.33	114	298	6	4.2

* Except water vapour

teach 4 waste

Source: UBA, 2017

Credits for saving or providing electricity and heat

- Calorific value of waste
- Electric und thermal efficiency (η) of the incineration plant
- Emission factors for substituted electricity and heat

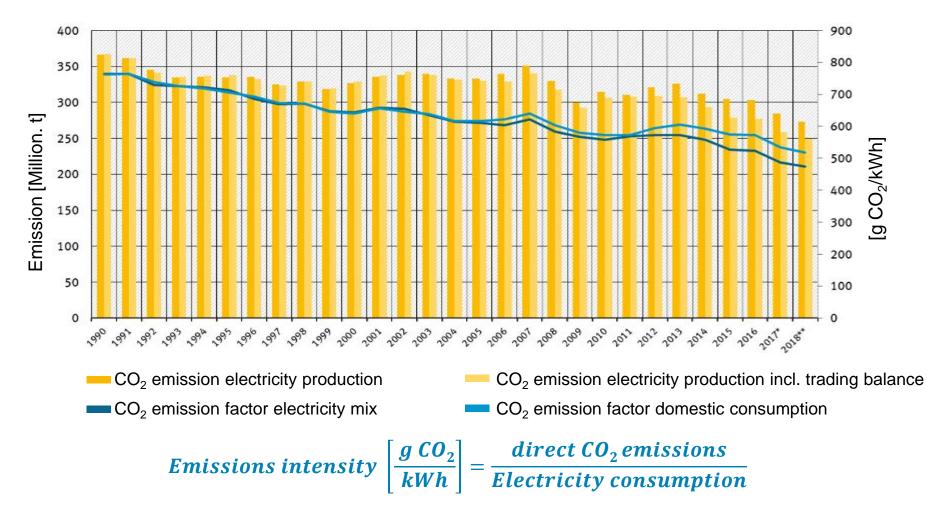
Calculation:

- Emissions from incineration = m (waste) * C_{fos} * 44/12
- Credit for electricity from incineration = m (waste) * Hu (waste) * η_{el} * EF Electricity
- Credit for heat from incineration = m (waste) * Hu (waste) * η_{th} * EF Heat

Emissions intensity $\left[\frac{g CO_2}{kWh}\right] = \frac{direct CO_2 emissions}{Electricity consumption}$

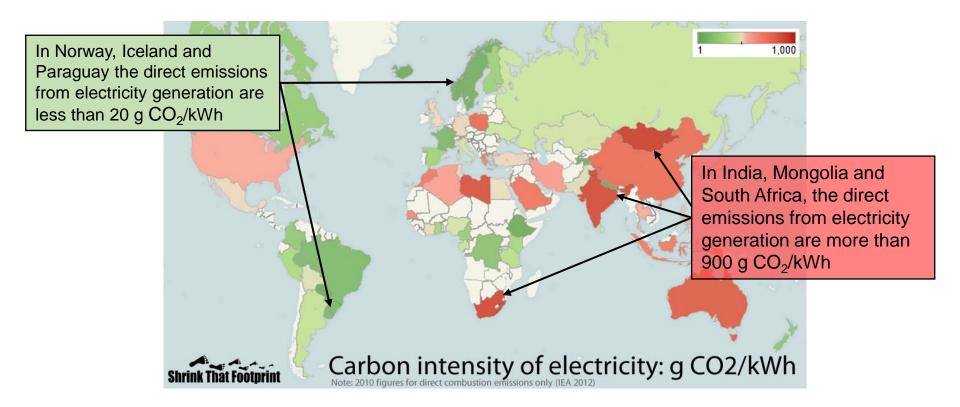
Relevance for calculation:

- Energy saving through avoidance, reuse and recycling
- Energy generation using fuels produced from waste
- Energy generation using biomass fuels produced from waste


Dependency of credits from the reference system:

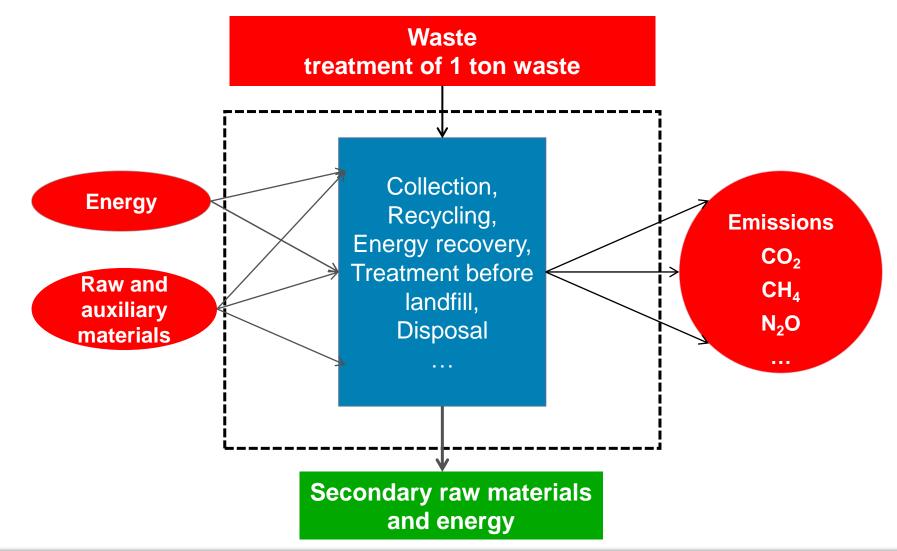
- Depending on which electricity (heat) is substituted, different credits result.
- The lower the emissions from substituted electricity (heat), the lower the credits for electricity (heat) from incineration.
- That means for a decarbonized world, in which the most of the electricity (heat) comes from regenerative energy: Incineration gains less and less credits for electricity (heat)

Electricity	Credits for 1 kWh
Unit	[kg CO ₂ -eq]
German electricity mix	0.40
French electricity mix	0.06
Brazilian electricity mix	0.29
Lignite-based electricity	1.22


GHG credits by energy saving - CO₂ emissions intensity in GER

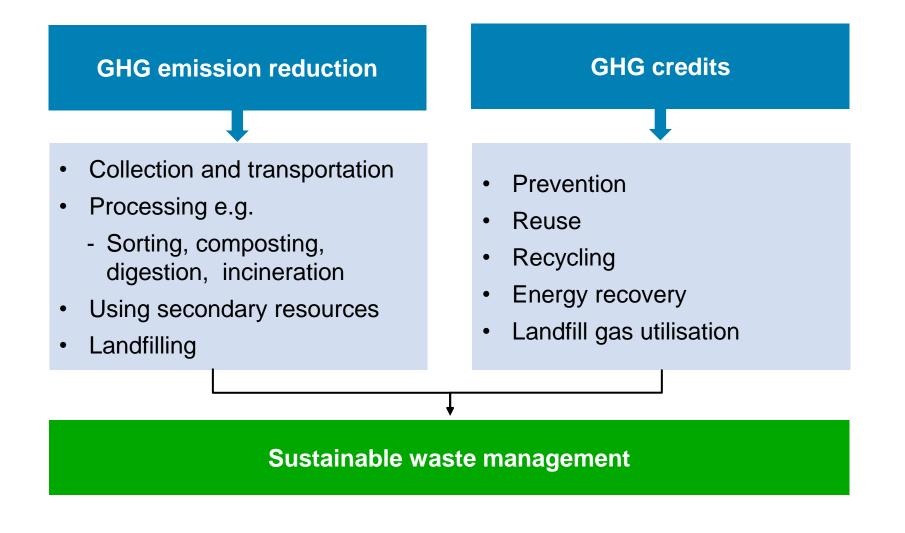
Source: UBA, 2019

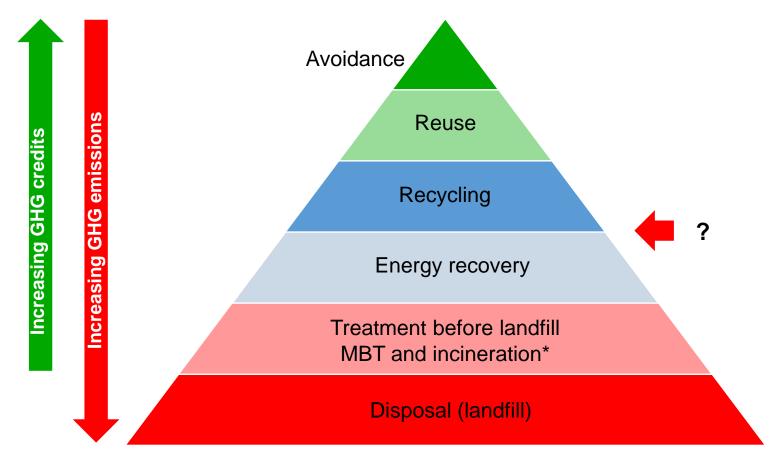
GHG credits by energy saving- CO₂ emissions intensity worldwide


CO₂ emissions intensity for the electricity around the world in 2010 [g/kWh]

Source: shrinkthatfootprint.com

Peach 4 waste LCA in waste management


International E-Learning Platform Waste and Resource Management


each 4 waste GHG emissions and credits

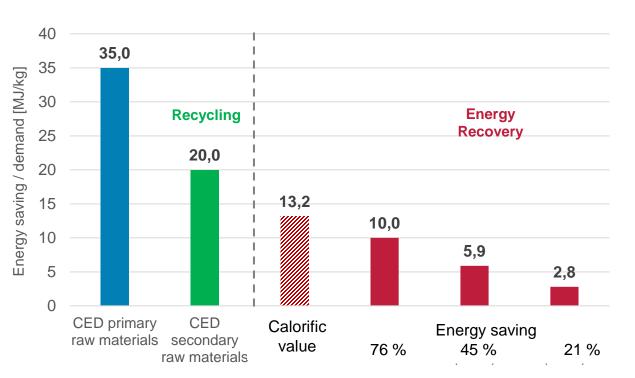
International E-Learning Platform Waste and Resource Management

Waste hierarchy - climate protection

*Not included in the official waste hierarchy of Germany and the EU as a separate level

Material recycling vs. energy recoveryWhat is the most sustainable strategy?

