JORNADA PC APRESENTAÇÃO DE PROJETO - 2021/2022

BOLSISTA: Eduardo Alves Coelho **SUPERVISOR:** Arthur Marques Moraes e Gilvan Augusto Alves **MODALIDADE:** PCI-DB

Busca por acoplamentos anômalos em produção exclusiva de ZZ no canal semileptônico com o

espectrômetro de prótons PPS e aprimoramento do sistema de detecção de múons do detector CMS

Um dos objetivos do projeto é verificar a existência de uma nova física através de eventos de colisões protonproton do LHC (Large Hadron Collider) que ocorreriam no contexto dos chamados acoplamentos anômalos [1]. Embora o modelo-padrão da física de partículas descreva com sucesso as propriedades das partículas elementares, diversos aspectos ainda carecem de elucidação. Ao adicionarmos operadores de ordem mais alta à lagrangiana do modelo-padrão, mantendo-se a simetria SU(2)_L \otimes U(1)_y, surgem termos (a_C^Z e a_0^Z da eq. 1) referentes à acoplamentos entre bosons de *Gauge* não previstos pelo modelo original. Estes são denominados acoplamentos anômalos de *Gauge* (AGC's).

Eq. 1: Lagrangiana incluindo de termos de ordem superior. $F^{\mu\nu}$ é o tensor eletromagnético, $Z^{\alpha} Z_{\alpha}$ refere-se ao campo do boson Z. a_C^Z e a_0^Z são as constantes de acoplamento anômalo para a fotoprodução de boson Z.

Em trabalhos dos experimentos CMS e ATLAS, [2-4] há resultados precisos mostrando evidências da produção exclusiva de pares de bosons W no contexto do MP. Neste projeto, o processo de fotoprodução de pares de bosons Z, com um deles decaindo em dois leptons (Z leptônico) de mesmo sabor (múons ou elétrons) e outro decaindo em hádrons (Z hadrônico) é estudado. O objetivo primário é analisar os objetos centrais, reconstruídos pelo detector CMS (Compact Muon Solenoid), e combiná-los aos prótons detectados no PPS (Proton Precision Spectrometer). A adição desse tag de protons reduz a influência do fator de dissociação de próton sobre a incerteza da medida e proporciona variáveis adicionais que auxiliam na remoção de eventos de fundo. Ao fim, espera-se estabelecer limites para esses valores de acoplamentos anômalos.

Fig. 4: visão esquemática das camadas das iRPC's [5]

Projeto de Upgrade e integração das iRPC's ao CMS

As iRPC's (improved Resistive Plate Chambers) são uma versão aprimorada das RPC's que estão instaladas no CMS desde o Run I. As novas câmaras de detectores a gás das quais consistem as iRPC's serão fundamentais para a detecção de múons nas regiões de mais alta pseudorapidez do CMS. Esse aumento na região de cobertura dos detectores (1.9 $\leq \eta \leq$ 2.4) proporcionará melhorias na eficiência de trigger e de reconstrução dos múons.

Total thickness: 25 mm

Patch panel

Fig. 3: Região em η em que serão instaladas as iRPC's.

As novas iRPC's são projetadas (Fig. 3) de modo a otimizar o uso do espaço disponível nas regiões de *endcap* onde serão instaladas. A primeira diferença em relação às RPC's é a redução na espessura das placas resistivas (Tab. 1). Eletrodos mais finos permitem gaps de gás mais estreitos, o que reduz seu tempo de recuperação e a carga total depositada produzida no gás em avalanches de íons. Por isso se faz necessária uma compensação na eletrônica de front-end que recebe os sinais, de modo a amplificar os sinais recebidos.

	RPC	iRPC
Gas gap & electrode width, [mm]	2	1.4
High Pressure Laminate, [mm]	2	1.4
Resistivity $[\Omega cm]$	(1.0 - 6.0)	(0.9 - 3.0)
	$ imes 10^{10}$	$\times 10^{10}$
Strip pitch, [cm]	2.0 - 4.0	0.6 - 1.2
Electronics threshold, [fC]	150	30
a coverage [degree]	10	20

 $ZZ \rightarrow \mu^+ \mu^- + jets$

Os eventos analisados seguem a topologia da Eq. 2: os dois prótons do

$ZZ \rightarrow e^+e^- + jets$

Eq. 2: Interação entre dois protons resultando num estado final com dois protons sobreviventes detectados pelo PPS e um sistema de partículas X

$M_X = \sqrt{s \,\xi_1 \xi_2}, \, Y_X \approx \frac{1}{2} ln\left(\frac{\xi_1}{\xi_2}\right)$

Eq. 3: Massa central X, calculada em função da fração de momento transferido de cada próton ξ_i e a energia do centro de massa \sqrt{s} .

estado final (detectados pelo PPS) têm parte do seu momento transferido para o sistema central X. Nele encontram-se os objetos usados na reconstrução dos pares de bosons Z: múons/elétrons e jatos, detectados pelo CMS. A massa central M_x pode ser obtida a partir da Eq.

