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Relativistic de Broglie-Bohm interpretation of quantum mechanics for the
scalar field in the Rindler spacetime

Abstract

In this work we investigate the behavior of the wave functional
associated with a massless scalar field in Rindler spacetime
using the de Broglie-Bohm (dBB) interpretation of quantum me-
chanics. First, we use the Schrödinger picture to obtain the
wave functional associated with the Minkowski vacuum and ex-
press it in Rindler coordinates. Then we calculate the associ-
ated Bohmian trajectories and analyze their behavior in terms
of the Hamilton-Jacobi equation with a supplementary quan-
tum potential. Finally, we calculate the power spectrum and
compare it to the result of a classical scalar field at finite tem-
perature.

The Rindler wave functional

An observer in Minkowski spacetime with a constant ac-
celeration a with respect to some inertial reference frame
is described by Rindler coordinates (τ, ξ) with line element
ds2 = e2aξ(−dτ2 + dξ2), so that the Rindler metric is confor-
mal to Minkowski metric.

Consider the following action for a massless field

S =
1

2

∫
dtdx

{(
∂ϕ

∂t

)2

−
(
∂ϕ

∂x

)2}
. (1)

In terms of Minkowski modes, ϕ admits the half-Fourier expan-
sion [1]

ϕ(t, x) =

√
2

π

∞∫
0

dk sin(kx)ϕMk (t), (2)

while for Rindler modes ϕ can be expressed as

ϕ(τ, ξ) =
1√
2π

+∞∫
−∞

dk′eik
′ξϕRk′(τ ). (3)

Applying a product decomposition Ψ[ϕ, t] =
∏
k>0

Ψk[ϕ
M
k , t], we

obtain a Schrödinger equation for each Ψk. When we express
the Minkowski modes in terms of the Rindler modes, the vac-
uum solution reads

ΨM
k [ϕRk , ϕ

R∗
k , τ ] = exp

[
−kfk(τ )ϕ

R
k ϕ

R∗
k + iΩk(τ )

]
, (4)

with fk(τ ) = coth
(
πk
2a + ikτ

)
and Ωk(τ ) = − ln

[
sinh

(
πk
2a + ikτ

)]
.

Note that it is possible to recover the usual Bose-Einstein dis-
tribution with Unruh temperature using the expectation value of
the Rindler number operator in Minkowski vacuum [2].

De Broglie-Bohm interpretation of Quantum Mechanics

In order to pass to the dBB interpretation [3] we rewrite the
wave functional (4) in the polar form Ψk = Rke

iSk. Then the
Schrödinger equation yields the two real equations

∂Sk
∂τ

+
∂Sk

∂ϕRk
∗
∂Sk
∂ϕRk

+ k2
∣∣∣ϕRk ∣∣∣2 +Qk = 0, (5)

∂R2
k

∂τ
+

∂

∂ϕRk

(
R2
k
∂Sk
∂ϕR∗

k

)
+

∂

∂ϕR∗
k

(
R2
k
∂Sk
∂ϕRk

)
= 0. (6)

he first one can be interpreted as a Hamilton-Jacobi equation
for Sk with a supplementary quantum potential

Qk = − 1

Rk

∂2Rk

∂ϕR∗
k ∂ϕRk

. (7)

The second equation can be viewed as a continuity equation
and can give a probabilistic interpretation to R2

k. Classical limit

is given when Q ≈ 0.
The Bohmian field ϕk is obtained by integration of the guidance
equations

∂ϕRk
∂τ

=
∂Sk
∂ϕR∗

k

,
∂ϕR∗

k

∂τ
=

∂Sk
∂ϕRk

, (8)

and it is equal to

ϕk(τ ) =
1√
2k

(
e2πk/a − 2eπk/a cos(2kτ ) + 1

)1/2(
eπk/a − 1

) , (9)

where Sk the phase in the wave functional (4).

Quantum Potential
The quantum potential can be expressed in the form

Qk(τ ) = kℜ[fk(τ )]− k2ℜ2[fk(τ )] |ϕk|2 . (10)

For τ = 0 we have

Qk(τ = 0) =
k

2

e3πk/a + 1

(e4πk/a + 1)(eπk/a − 1)
. (11)

The mode energy for every k is given by

Ek(τ ) = k
e4πk/a + 1

(e4πk/a − 1)
. (12)

In the limit a → 0 the result of Minkowski space is recovered for
both Qk and Ek as expected, since the equations (10) and (12)
give

lim
a→0

Qk(τ = 0) =
k

2
, (13)

lim
a→0

Ek(τ = 0) = k. (14)

For high temperature regime T → ∞, which is equivalent to
a >> 1, we have

lim
a→∞

Qk(τ = 0) = lim
a→∞

Ek(τ = 0) = T, (15)

where T = a
2π is the Unruh temperature.

These results can be explained by analyzing the behavior of
the Bohmian field in these limits. For low values of the accel-
eration a the field is ϕk(τ = 0) = 1√

2k
, so the contribution of the

classical potential in the eq.(5) is k
2.

For higher values of a, the field can be approximated as ϕk(τ =

0) =
√
3

4
√
T

, which means it vanishes as a → ∞. Therefore, in
this limit, the quantum potential is the unique contribution to the
energy.
We plot the energy Ek and the quantum potential Qk
as functions of a. For low values of a we have
Qk ≈ Ek

2 , while for large accelerations Qk → Ek.
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Statistical Analysis and Power Spectrum

The power spectrum is commonly defined as the reversed
Fourier transform of the two point function

P (k) =

∫
dξe−ikξ ⟨ϕ(ξ)ϕ(0)⟩dBB , (16)

where

⟨ϕ(ξ)ϕ(ξ + χ)⟩dBB =
1

2π

∫ ∞

−∞
dk

1

2kℜ[fk(τ )]
e−ikξ. (17)

In the high temperature limit the power spectrum can be ap-
proximated as

P (k) =
2T

k2
sin2(kτ ) +

sin2(kτ )

k
. (18)

In the classical thermal field theory the power spectrum for the
free massless scalar field is given by P (k) = T

ω2
k
cos(ωkt) [4] .

Note that the result (18) is obtained using the wave functional
that describes only positive values of k. Thus, it is necessary
to rewrite (18) as P (k) = T

k2
− T

k2
cos(kτ ).

We plot the behavior of the power spectrum, quantum and clas-
sical potentials for different values of a. One can say that the
behavior of the power spectrum depends mostly on the classi-

cal potential Vk = k2
∣∣∣ϕRk ∣∣∣2.
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Discussion

In this work we study the Bohmian interpretation of quantum
mechanics for a massless scalar field. We calculated the
quantum potential and the energy, and verified that in the low
acceleration limit, the results of Bohmian mechanics for the
Minkowski space are recovered. Then we obtained the power
spectrum as the reversed Fourier transform of the two point
function. We found out that the behavior of the power spec-
trum depends mostly on the classical potential that contains
a Bohmian field. In the future work we pretend to extend our
analysis to both Rindler wedges, and, possibly, to black hole
theories.
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Esse projeto é executado em colaboração com M. Paixão
(CBPF). Os autores agradecem o CNPq e a Coordenação do
PCI-CBPF.