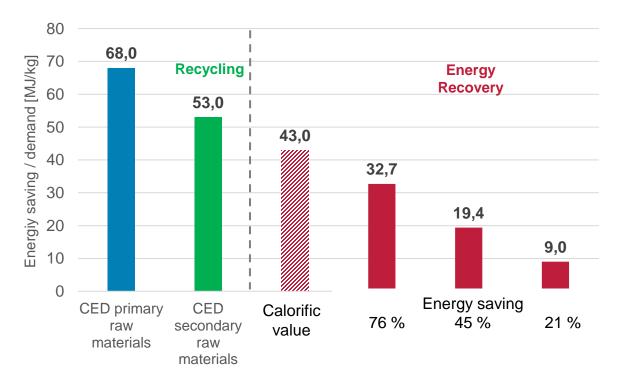
- Material recycling vs. energy recovery
- What is the most sustainable strategy in terms of:
 - Resource efficiency?
 - Environmental protection, i.e. mitigation of GHG emissions?



Material recycling vs. energy recovery - Energy saving, example paper

Example paper fibre:

- 35 MJ/kg: Cumulated energy demand (CED) of primary raw materials
- 15 MJ/kg CED of equivalent paper made from wastepaper
- 20 MJ/kg energy saving by recycling
- Lower calorific value (LCV) 13.2 MJ/kg calorific value of paper
- Max. 10 MJ/kg energy saving by energy recovery
- Energy efficiency in German waste incineration plants 21 % up to 76 %

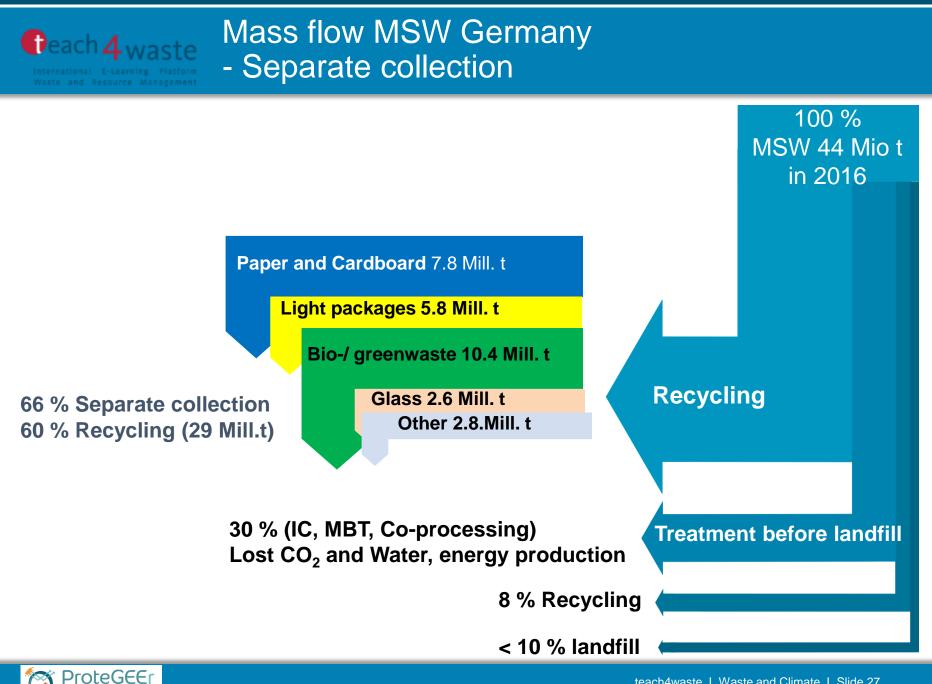

Source: Fricke et al. 2011

Material recycling vs. energy recoveryEnergy saving, example LDPE

Example LDPE polymer:

- 68 MJ/kg: CED of primary raw materials
- 15 MJ/kg CED of equivalent LDPE made from waste LDPE
- 53 MJ/kg energy saving by recycling
- LCV 43 MJ/kg calorific value of waste LDPE
- Max. 32.7 MJ/kg energy saving by energy recovery

Source: Fricke et al. 2011


Cumulated energy demand and lower calorific values for different polymers

Polymers	Cumulated energy demand (CED)	Lower calorific value (LCV)
Units	[MJ/kg]	[MJ/kg]
LD-PE	68	43
Polystyrol	79	40
Polyamid-6	166	28
PP	72	43
PVC	51	18

The higher the difference between CED and LCV, the higher the energy saving factor by (material) recycling!!!

Sources: Kindler and Nikles, 1979 HTP and IFEU, 2001

teach4waste | Waste and Climate | Slide 27

RecyclingGHG emissions, losses and credits

	Emissions of recycling process	Recycling losses	Substituted raw materials	Credits
Units	[kg CO ₂ -eq/kg] Input into recycling	[%]		[kg CO ₂ -eq/kg] raw material
HDPE	0.37	25	HDPE	2.03
LDPE	0.69	30	LDPE	2.18
PP	0.37	25	PP	2.06
PET	0.43	30	PET, amorphous	3.13
PS	0.32	15	PS	3.60
Paper	0.37	32	Fiber (chemical/mechanical pulp)	1.11
Glass	0.02	10	Glass fragments	0.46
Metal	0.42	5	Steel, low alloy	1.91
Aluminum	0.57	5	Aluminum, wrought alloy	9.55

Source: Öko Institut, 2018, eigene Daten

Peach 4 waste

Simplified example calculation (PET)

Input recycling Recycling		Output recycling			
PET-waste	1 kg	Loss	30 %	Secondary PET	0.70 kg
Electricity	0.7 kWh			Emissions-Electricity	0.40 kg CO ₂ -eq/kWh

Emissions for 1 kg primary PET

3.13 kg CO₂-eq

Overall results PET recycling.

- Emissions for recycling: 0.7 kWh * 0.40 kg CO₂-eq/kWh
- Avoided emission production: 0.7 * 3.13 kg CO₂-eq
- Total balance:

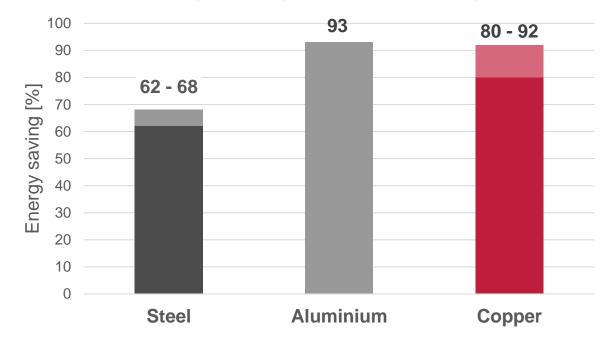
- = 0.28 kg CO_2 -eq
- $= 2.19 \text{ kg CO}_2 \text{-eq}$
- = 1.91 kg CO₂-eq

Material recycling vs. energy recovery - Conclusion

- Regarding resource efficiency, material recycling shows significant advantages compared to energy recovery and disposal for paper and plastics
- Biowaste recycling is more sustainable if cascade use takes place, this means biogas utilization and compost use
- Metals (except aluminum) and glass can be used only for recycling, as they are not suitable for incineration
- Higher energy efficiency corresponds to lower climate effects

- With increased use of old glass, the melting point is lowered
- Resource saving:
 - Energy
 - Quartz sand
 - Soda
 - Lime

Energy saving by glass recycling




Energy saving by metal recycling

Credits in ton CO₂-eq per ton recycling material

Source: regarding to Öko Institut, 2018

Recycling GHG credits ranges

Material	Credits
Unit	[t CO ₂ -eq/t recycling]
Paper and cardboard	0.6 - 2.5
Glass	0.4 - 0.5
Plastics	1.0 - 2.0
Ferrous metals	1.8 - 2.0
Aluminium	9 - 10
Biowaste	0.13 - 0.39

feach 4 waste

International E-Learning Platforn Waste and Resource Management

Recycling of biowaste - Example calculation

teach4waste | Waste and climate | Slide 35

Recycling of biowaste Example calculation methodology

$$CO_{2,eq,total} = \sum_{i=1}^{n} Emissions_i - \sum_{k=1}^{n} Emission Credits_k$$

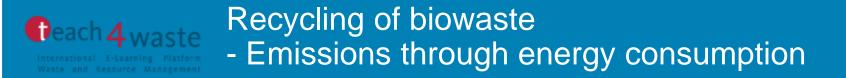
 $\sum_{i=1}^{n} E_{i} = E_{Collection} + E_{Transport} + E_{Compost process} + E_{Composting energy consum.} + E_{Compost transport} + E_{Compost application}$

$$\sum_{k=1}^{n} E \ Credits_k = E \ Credits_{EnergY \ Supply} + E \ Credits_{Nutrients} + E \ Credits_{Humus \ C}$$

- Where: *E* Emissions
 - *i* Index
 - k Index
 - *n* Final value

Recycling of biowaste Example calculation methodology

GHG emissions	GHG credits
Collection: CH_4 in the collecting bin, not considered because of same emission in MSW collection and no data available	Energy supply
Transport of biowaste, not considered because of alternating collection	Nutrients supply
Biological treatment process (CH ₄ and N ₂ O)	Humus C supply
Energy consumption of treatment process	Indirect: Mitigation of landfill GHG emissions through recycling measures for biowaste and greenwaste
Transport of compost products, not considered because of comparison with organic fertilizers	
Compost application	



