JORNADA PC APRESENTAÇÃO DE PROJETO - 2021/2022

BOLSISTA:Luís Felipe Morgado Alves **SUPERVISOR:** Alexandre Malta Rossi **MODALIDADE:** PCI-DE

Síntese e caracterização de fosfatos de cálcio nanoestruturados segundo as boas práticas de fabricação

OBJETIVOS

- Sintetizar hidroxiapatitas nanoestruturadas contendo ou não substituição catiônicas e/ou aniônicas
- Caracterizar físico e quimicamente os materiais produzidos
- Realizar o processamento dos nanomateriais na forma de microesferas porosas para uso como material de implante ósseo e dentário.

ATIVIDADES EXECUTADAS

Síntese: Foram sintetizadas hidroxiapatitas substituídas e não substituídas, em meio aquoso, pela reação entre uma mistura de fosfato dibásico de amônio $(NH_4)_2HPO_4$, podendo conter carbonato de amônio $(NH_4)_2CO_3$ (solução B), e nitrato de cálcio, Ca $(NO_3)_2$ em 12, além de temperatura controlada em 90°C, 37°C e 5°C. As sínteses com substituição de carbonato foram realizadas da forma direta, na qual a solução A é adicionada à solução B, visando obter uma hidroxiapatita carbonatada do tipo B, onde os íons carbonato substituem parte dos íons fosfato.

RESULTADOS

				D %	MOLD		°/ C	BET STT	BET CTT	TAMANHO		ANÁLISE TÉRMICA		
	AIVIOSTRA	Ca %	IVIOL Ca	Ρ %		KAZAO Ca/P	% €	(m²/g)	(m²/g)	DO PORO (Å)	(cm³/g)	SAÍDA DE ÁGUA 25 - 120 °C	SAÍDA DE ÁGUA 120 - 400 °C	SAÍDA DE ÁGUA 400 - 800 °C
	IV.06.02/25	40,68	1,015	17,64	0,570	1,782	1,750	126	1,0682	161	0,509962	-7,95%	-4,92%	-2,77%
	IV.06.03/54	40,13	1,001	17,69	0,571	1,753	0,830	93,075	1,8124	47,3139	0,11	-4,53%	-4,15%	-1,30%
	IV.06.01/23	40,9	1,020	16,7	0,539	1,893	1,193	46	2,8542	319	0,364324	-3,31%	-3,68%	-2,95%

Tabela 2: Análise química de hidroxiapatitas carbonatadas sintetizadas em temperatura de 9 °C, 37 °C e 90°C respectivamente.

- Desagregação: Após sintetizado, o material passa por processos de lavagem, secagem e pesagem obtendo-se o rendimento. A primeira etapa do processamento é a desagregação, onde pode-se variar o tamanho de partícula de acordo com a finalidade dada ao material em sua pesquisa, visando obter suspensões ou soluções estáveis e reprodutíveis.
- Processamento: Microesferas e matrizes porosas de hidroxiapatita com substituições catiônicas e aniônicas foram preparadas a partir de misturas homogêneas de biomateriais com o alginato de sódio dissolvido em solução aquosa, em seguida, utilizando-se de agulha e seringa, obtém-se esferas porosas por meio da extrusão do material, variando em tamanho de acordo com o tamanho da agulha e a precisão de quem executa a técnica. No caso de esferas porosas maiores, utiliza-se bomba peristáltica.
- Caracterização: As amostras são caracterizadas conforme a necessidade do solicitante do material. Obtendo-se a química elementar por espectrofotometria de absorção atômica; a estrutura por difratometria dos ráios-X e espectroscopia de Infravermelho por transformada de Fourier; estabilidade térmica por termogravimetria; a porosidade por isotermas de adsorção/dessorção de N2, BET; o tamanho de partícula por espalhamento dinâmico de luz.

Chemical formula	Name	Ca/P ratio
Ca10(PO4)0(OH)2	end-member	1.67
	hydroxylapatite	
$Ca_{10}(PO_4)_{0}F_{2}$	end-member	1.67
	fluorapatite	
Ca10(PO4)6(OH,F)2, e.g.,	mixed hydroxyl-	1.67
Ca10(PO4)6(OH)0.4F1.6	fluorapatite	
Ca ₁₀ (PO ₄) ₆ Cl ₂	end-member	1.67
	chlorapatite	
Ca ₁₀ (PO ₄) ₆ (Cl,F) ₂	mixed chlor-	1.67
	fluorapatite	
e.g., Ca ₁₀ (PO ₄) ₆ Cl _{1.2} F _{0.8}		
$Ca_{10}(PO_4)_6CO_3$	end-member	1.67
	A-type	
	carbonated	
	apatite,	
	unhydroxylated	
$Ca_{10-x}[(PO_4)_{6-2x}(CO_3)_{2x}]F_2$	end-member	≥1.67
	B-type	
	carbonated	
	fluorapatite	
	old mineral	
	name: francolite	21.02
$Ca_{10-x}[(PO_4)_{6-2x}(CO_3)_{2x}](OH)_2$	end-member D trans	≥1.67
	is-type	
	budeoxulonatita	
	old mineral	
	name: dahllite	
Cam -[(PO_i)(CO_i)]CO_i	mixed A-type	>1.67
ente-1[(: 04)a-21(e 03)21]e 03	and B-type	
	carbonated	
	anatite	
e.g., Ca _{9.75} [(PO ₄) _{5.5} (CO ₃) _{0.5}]CO ₃ , x=0.25		1.77
$Ca_{10-x}[(PO_4)_{6-x}(CO_3)_x](OH)_{2-x}$	Ca- and OH-	≥1.67
	deficient	
	B-type	
	carbonated	
	apatite	
e.g., Ca ₉ [(PO ₄) ₅ (CO ₃)](OH), x=1		1.8
e.g., Ca ₈ [(PO ₄) ₄ (CO ₃) ₂](empty), x=2		2.0
$Ca_{10-x}[(PO_4)_{6-x}(HPO_4)_x](OH)_{2-x}$	HPO ₄ -	≤1.67
	containing	
	apatite	
e.g., Ca ₉ [(PO ₄) ₅ (HPO ₄)](OH), x=1		1.5
e.g., $Ca_{8}[(PO_{4})_{4}(HPO_{4})_{2}](empty), x=2$		1.33
e.g., Ca ₈ [(PO ₄) ₄ (CO ₃)(HPO ₄)(empty)		1.6

(a)

Fig. 4 Microesferas em matriz de alginato contendo nanoparticulas de hidroxiapatita e vancomicina.

Fig. 3 Comparação de tamanho de partícula por MET e representação gráfica por software

Referencias

- Tabela 1: B. Wopenka, J.D. Pasteris / Materials Science and Engineering C 25 (2005) 131–143
- Figura 3: DOS ANJOS ET AL / Impact of crystallinity and crystal size of nanostructured carbonated hydroxyapatite on preosteoblast in vitro biocompatibility