Fig. 2: Comparações entre eventos de simulação de background e dados. (a) momento transverso dos jatos. (b) Massa do par de Z's. (c) Momento transverso do leading muon do Z leptônico. (d) momento transverso do Z leptônico. (e) número de traços extras. (f) PrunedMass. (g) razão entre a massa do Z_{lep}Z_{had}

,		
Total thickness, [mm]	32	25

Tab. 1: Comparação entre as RPC's e as iRPC's [5]

Projeto de integração das iRPC's ao CMS.

O CBPF está envolvido com o projeto de integração das novas iRPC's ao CMS, que consiste em fazer com que a eletrônica de front-end e back-end envie e receba informações de maneira sincronizada com o restante dos subsistemas (ver Fig. 5). O módulo AMC13 (Advanced Mezzanine Card) é responsável por fazer esse handshake, ao distribuir o sinal de temporização (TTS Trigger Trottling System) que é entregue pelo CMS e fazer o caminho contrário, avisando ao TCDS (Timing and Control Distribution System) e ao DAQ (Data Acquisition System) se o sistema encontra-se ocupado ou pronto pra uma nova aquisição de dados.

Fig. 5: (a) câmara iRPC (b) eletrônica de *front-end* e *back-end*. (c) placa *front-end* V2 conectada a uma câmara iRPC (d) módulo AMC13 em um *slot* de uma *crate* padrão *microTCA*.

O crate da Fig. 6 está sendo usado no integration area do CERN para o desenvolvimento do projeto,

reconstruído pelo CMS do sistema X medido pelo PPS.

As amostras de sinal de ZZ foram geradas com valor de acoplamento anômalo baixo, de modo a compará-la com dados (2016) e simulação de *background* (Drell-yan e $t\bar{t}$). A Fig. 2 mostra comparações entre dados de 2016 e a simulação. Nos gráficos de (a) até (d) é possível verificar que dados e eventos gerados de processos Drell-yan e $t\bar{t}$ tendem a concordar. Por outro lado, as parâmetros de números de traços extras e pruned mass ainda carecem de correções (e) (f), que serão obtidas em breve. O gráfico (g) mostra a razão entre a massa do sistema ZZ medido pelo CMS e PPS. Percebe-se que essa razão para dados e o monte-carlo gerado nas condições do modelo-padrão são completamente deslocados da simulação com a_0^Z = 0,5 x 10⁴.

Conclusão

Os critérios de seleção, bem como o código de reconstrução elaborado para a análise se mostram confiáveis e, portanto, serão utilizados como base para análise dos dados de 2017 e 2018. Além disso, esse mesmo código está sendo utilizado para a estimativa de *background* via métodos ABCD e *template*. Com ambos, será possível fazer uma verificação cruzada com os backgrounds obtido para amostras de simulação, o que reforçará a qualidade do trabalho.

Referências:

[1] Perez, G., Sekulla, M. & Zeppenfeld, Eur. Phys. J. C 78, 759 (2018), https://doi.org/10.1140/epjc/s10052-018-6230-1

[2] CMS Collaboration, JHEP 1307 (2013), 116, <u>arXiv:1305.5596</u>

[3] CMS Collaboration JHEP 1608 (2016), 119, arXiv:1604.04464

[4] ATLAS Collaboration Phys. Ver. D 94 (2016) 032011, <u>arXiv:1607.03745</u>

juntamente com os desenvolvedores do *backend_*do IHEP de Beijing. Atualmente, já é possível enviar sinais de *clock* do AMC13 usando seu trigger interno (loopback mode) para o backend, controlar parâmetros e personalizar parte da informação que é trocada entre ambos (Fig. 7). Boa parte do tempo foi dedicada a entender os princípios de funcionamento da AMC13 e entender seu formato de dados, dada a escassez documentação disponível.

Conclusão

O processo de integração de um subsistema ao CMS é um processo demorado e complex, principalmente quando a documentação sobre a maioria dos components da malha eletrônica é escassa. O próximo passo a ser concluído, é fazer uma aquisição de dados com uma iRPC usando o AMC13 conectado ao back-end via crate como fonte de clock e compará-los com resultados obtidos com o back-end e front-end. Esperase que seja possível fazer testes no ponto de interação do CMS nos próximos meses, usando sinal TTS do próprio TCDS. Planeja-se também contribuir de maneira remota usando a eletrônica disponível no laboratório da COHEP. Vale ressaltar que há outras contribuições em andamento, tais como desenvolvimento de códigos de calibração para o *backend*, plantões de monitoramento durante testbeams e medidas de eficiência para as antigas RPC's

Referências:

[5] Cabrera, A., https://doi.org/10.22323/1.282.0733

Binary to decimal = 3