GHG emissions through energy consumption of biowaste composting process

	Energy consumption	Energy types	Spec. GHG emissions	GHG emissions
Units	[MJ/t]	[MJ/t]	[kg CO ₂ -eq/MJ]	[kg CO ₂ -eq/t bio waste]
Energy expenditure - extensive	170	90 % diesel	0.093	16.81
composting , rotting degree IV	170	10 % electricity	0.152	10.01
Energy expenditure - intensive	300	30 % diesel	0.093	40.29
composting , rotting degree IV	300	70 % electricity	0.152	40.29

GHG emissions through energy consumption of biowaste fermentation and composting process

Expenditures and credits	Energy consumption	Energy types	Spec. GHG emissions	GHG emissions
Units	[MJ/t]	[MJ/t]	[kg CO ₂ -eq/MJ]	[kg CO ₂ -eq/t biowaste]
Energy expenditure- intensive		20 % diesel	0.093	
fermentation and composting, rotting degree IV	300	80 % electricity	0.152	42.60

GHG emissions from composting and fermentation process

Methane	Units	Composting	Fermentation
Spec. load	kg CH ₄ /t biowaste	1.4	2.8
GWP	kg CO ₂ /kg CH ₄	25	25
CO ₂ -eq	kg CO ₂ -eq/t biowaste	35	70
Laughing gas			
Spec. load	kg N ₂ O/t biowaste	0.05	0.05
GWP	kg CO ₂ /kg N ₂ O	298	298
CO ₂ -eq	kg CO ₂ -eq/t biowaste	14.9	14.9
Sum	kg CO ₂ -eq/t biowaste	49,9	84.9

Source: UBA, 2015

GHG emissions by compost application

Methane	Unit	Composting	Biowaste*
Spec. load	g CH ₄ /t	<< 1	
GWP	kg CO ₂ /kg CH ₄	25	
CO ₂ -eq	kg CO ₂ -eq/t	<< 1	<< 1
Laughing ga			
Spec. load	g N ₂ O/t	39,3 + 7,6 = 46.9	
GWP	kg CO ₂ -eq/kg N ₂ O	298	
CO ₂ -eq	kg CO ₂ -eq/t	14	
Sum	kg CO ₂ -eq/t		5.39

*Conversion factor of nutrient content in compost relative to compost raw material = 0.385

GHG credits by energy recovery of residuals from biowaste processing

	Mass residues	LCV*	Energy/t biowaste	Efficiency ratio	Energy production	Spec. GHG credits	GHG credits
Units	[kg/t] biowaste	[MJ/kg]	[MJ/t]	[%]	[MJ/t]	[kg CO ₂ -eq/ MJ]	[kg CO ₂ -eq/t biowaste]
Credits heat	00	40.0	040	33.5 ¹⁾	273	0.0645	17.65
Credits electricity	80	10.2	816	11.3 ¹⁾	92	0.152	14.00
Sum							31.65

*Lower calorific value, 1) Quicker et al. (2018)

Recycling of biowaste - Credits by energy supply

GHG credits through biogas utilisation

Energy supply	Energy production	Spec. GHG credits	GHG credits
Units	[kWh/t biowaste]	[kg CO ₂ -eq/MJ]	[kg CO ₂ -eq/t biowaste]
Energy production - electricity	235 (846)*	0.15182	128.44
Energy production - heat	321 (1,156)*	0.06456	74.61
Sum			203.05

*kWh = 3.6 MJ

Recycling of biowaste - Credits by fertilizer supply

GHG credits by using nutrients in the compost

Nutrients	Biowaste	Spec. GHG credits	GHG credits
Units	[kg/t FM]	[kg CO ₂ -eq/kg nutrients]	[kg CO ₂ -eq/t biowaste]
Nitrogen (N _{ges.})	3.88	8.85	34.03
Phosphorus (P_2O_5)	1.95	2.30	4.48
Potassium (K ₂ O)	3.30	2.26	7.47
Magnesium (MgO)	1.85	1.20	2.21
Calcium (CaO)	12.64	0.028	0.35
Sum			45.66

Recycling of biowaste - Credits by fertilizer supply

GHG credits by using humus C in the compost

Humus C	Biowaste	Spec. THG credits	THG credits
Units	[kg/t]FM]	[kg CO ₂ -eq/kg humus C]	[kg CO ₂ -eq/t biowaste]
Humus C ⁴⁾			
Intercropping cultivation	37.44	1.60	8.98
Under sawing		0.35	0.66
Peat substitute		3.74	42
Straw utilisation		5.59	104.6
Sum			156.23

Recycling of biowaste - Balance extensive composting

Emissions	[kg CO ₂ -eq/t biowaste]	Credits	[kg CO ₂ -eq/t biowaste]
Energy consumption - extensive composting	16.81	 Energy supply Energy recovery of residuals from pre processing 	31.65
Biological treatment process (CH ₄ and N ₂ O)	55,29	Nutrients supply	45.66
		Humus C supply	156.23
Balance			- 161.44

*Transport and application are not considered

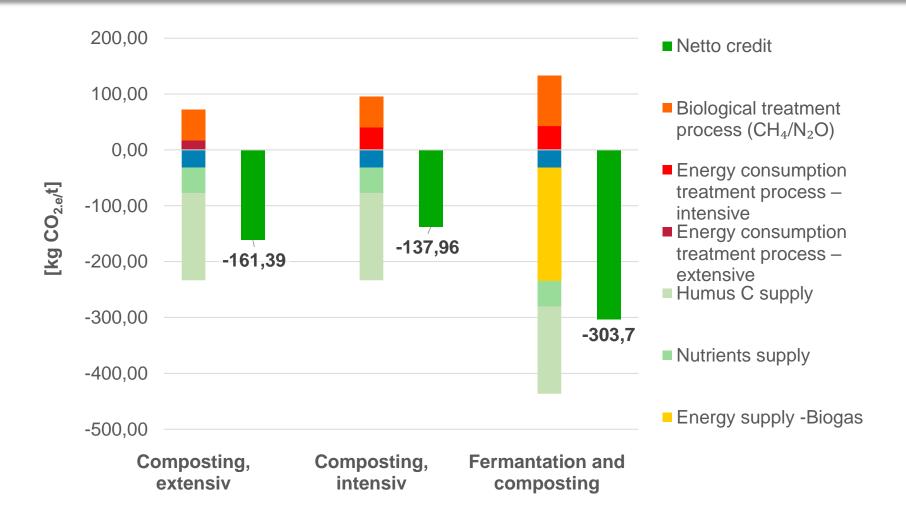
feach 4 waste

Recycling of biowaste - Balance intensive composting

Emissions	[kg CO ₂ -eq/t biowaste]	Credits	[kg CO ₂ - eq/t biowaste]
Energy consumption - intensive composting	40.29	Nutrients supply	45.66
Biological treatment process (CH ₄ /N ₂ O)	55,29	Humus C supply	156.23
		 Energy supply Energy recovery of residuals from pre processing 	31.56
Balance			- 137.96

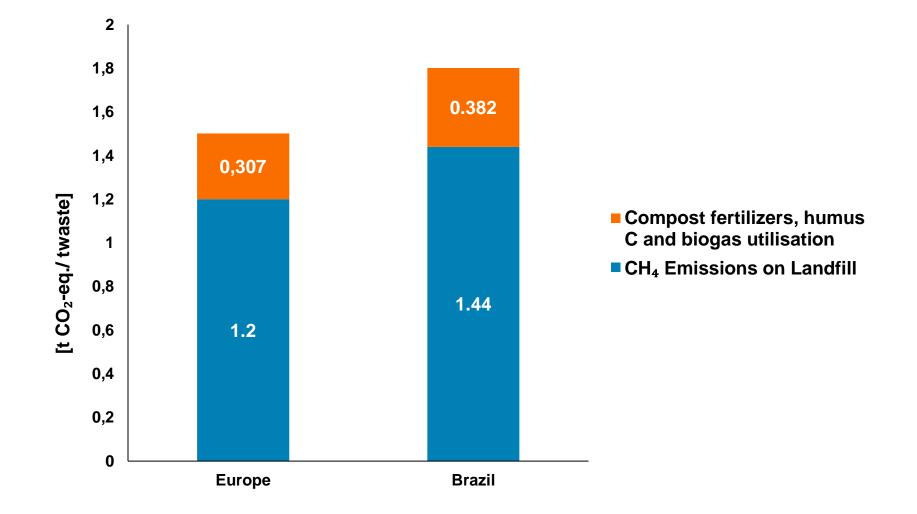
*Transport and application are not considered

Peach 4 waste

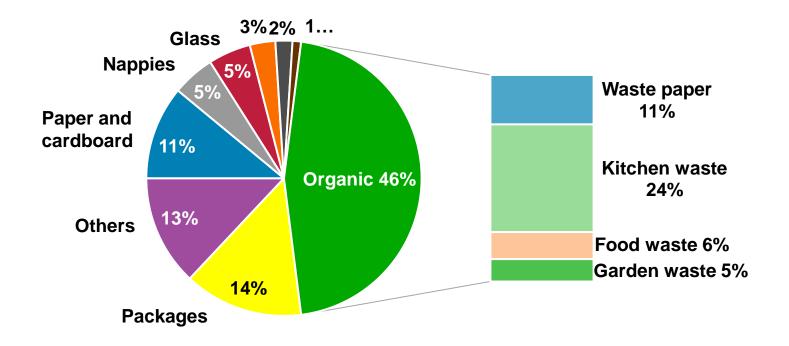

Recycling of biowaste Balance fermentation and composting

Emissions	[kg CO ₂ -eq/t biowaste]	Credits	[kg CO ₂ -eq/t biowaste]
Energy consumption treatment process – intensive	42.6	Nutrients supply	45.66
Biological treatment process (CH_4/N_2O)	90,29	Humus C supply	156.23
		Energy supplyEnergy recovery of residuals from pre	31.65
		processing - Biogas	203,05
Balance			- 303,70

*Transport and application are not considered



Recycling of biowasteBalance of losses and credits


Recycling of biowaste GHG mitigation of biowaste recycling and landfill

^{ch}**4**waste Waste composition in Braunschweig (GER)

International E-Learning Platform Waste and Resource Management

- 11 Mio. t/a food waste in Germany, value approx.16,6 up to 21,6 billion €/a
- 210 up to 280 €/a per capita in MSW, biowaste and wastewater
- GHG mitigation potential?

