Projeto: Estabilização e dinâmica de skyrmions

Programa de Capacitação Institucional (PCI –DB)

Estabilização de domínios magnéticos e skyrmions em μ-membranas corrugadas

Flávio Garcia

22 de Novembro de 2022 Centro Brasileiro de Pesquisas Físicas

+Mz

- Mz

Esboço

- > Domínios magnéticos e skyrmions;
- > Aplicações;
- Problemas/Questões abertas;
- > Proposta;
- > Resultados (VSM, AFM, MFM, MEV, MET);
- > Conclusão;
- > Perspectivas;

Domínios magnéticos (convencionais)

Nanosurf

Campo magnético

Disco rígido (HD) – gravação magnética

Portas lógicas

Nature **579**, 214 (2020)

"Racetrack memory"

Skyrmions são a solução?

Domínio magnético;

Estrutura quiral;

Physical Review B **95**(9):094423 (2017)

- Imune a defeitos;

- Uma das menores estruturas magnéticas;
- Estáveis a temperatura ambiente;
- Movimentados com baixa densidade de corrente;

Interação Dzyaloshinskii-Moriya

Skyrmions são a solução?

Domínio magnético;

Estrutura quiral;

Interação Dzyaloshinskii-Moriya

- Imune a defeitos;
- Uma das menores estruturas magnéticas;
- Estáveis a temperatura ambiente;
- Movimentados com baixa densidade de corrente;

Science **349**, 6245 283 (2015)

 $Jc = 10^{5} A/cm^{2}$

IEE EXplore 104, 2040 (2016)

Skyrmions são a solução?

Domínio magnético;

Estrutura quiral;

Interação Dzyaloshinskii-Moriya

- Imune a defeitos;
- Uma das menores estruturas magnéticas;
- Estáveis a temperatura ambiente;
- Movimentados com baixa densidade de corrente;

Science **349**, 6245 283 (2015)

 $Jc = 10^{5} A/cm^{2}$

IEE EXplore 104, 2040 (2016)

Rede hexagonal de skyrmions < 100 nm

(g)

Localized magnetic field

(b)

Skyrmions nanométricos < 100 nm

^{*} Gravação magnética de alta densidade.

^{*} Redes de nanosciladores

Problemas/Questões abertas

- Maior densidade de domínios magnéticos.
- Skyrmions em condições simples (campo magnético nulo).
- Alta densidade de skyrmions/skyrmions nanométricos (gravação magnética);
- Rede hexagonal de skyrmions nanométricos;
- Skyrmions pontuais (localizados, organizados);
- Filmes autossustentáveis (sem substrato);

Problemas/Questões abertas

- Maior densidade de domínios magnéticos.
- Skyrmions em condições simples (campo magnético nulo).
- Alta densidade de skyrmions/skyrmions nanométricos (gravação magnética);
- Rede hexagonal de skyrmions nanométricos;
- Skyrmions pontuais (localizados, organizados);
- Filmes autossustentáveis (sem substrato);

Proposta

Explorar o <u>efeito de curvatura</u> para obter domínios magnéticos e skyrmions mais promissores para aplicações em dispositivos de spintrônica (gravação magnética, nanosciladores, etc.) buscando a formação de amostras <u>autossustentáveis</u>.

Substrato curvado quebra a simetria e induz interação DM.

Mudaremos a anisotropia magnética perpendicular (Ku).

Preparação das amostras sobre esferas de poliestireno (PS)

- Concentração;
- Aceleração;

• Velocidade;

Encontrar a melhor

receita.

Preparação das amostras sobre esferas de poliestireno (PS)

- Concentração;
- Aceleração;

• Velocidade;

Encontrar a melhor receita.

*Gradiente de espessura (nominal = t_n)

Quais amostras?

Ajustando a anisotropia magnética perpendicular (Ku) em amostras planas (Si 100)

Estrutura das amostras:

Campo magnético perpendicular a amostra

Variando a espessura do Co.

Como visto no diagrama anterior a formação dos domínios depende de Ku.

Microscopia de força magnética (MFM):

Diferentes tamanhos de domínios magnéticos.

E sobre as esferas?

Multicamadas Pt/Co/Pt sobre esferas de poliestireno de 500 nm

(menos significativamente)

Como estão organizadas as esferas?

Multicamadas Pt/Co/Pt sobre esferas de poliestireno de 500 nm

Multicamadas Pt/Co/Pt sobre esferas de poliestireno de 500 nm

PS 500 nm – Co 2.0 nm

Microscopia de força magnética (MFM)

Monodomínios = escuros Alguns domínios claro sobre as esferas

PS 500 nm – Co 2.0 nm

Microscopia de força magnética (MFM)

Monodomínios = escuros Alguns domínios claro sobre as esferas

Mudança mais significativa na anisotropia magnética.