Measures climate protection - Biowaste

Prevention by reducing food waste:

- Better labelling
- Better management in retail
- Conscious shopping
- Better kitchen management

Further measures:

ProteGEEr

- Climate-friendly production and reduction of transport efforts for food
- Conscious shopping regional products

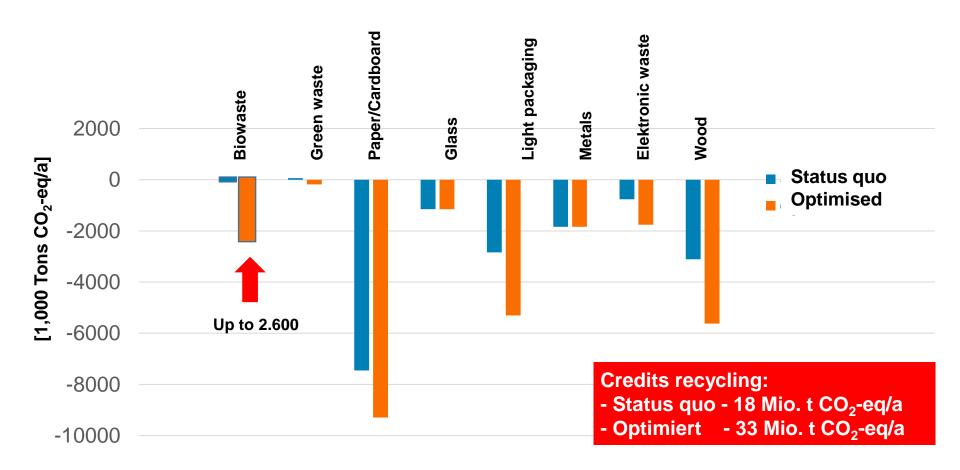
Photo: dpa/Arno Burgi

Measures climate protection - Biowaste

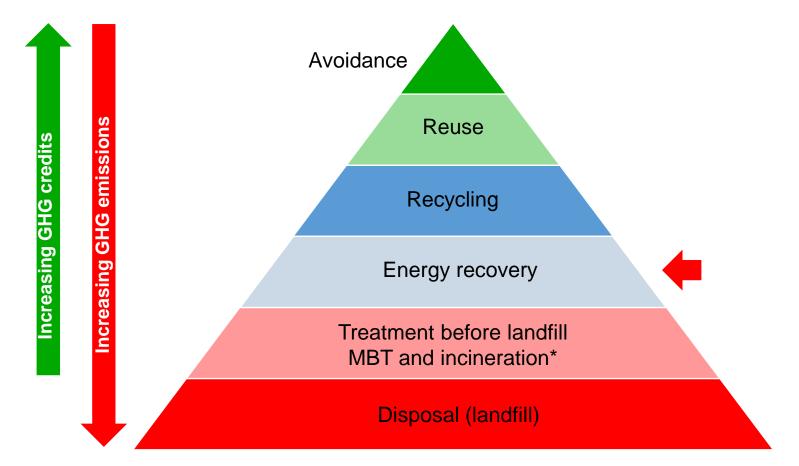
Increase in separate collection:

- Increase of home composting
- Increasing separate collection of kitchen waste
- Cascade utilisation of valuable components of biowaste through fermentation and composting
- Reduction of GHG emissions from composting and fermentation
- Increasing energy efficiency in composting and fermentation processes

You have not separated the waste again and suddenly your doorbell rings



GHG-Credits in Germany - Recycling


International E-Learning Platform Waste and Resource Management

each **4** waste

Waste hierarchy - climate protection

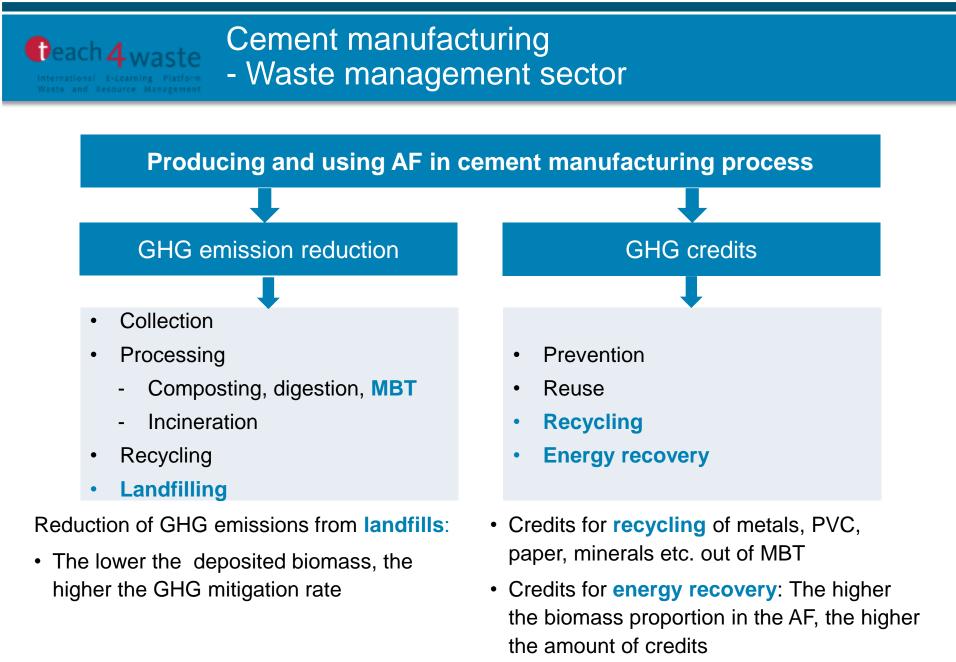
*Not included in the official waste hierarchy of Germany and EU as a separate level

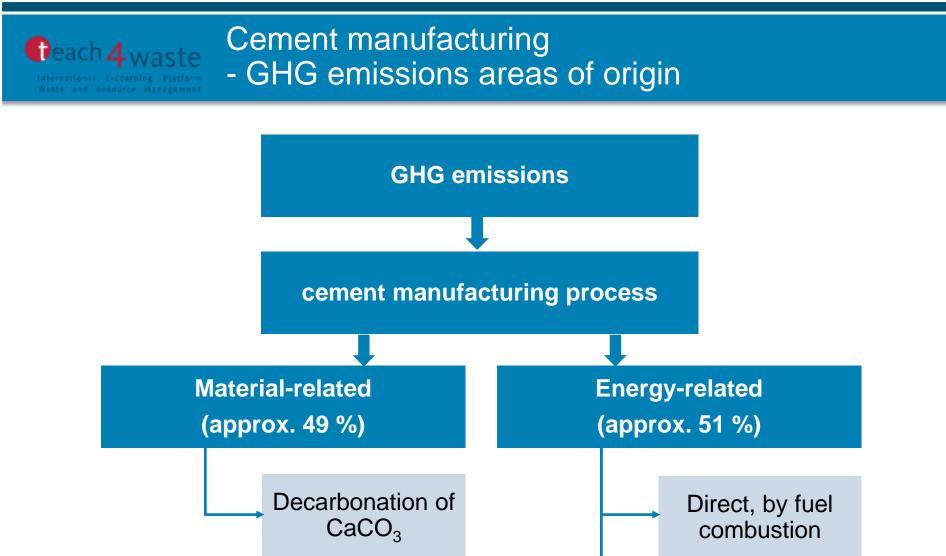
Equipment and processes for utilization of fuels from waste (AF)

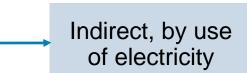
Waste incineration (untreated waste)	Pyrolysis (untreated / pre- treated waste)	Power plants (pretreated waste)	Production facilities (pretreated waste)
Grate technologies	Gasification technologies	Lignite and hard coal power stations	Cement manufacturing
Fluidized technologies	Degasification technologies	Biomass power stations	Blast furnace (use as reducing agent)

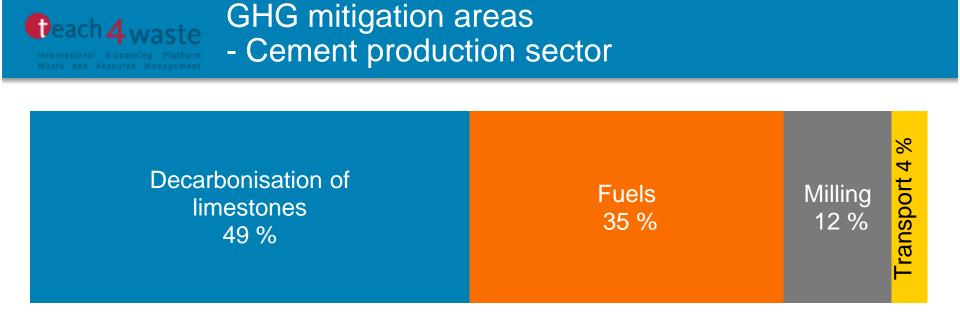
Annual cement production volumes and their CO₂ emissions

	Germany	World
Annual cement production	33.7 Million t ¹⁾	4,100 Million t ²⁾
Annual CO ₂ emission	19.2 Million t	app. 2,800 Million t
Spec. CO ₂ emission per t _{Cement}	0.57 t	0.57 - 0.95 t
Share of the cement production in annual global GHG emission	2.2 %	app. 5 - 8 %




Sources: ¹⁾ VDZ, 2019 (in 2018); ²⁾ Statista 2019 in (2018)





Measures GHG mitigation - Alternative fuels

Measures for the production of alternative fuels in MBT plants:

- Reduction of the C_{fos} content by increasing the biomass fraction by introducing a drying step in MBT - the higher the biomass fraction, the higher the GHG mitigation
- Improving energy efficiency: Deploying existing state-of-the-art technologies in new cement plants and retrofitting existing facilities

Cement manufacturing - Measures GHG mitigation

CO ₂ mitigation by	Measures
Reduction of CO ₂ release from decarbonization process	 Reduction of clinker-cement ratio, e.g. by using de-carbonated additives in the clinker by using pozzolan, granulated blast furnace slag (the suitability of waste incineration slags is also currently being tested)
Reduction of energy demand	 Reduction of clinker-cement ratio, e.g. by using de-carbonated additives (see above)
	 Technical process optimization, e.g. heat recovery
Use low fossil-C fuels	 Use of low fossil carbon fuels like biomass-rich alternativ fuels e.g. RDF or biomass fuels
CO ₂ capture and storage CO ₂ utilisation	 Currently various methods for CO₂ storage (Carbon Capture and Storage, CCS) and CO₂ utilisation (Carbon Capture and Utilization, CCU) are being developed and tested. This technologies currently are not state of the art

feach 4 waste

Cement manufacturing - CO₂ emission factors of fuels

Energy resources	Emission factors	
Unit	[t CO ₂ /TJ]	
Brown coal (Rhineland, GER)	113	
Lignite (GER)	98	
Scrap tyres	88	
Heavy oil	81	
Natural gas	56	
Plastics	61	
MSW	45	
Alternative fuel (biomass-rich RDF)	10 - 25*	
Solid biomass	4	
Sewage sludge	3	

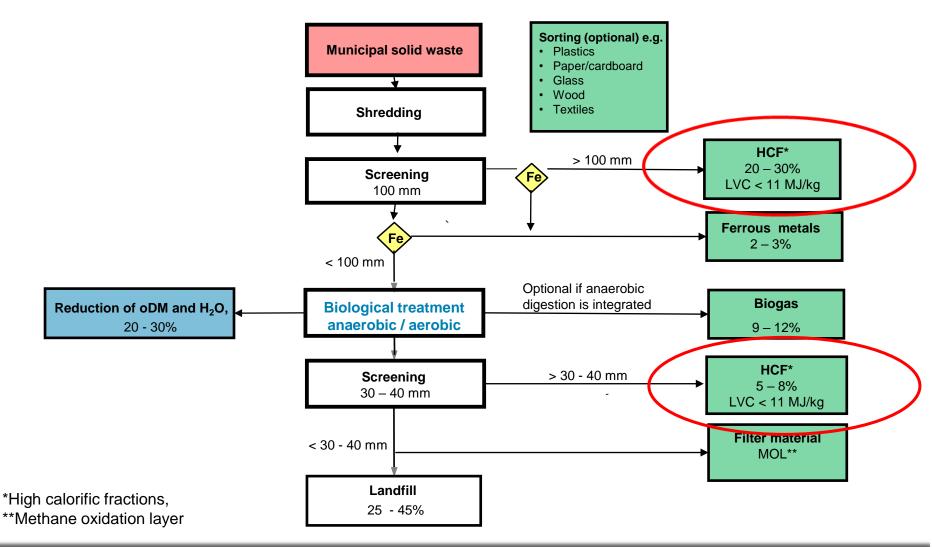
Sources: UBA, 2016: Auszug der Liste der CO2-Emissionsfaktoren für Brennstoffbezogene Emissionsfaktoren aus nationalen Inventarbericht (NIR)M; * own data

each **4** waste

Cement manufacturing - Used alternative fuels (AF) in GER

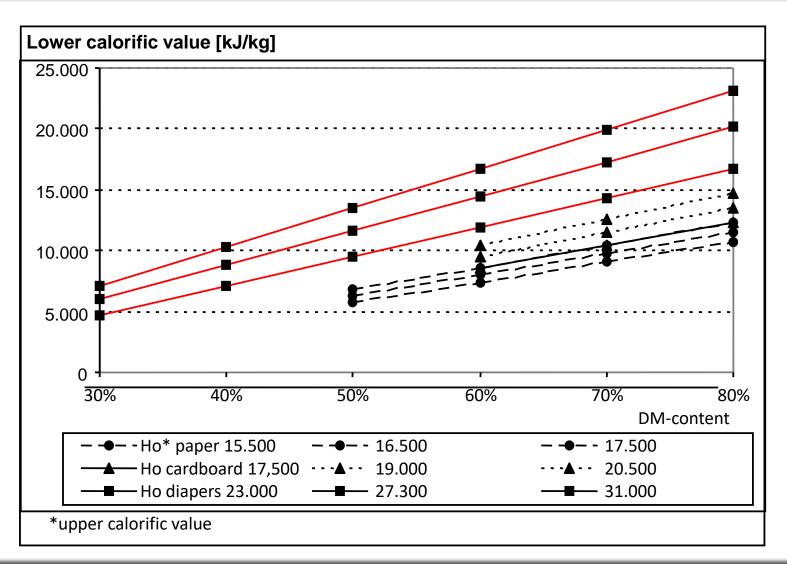
AF used in German cement manufacturing in 2016	Quantity Proportion of biom	
Units	[t/a]	[%]
Waste tires (tires consist of 40 % rubber, app. 70 % of which are made of synthetic rubber)	201,000	12
Waste oil	66,000	0
Pre-processed waste fractions: Pulp, paper, cardboard	81,000	100*
- Plastics and packaging	640,000	app. 10
- Textiles	7,000	40
- Others	116,300	?
Meat and bone meal, fat	145,000	100
HCF and its derived RDF or SRF	283,000	50
Waste wood	< 1,000	100
Solvents	126,000	0
Dried sewage sludge	463,000	100
Others e.g. oil sludge, distillation residues	58,000	0
Sum	2,187,300	app. 42
* 5 - 8 % filling materials, non biom		

Source: VDZ 2017

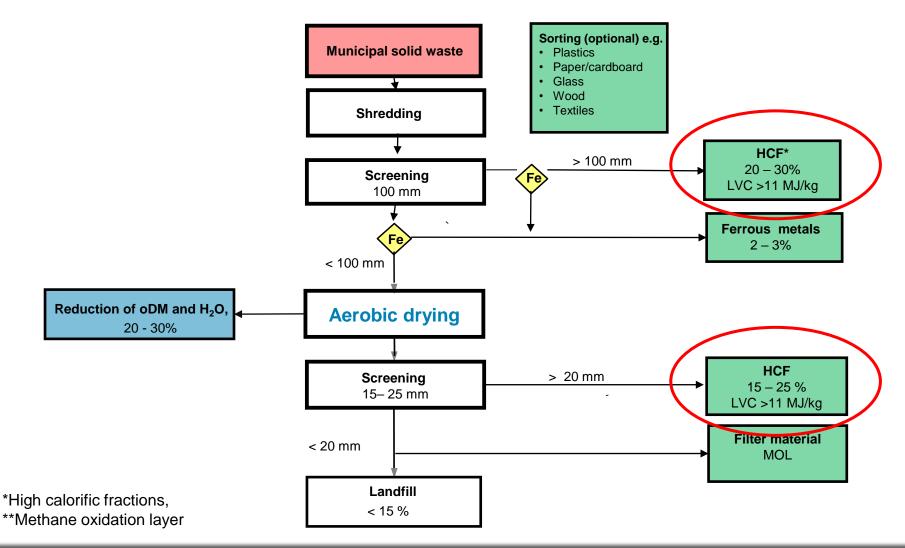


each 4 waste

* 5 - 8 % filling materials, non biomass


teach4waste I Waste and Climate I Slide 65

Cement manufacturing - MBT process to produce HCF (simplified)



Cement manufacturing - Increasing the calorific value through drying

Peach 4 waste Cement manufacturing - MBT process to produce HCF/RDF (simplified)

The credits include the emissions avoided by substituting the fossil primary fuels otherwise used in the cement plant. Substitution is based on a calorific value equivalent substitution factor of 1

The mass of the substituted coal is calculated according to the following formula:

$$m(Primary fuel) = \frac{m * LCV (RDF)}{LCV (Lignite)}$$

where

т	Primary fuel (lignite)	[kg]
LCV	spec. energy content (LCV)	[MJ/kg]

- 1,000 kg RDF with a LCV of 14 MJ/kg deliver 14,000 MJ of energy in total with a fossil C-content of the RDF
 0.09 kg C_{fos}/kg
- This RDF may substitute lignite with a LCV of 21 MJ/kg with a fossil C content of the lignite
 0.66 kg C_{fos}/kg

Cement manufacturing - Calculation example energy recovery

1. GHG emissions by using alternative fuels like RDF:

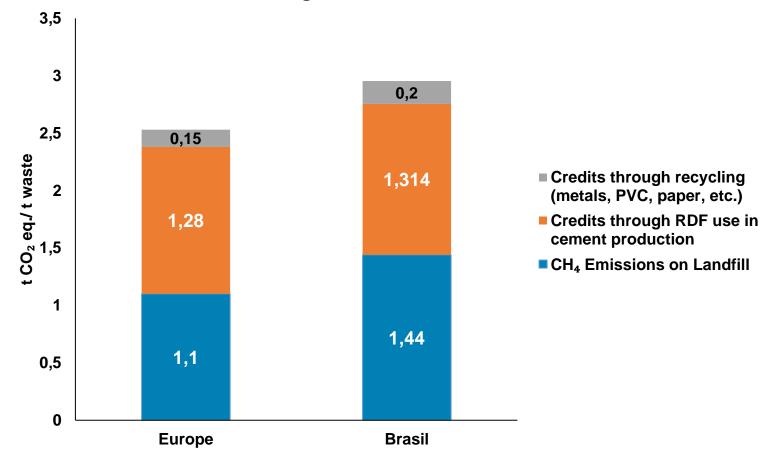
m
$$CO_2 - missions = 1,000 \ kg \ * \ 0.09 \ \frac{kg \ C_{fos}}{kg} \ * \ \frac{44}{12} = 330 \ kg \ CO_2$$