Podem ser artefatos topográficos?

PS 500 nm - Co 2.0 nm

MFM

PS 500 nm - Co 2.0 nm

MFM

AFM correspondente

3D:

PS 500 nm – Co 2.0 nm

PS 500 nm - Co 2.0 nm

mumax³

PS 500 nm - Co 2.0 nm

mumax³

PS 500 nm (Co 2.0 nm) - efeitos da medida -

Microscopia de força magnética

Estabilizamos domínios magnéticos e skyrmions sobre as esferas.

PS 500 nm (Co 2.0 nm) - efeitos da medida -

Microscopia de força magnética

Estabilizamos domínios magnéticos e skyrmions sobre as esferas.

Como fica se <u>removermos as esferas de poliestireno</u>? A amostra (Co/Pt) fica autossustentável?

(PS 500 nm – Co 2.0 nm) -caracterização das membranas-

Removemos as esferas de poliestireno com solvente Tetraidrofurano (THF)

Cascas semi-esféricas bem organizadas.

Microscopia eletrônica de varredura (MEV)

Membranas micrométricas autossustentáveis.

Dugato et. al. Em preparação. (2022).

Co 2.0 nm (PS 500 nm) -caracterização das membranas-

Microscopia eletrônica de varredura:

Dugato et. al. (em preparação) 2022.

Microscopia eletrônica de transmissão:

Filmes em forma de "caixa de ovos" (meia casca esférica). Uma "capa" é fundida na outra.

Existem pontos onde as "capas" não se tocam (furos);

Amostra Co 2.0 nm sobre PS 500 nm

Amostra autossustentável:

MEV

Skyrmions "pontuais" (~140 nm):

MFM

ACS Appl. Mater. Interfaces 12, 47, 53454 (2020)

^{*}Gravação magnética;

^{*}Rede de nanosciladores;

Conclusões

Usando o agrupamento de esferas de poliestireno conseguimos <u>formar µ-filmes</u> <u>corrugados autossustentáveis</u>, o que permite ter dezenas de "meias cascas esféricas" interligadas. Manipulação em dispositivos sem precisar substrato.

Forte influência da curvatura na anisotropia magnética. Conseguimos <u>amostras com PMA</u> sobre as esferas de poliestireno (PS) de 500 nm .

Demonstramos a estabilização de <u>domínios magnéticos localizados pontualmente</u> nas μ-membranas (tipo em HD).

Para o caso específico da amostra de Co 2.0 nm (PS 500 nm), observamos <u>skyrmions</u> isolados. Estes de tamanho ~140 nm. Promissores para aplicações em dispositivos spintrônicos.

Em andamento/Perspectivas

Medir as amostras mais promissoras com técnica de maior resolução e investigar a aplicação de campo magnético na medida.

Jalil, W.; Dugato, D.; Almeida, T.; Garcia, F. Em revisão JAP (2022)

Explorar mais as esferas com diâmetros menores. Conseguimos membranas maiores para 200 nm.

Sistemas assimétricos para conseguir estabilizar skyrmions (Pt/Co/Au, Pt/Co/Ta, Pt/Co/W, etc.). Visto que para o diâmetro de 100 nm as amostras de Pt/Co/Pt formaram apenas monodomínios.

Explorar a interação entre domínios afastando as esferas.

Dinâmica e interação entre skyrmions via simulação.

Ofereceremos um módulo na 6ª EAFExp relacionado a este assunto.

Agradecimentos

<u>Wesley Jalil</u> <u>Evelyn Santos</u> <u>Trevor Almeida</u>

Flávio Garcia

Programa de Capacitação Institucional (PCI)

Obrigado pela atenção.

Efeitos interfaciais filmes finos ferromagneto/ metal pesado

Anisotropia magnética perpendicular (PMA)

Metal pesado
Ferromagneto

Metal pesado

Pt, Pd, Ta, W, Ir, Hf
Co, Fe, Ni
Pt, Pd, Ta, W, Ir, Hf

Guimarães, Edusp (2009)

Interação Dzyaloshinskii-Moriya (DMI)

Computational Materials **688** (2020) Akai et al. Hiperfine Interact **43** 253 (1998)

Efeito de proximidade magnético (MPE) Ferromagneto

Domínios magnéticos e skyrmions em filmes finos

Multicamadas Pt/Co/Pt

Dugato, D. A. et al. Em revisão JMMM (2022).

^{*} Os domínios magnéticos circulares são quirais.

Por que a 2.0 nm tem mais PMA?

A quebra de simetria por curvatura pode ser mais significativo para ela por ter um filme mais continuo. Os Co superiores passam a interagir mais quando aberto. Nas outras eles já estavam interagindo bastante.

>2nm não tem um filme perfeitamente plano!

Há um gradiente de espessura (2 nm) é bem no centro!

As esferas são rugosas;