2. Mass replacement of primary fuels (lignite) based on energy quantity:

$$m (subst.primary fuels) = \frac{1,000 kg * 14 MJ/kg}{21 MJ/kg} = 667kg primary fuel$$

3. CO₂ emissions not used lignite:

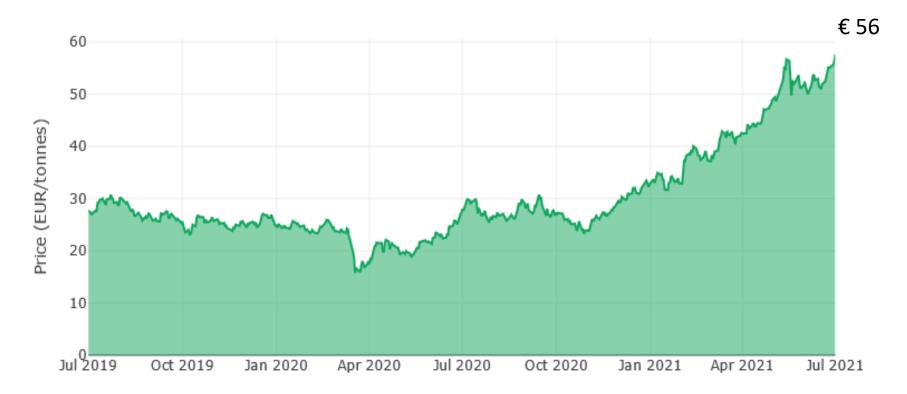
$$m(CO_2 - emissions) = 667 kg * 0.66 \frac{kg C_{fos}}{kg \ lignite} * \frac{44}{12} = 1,614 kg \ CO_2$$


4. Net credits:

$$m (Net - credits) = 330 kg CO_2 - 1,614 kg CO_2 = -1,284kg CO_2$$

Cement manufacturing - Using AF in the cement manufacturing

GHG reduction by using alternative fuels in the cement manufacturing under concideration of landfill


Cement manufacturingGHG mitigation political measures

- Simplified **approval procedures** for the use of quality-assured waste-based substitute fuels with a high biomass content in accordance with RAL quality mark
- Increased public acceptance in the implementation of the measures
- Simplified standardization of CO₂-friendly cement products (binders), especially recycled concrete
- Establishing of legal certainty for carbon capture and storage (CCS) and carbon capture and utilisation (CCU)
- Application of climate protection criteria in award of public works contracts The public sector accounts for approximately 23 % of German cement consumption (BBSR, 2018)
- Effective CO₂ pricing (taxation or emissions trading) (see also German government's climate package of December 2019)

EUA (EU ETS) Futures Prices

Regarding source and purpose, the composition of blend waste-derived fuels can vary between 0 % (polymers) and 100 % (biomass) of CO_2 neutral compounds.

Source: EMBER

Cement manufacturing - Short and medium mitigation potential

- The short- and medium-term CO₂ mitigation potential of the cement industry in Germany is estimated to be about 20 to 30 % - without carbon capture and utilization
- Worldwide, due to pent-up demand, the mitigation potential is rated significantly higher

Climate Protection Programme 2030 (GER) - CO₂ pricing

CO₂ emission pricing with effect on cement production costs

	Germany	World
Spec. CO ₂ -production per t cement	0.57 t	0.57 - 0.95 t
Production costs cement	35 - 75 €/t	
55 € CO ₂ pricing	+ 31 €/t	

Level of the CO_2 tax in GER:

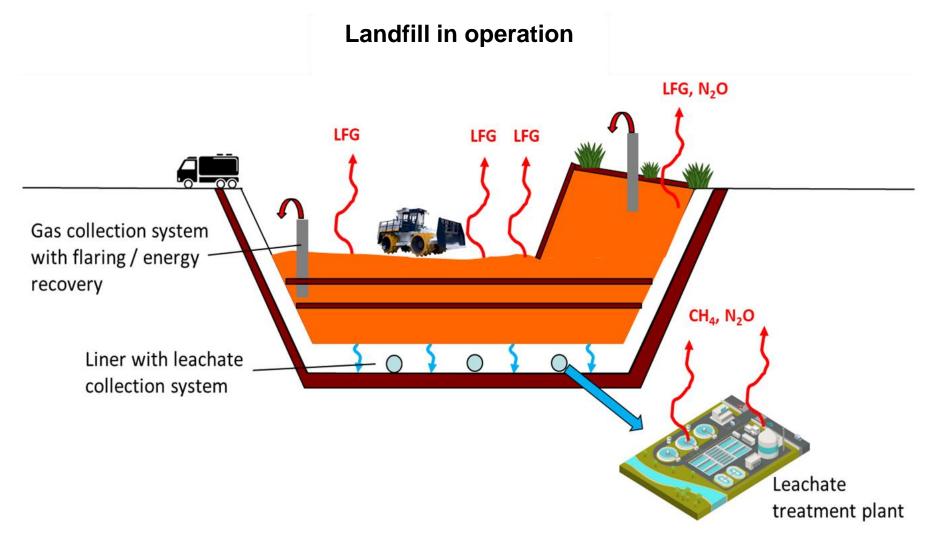
- From January 2021 25 €/Mg
- Increase to 55 €/Mg by 2025
- From 2026, between 55 and max. 65 €/Mg

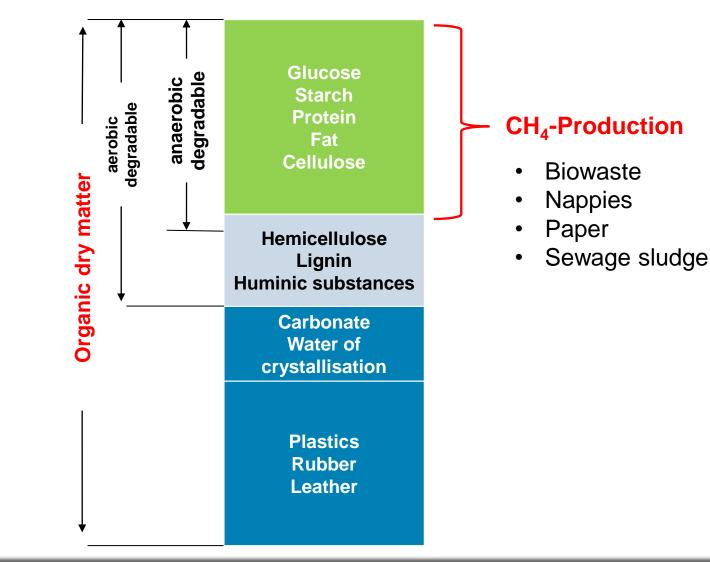
CO₂ pricing resp. tax strongly favours the use of biomass fuels!

Treatment before landfill - Legal framework GER and EU

Ban of landfilling of untreated waste **since 2005** in Germany, Switzerland and Austria

Ban of landfilling of untreated waste in the EU from 2022



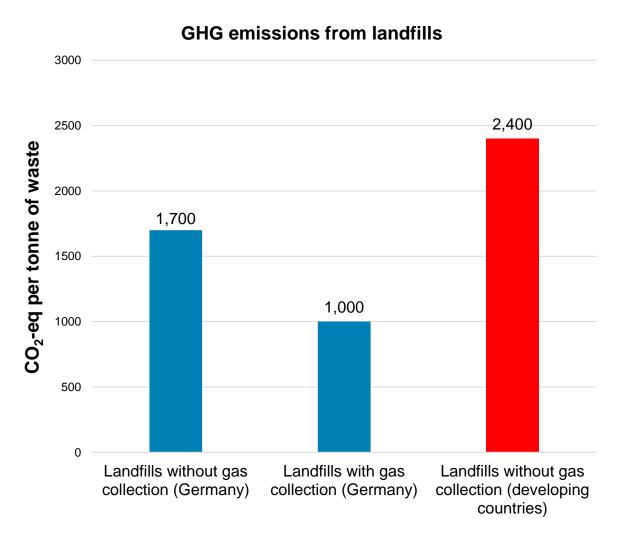

Peach 4

GHG emissions from landfills - Sources

GHG emissions from landfills - Relevant raw materials

each 4 waste

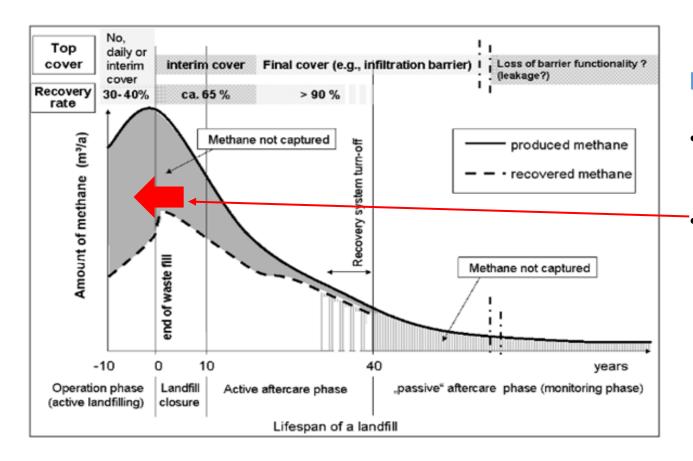
GHG emissions from landfills - Relevant raw materials


Waste fraction	Germany	China	Brazil	Thailand	India	Java
Paper/cardboard [%]	5.2	15.0	13.1	7.7	1.5	3.5
Glass [%]	4.6	2.0	2.4	2.0	0.2	1.7
Organic [%]	39.3	63.9	51.4	62.0	75.2	78.5
Plastics [%]	6.7	16.9	13.5	12.0	0.9	2.6
Textiles [%]	3.5	1.4			3.1	1,0
Metals [%]	2.0	0.7	2.9	0,5	0.1	
Hygiene products [%]	13.5					
Rests [%]	25.2	3.2	16.7	16,0	19.0	13.7
Water content [%]	35 - 45	42 - 60	42 - 55	41 - 53	42 - 60	49 - 63
Calorific value [kJ/kg]	8 - 9,000	4 - 7,300	6 - 8,200	4 - 7,500	< 4,000	< 4,000
GHG-Emissions [-]	very low*	very high	high	very high	very high	very high

*Since 2005, only pre-treated waste may be landfilled

feach 4 waste

GHG emissions from landfillsGermany and the developing countries



In developing countries, GHG emissions from landfills are 1.4 - 1.7 times higher, due to the higher proportion of readily degradable organic substances

8 - 12 % of GHG emissions in developing and emerging countries come from the waste sector!

GHG emissions from landfillsMethane production and collection

each 4 waste

ProteGEEr

Half-life Gas formation

- Climate in Central Europe: 7 years
- Tropical wet climate: 3-5 years, this leads to a shift to the operating phase, in which no gas is usually collected from landfill

- Minimizing volume and mass of waste delivered to the landfill
- Inactivation of biological and chemical processes

to prevent landfill gas production and settlement

- Immobilizing contaminants within waste, in order to reduce leachate emissions
- Separation of recyclable materials, Fe- and Non-Fe-Metals, alternative fuels (RDF) etc.

- Zero order model (default model): LFG formation is constant over time, so there is no effect of waste age
- **Constant rate model:** After a lag phase LFG formation rises instantly to a constant value until all organics are degraded, and decreases than to zero
- First-order model (FOD): Effect of waste age is incorporated by an exponentially decline of LFG generation. With modifications, this model is mostly used (e.g. IPCC model)
- Multiphase model: FOD model which distinguishes different waste fractions with different degradation rates
- Scholl Canyon model: Most commonly used FOD model. The model doesn't consider a lag phase or limiting factors like moisture
- Stoichiometric model: Based on a stoichiometric reaction, in which the waste is represented by an empirical chemical formula. It only estimates the total amount of LFG but gives no information in view of the generation rate. Requires knowledge of the chemical composition of waste

IPCC model (2006)

- FOD model for estimating methane emissions from landfills
- National greenhouse gas inventories must be compiled according to this model
 Choose the right level:
- Stage 1: IPCC FOD method using mainly standard activity data and standard parameters
- Level 2: IPCC FOD method and some standard parameters but requires good quality country-specific activity data on current and historical landfill waste disposal, historical waste disposal data for 10 years or more should be based on country-specific statistics, surveys or other similar sources. Data on the quantities disposed of in landfills are required
- Level 3: Level 2 plus use of either the FOD method with nationally developed key parameters or country-specific parameters derived from the measurement Key parameters should include the half-life and either the methane formation potential or the DOC content in the waste and the percentage of decomposing DOC (DOCf)

IPCC model (1)

feach 4 waste

$$CH_{4,emissions} = \left[\sum CH_{4,generated,x,T} - R_T\right] * (1 - OX_T)$$

CH _{4,Emission}	CH_4 emitted in year T	[Gg]
Т	Inventory year	[a]
Х	Waste category or type/material	
R _T	CH ₄ recovered in year T	[Gg]
OX _T	Oxidation factor per year (per fraction)	[-]

$$CH_{4,generated,T} = DDOCm \ decomp_T * F * \frac{16}{12}$$

$DDOCm\ decomp_T$	DDOCm decomposes in the year T	[Gg]
$DDOC_m$	degradable under landfill conditions	
	organic carbon	[Gg]
F	Volume fraction of CH4 in the produced LFG (fraction)	
$\frac{16}{12}$	Molecular weight ratio between CH4 and C	[-]

IPCC model (2)

For each year, the mass of anaerobically degradable carbon at the beginning of the year and out of this the mass of anaerobically degraded carbon is calculated:

 $DDOCm \ decomp_T = \ DDOCma_{T-1} * (1 - e^{-k})$

 $DDOCma_T = DDOCmd_T + DDOCma_{T-1} * e^{-k}$

$DDOCma_T$	DDOCm accumulated in landfill at the end of the year T	[Gg]
$DDOCma_{T-1}$	DDOCm accumulated in landfill at the end of the year T-1	[Gg]
$DDOCmd_T$	DDOCm deposited in the landfill in year T	[Gg]
k	degradation constant = $\frac{\ln(2)}{t_{1/2}}$	[1/a]
<i>t</i> _{1/2}	half time	[a]

 $DDOCm = W * DOC * DOC_f * MCF$

W DOC	mass of waste deposited degradable organic carbon in the year of deposition (fraction	[Gg] [Gg-C/Gg- waste]
DOC _f MCF	fraction of DOC that can decompose (fraction) CH_4 correction factor for aerobic decomposition in the year of deposition	

IPCC model (3)

$CH_{4,emission} = MWS_T * MWS_F * MCF * DOC * DOC_F * F *$	$\left(\frac{16}{12}-R\right)$) * (1 - OX)
---	--------------------------------	--------------

MWS_T	Total municipal waste produced	[Gg/a]
MWS_F	fraction of municipal solid waste going to landfill	[Gg/a]
MCF	Methane correction factor (fraction)	[-]
DOC	Degradable organic carbon (fraction)	
DOC_F	fraction of DOC that is biodegradable under real landfill conditions	
F	fraction of methane in LFG	
R	recovered methane	[Gg/a]
ОХ	oxidation factor	[-]

In the meantime, the model has been adapted to many country-specific conditions (waste composition, climate conditions, landfill technologies, etc.)

Source: www,ipcc-nggip,iges,or,jp/public/2006gl/pdf/5_Volume5/IPCC_Waste_Model,xls

IPCC model (4) Default values:

- Deviations are possible, but must be well justified
- If possible, use validated country-specific values
- DOCf: 0.5
- MCF: aerobic degradation in the year of deposition

Categories of landfills:

- Managed site anaerobic: 1,0
- Managed website semi-aerobic: 0.5
- Non-managed site deep (> 5 m waste) and/or high groundwater level: 0.8
- Non-managed landfill flat (< 5 m waste): 0.4
- If categorization is not possible: 0.6
- F: Methane concentration 50 % by volume 0,5
- Half-life and degradation constant, To take into account the influence of the moisture content in the waste and the ambient temperature, the table is divided into two climate zones
 - MAT = average annual temperature
 - MAP = mean annual precipitation
 - PET = potential evapotranspiration

IPCC model (5) Standard values for the half-life [a]

		Climate zone									
		Boreal	and mode	rate (MAT	= 20 °C)	Ti	Tropical (MAT > 20 °C)				
Туре с	Type of waste		Dry (MAP/PET < 1)		Wet (MAP/PET > 1)		Dry (MAP < 1000 mm)		Wet and humid (MAP = 100)		
		By default	Area	By default	Area	By default	Area	By default	Area		
Slowly	Paper/textiles	17	14 - 23	12	10 - 14	15	12 - 17	10	8 - 12		
degradable	Wood/straw	35	23 - 69	23	17 - 35	28	17 - 35	20	14 - 23		
Moderately degradable	Other (non- food) organics, garden/park	14	12 - 17	7	6 - 9	11	9 - 14	4	3 - 5		
Rapidly degradable	Food waste/sewag e sludge	12	9 - 14	4	3 - 6	8	6 - 10	2	1 - 4		
Municipal or industrial waste		44	12 - 17	7	6 - 9	11	9 - 14	4	3 - 5		

IPCC model (6)Standard values for the degradation constant [1/a]Climate zoneBoreal and moderate (MAT = 20 °C)Tropical (MAT > 20 °C)Dry
(MAP/PET < 1)</td>Wet
(MAP/PET > 1)Dry
(MAP < 1000 mm)</td>Wet and humid
(MAP = 100)By

		(MAP/	$(MAP/PET < 1) \qquad (M$		PET > 1)	(MAP < 1000 mm)		(MAP = 100)		
		By default	Area	By default	Area	By default	Area	By default	Area	
	Slowly	Paper/ textile	0.04	0.03 - 0.05	0.06	0.05 - 0.07	0.045	0.04 - 0.06	0.07	0.06 - 0.085
(degradable	Wood/straw	0.02	0.01 - 0.03	0.03	0.02 - 0.04	0.025	0.02 - 0.04	0.035	0.03 - 0.05
	Moderately degradable	Other non- food organics, garden/park	0.05	0.04 - 0.06	0.1	0.06 - 0.1	0.065	0.05 - 0.08	0.17	0.15 - 0.2
	Rapidly degrading	Food, sewage sludge	0.06	0.05 - 0.08	0.185	0.1 - 0.2	0.085	0.07 - 0.1	0.4	0.17 - 0.7
I	Nunicipal or	industrial	0.05	0.04 - 0.06	0.09	0.08 - 0.1	0.065	0.05 - 0.08	0.17	0.15 - 0.2

IPCC model (7)

Delay time:

- After disposal, it takes 7 months up to 1 year until methane is generated
- Delay time depends on waste composition and climate conditions
- Default value is 6 months, but changes to values from 0 6 months are allowed

	DOC (Degradable org. carbon), weight fraction (FM)						
Type of waste	Range	Default					
Food waste	0.08 - 0.20	0.15					
Garden	0.18 - 0.22	0.2					
Paper	0.36 - 0.45	0.4					
Wood and straw	0.39 - 0.46	0.43					
Textiles	0.20 - 0.40	0.24					
Disposable nappies	0.18 - 0.32	0.24					
Sewage sludge	0.04 - 0.05	0.05					
Industrial waste	0 - 0.54	0.15					

Uncertainties with regard to the results of the modelling:

- The FOD method is a very simple method to describe very complex processes during waste degradation, but errors cannot be excluded
- The physico-chemical composition of the waste is assumed to be homogeneous
- Relevant errors may arise in modelling if significant changes occur in the mass of the deposited waste and/or in the composition of the waste
- DOC values often too high
- Only one DOCf value for different wastes
- Three subdivisions in only two climate regions cannot reflect the influence of humidity on the degradation constant
- Insufficient or inaccurate input data

Predicted methane emissions vary between 38 and 492 % of actual emissions !

- Intensify avoidance, reuse, recycling and energy recovery
- Treatment before Landfill
- Landfill gas collection already during the disposal period
- Intensify of an efficient gas utilisation
- Application of an methane oxidation layer
- Landfill mining

Treatment before landfilling - Limit values for MBT and incineration in GER

Parameters (selection)	Unit	MBT Germany
TOC in solid matter	% of DM*	≤ 18
TOC in eluate	mg/l eluate	≤ 300
Respiration activity in 4 days (AT_4)	mg O ₂ /g DM*	≤ 5
Gas formation in 21 days (GB ₂₁)	l/kg DM*	≤ 20
Upper heating value (HCV)	kJ/kg DM*	≤ 6,000
		Incineration Germany
TOC in solid matter	% of DM*	≤ 5
TOC in eluate	mg/l eluate	≤100
Loss of ignition	% of DM*	≤ 3

* DM = Dry matter

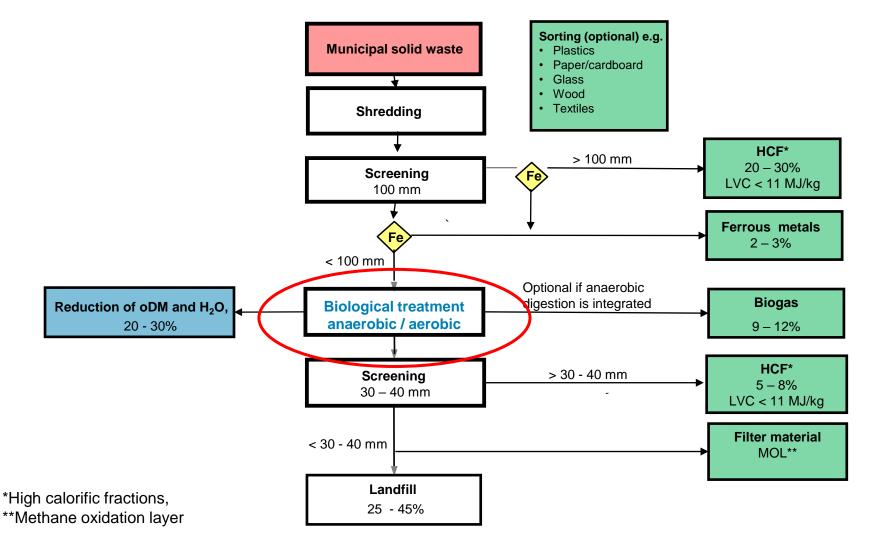
each **4** waste

Source: German Landfill Ordinance, 2001 and 2009

Treatment before landfilling - Treatment technologies

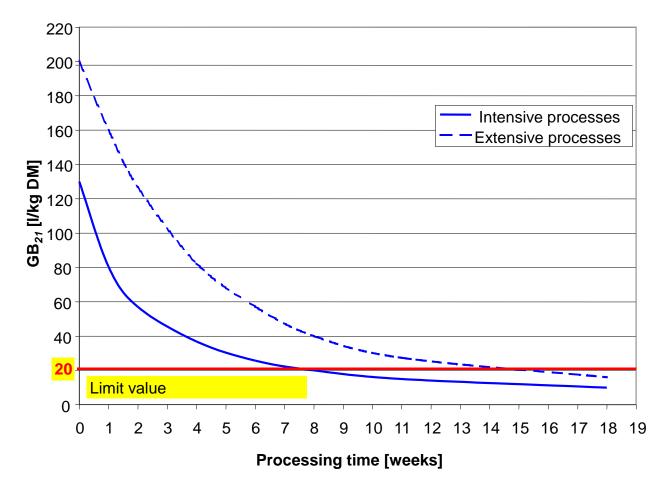
- Thermal treatment (waste incineration, energy recovery)
- Mechanical biological treatment (MBT)

Treatment before landfill - Incineration and energy recovery

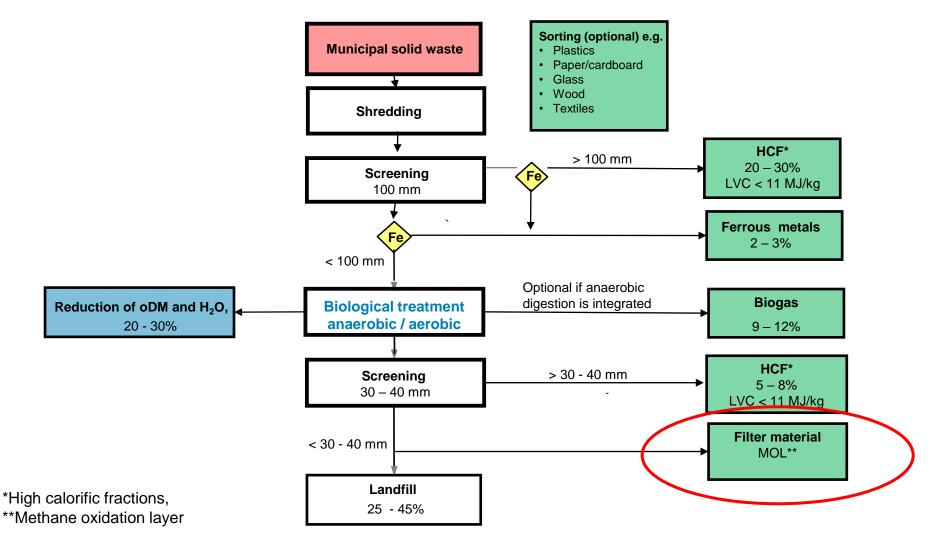


- The quantities of slag result from the inert content of the input and an average of 1.5 % unburned material in the slag (Öko-Institut, 2002)
- Only the federal state of Bavaria has waste incineration plant slags landfilled

Treatment before landfill - MBT flow chart (simplified)

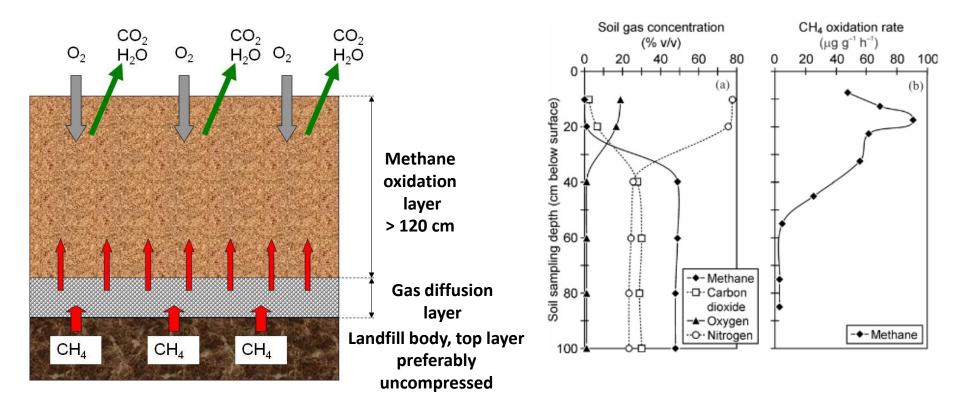


each 4 waste



Reduction of landfill gas formation through aerobic treatment in MBT

Treatment before landfill - MBT flow chart (simplified)



each **4** waste

Landfill gas collection - Passive systems (MOL)

Methane oxidation layer (MOL)

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 883 \text{ kJ/mol}$

Source: Scheutz et al., 2009, modified

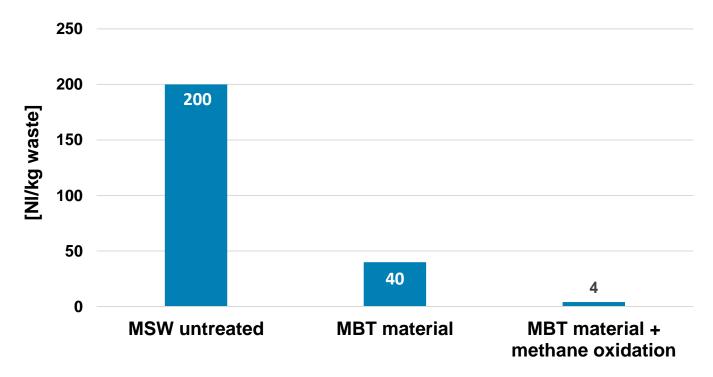
each **4** waste

Methane oxidation layer:

• Suitable for low LFG fluxes and low CH₄ concentrations

Optimal methane input flux to methane oxidation layer: 12 - 96 [l/m²d]

Only system for MBT landfills or old landfills, where these values are met and where permeabilities are very low


- CH₄ is in the presence of O₂ degraded by special micro organisms (methanotrophic bacteria) to water, CO₂ and microbial biomass
- The process is exothermal

Reduction of landfill gas emission

Ceach 4 waste Lessons learned

- Explanation of the waste hierarchy with regard to climate impact
- Define GWP and give examples for the calculation of the CO₂ equivalent (CO₂-eq)
- What is the emission factor?
- Emission intensity electricity (emission factor) and credits
- Define CO₂-eq emissions and credits by given examples
- Which emissions and credits must be taken into account in the various waste management measures?
- What is the function of carbon pricing and trading?

