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Topics
o Optimal path cracks.

o Navigation in complex networks.



Optimal path in disordered media: some definitions and
previous related studies

1) On an n-dimensional lattice, we assign to each site i a given “energy”
value €, according to a given probability distribution P(¢). The energy of a
path is the sum of all energies of its sites.

2) The optimal path (OP) is defined here as the one among all paths
connecting the bottom to the top of the lattice that has the smallest
energy [Kirkpatrick & Toulouse, J. Phys. Lett. (1985); Kertesz, Horvath &
Weber, Fractals (1992); Barabasi, Phys. Rev. Lett. (1996)].

3) Optimal paths extracted from energy landscapes generated with weak
disorder are self-affine and belong to the same universality class of
directed polymers [Schwartz, Nazaryev & Havlin, Phys. Rev. E (1998)].

4) In the strong disorder limit, optimal paths are self-similar with fractal
dimensions given by D1.22 and 1.43 in two and three-dimensions,
respectively [Cieplak, Maritan & Banavar, Phys. Rev. Lett. (1994), (1996):

Porto, Havlin, Schwarzer & Bunde, Phys. Rev. Lett. (1997)].






Two important questions arise:
»How and when will the transportation network collapse?

>»What is the role of disorder on the performance of the
transportation network?

We perform numerical simulations:

»Square lattices of size L with fixed BC's at the top and bottom
and periodic BC's in the transversal direction.

»>Disorder is introduced by assigning to each site i an energy ¢
given by:

& =exp[A(p —1)]
where p; is a random variable uniformly distributed in [O,1].

This is equivalent to choose ¢, from a power-law distribution,

P(&) ~1/& (now normalizable)

with maximum cutoff & _ = eﬂ i



Algorithm
JSA, Oliveira, Moreira & Herrmann, submitted (2009)

1) The Dijkstra algorithm [Dijkstra, Num. Math. (1959)] is used to
calculate the first OP connecting the bottom to the top of the
network;

2) The site in the OP having the highest energy is permanently
blocked (i.e., an irreversible "micro-crack” is formed):;

3) The next OP is calculated, from which the highest energy site is
again removed and so on, and so forth;

4) The process continues iteratively until the system is disrupted,
i.e., we can no longer find any path connecting bottom to top.

b=




Results: weak disorder

last OP

OPC fracture

OPC elements -




Results: strong disorder

B =60.0 B =60.0

last OP

first OP

backbone (preserved!!)

OPC fracture
dangling ends (disappeared)

OPC elements -

isolated clusters (practically disappeared)
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Quantitative Results
JSA, Oliveira, Moreira & Herrman, PRL (2009)

» Simulations with 1000 realizations of lattices for each different
size 325L<512 and distinct values of the disorder parameter f.

> Weak disorder —, clear scaling laws.

10° § 11) M, ~ L™ (backbone)
M e with D, =1.22+0.02
2) M .~ LDf (OPC fracture)
M 4y 3 -
with D, =1.59+0.02
10° 13) M, ~ L™ (all cracks)
o with D, =2.00+0.01
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Quantitative Results

> Transition from weak to strong disorder.

> The stronger the disorder (small L or high B), the smaller is the
number of final blocked sites — more localized in a singly-connected
crack line.

strong disorder weak disorder

1) OP's under strong disorder
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Conclusions

> The backbone of the fracture constituted of OPC's is apparently
(not proved) disorder independent. It is also a self-similar object
with fractal dimension D, =1.22.

> This dimension is (statistically) similar to the ones obtained for
OP's under strong disorder [Schwartz et al., PRE (1998)],
Disordered Polymers [Cieplak et al., PRL (1994)], strands in
Invasion Percolation [Cieplak et al., PRL (1996)], and paths on
Minimum Spanning Trees [Dobrin et al., PRL (2001)].

> The role of disorder is to dramatically reduce the total number
of blocked sites before the system collapses:

weak disorder — |\/|t ~ |2
strong disorder — M, - M, ~ | 122

> This information can be used to improve a given transportation
network or in the design of systems with enhanced performance.



Navigation on complex networks:
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Can a cost constraint affect the optimal?

1) We consider a two-dimensional
square lattice with sites connected
with their nearest neighbor.

2) Shortcuts introduced between
pairs i and j of sites with probability
PiJNrij-GI where r;; is the "Manhattan
distance".

3) The addition of shortcuts stops
when their total length (cost)
reaches a given value

A= Z T
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Global Information with Cost
Li, Reis, Moreira, Stanley, Havlin & JSA, PRL (2010)
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Some scaling analysis...
By arbitrarily fixing the cost parameter to A [ L°,
we obtain, 5
= {r) (1)

Where p is the expected density and (1) is the
average length of the shortcuts. Since,

L
<!'> o / .!.d_”f{*r (2)
J ]

we obtain,

Lt 0< a<d:
0~ L=t g <a<d+1: (3)
LY L d+ 1 <



Thus for a<3, the density of shortcuts added
decreases as a power law with L.

To see it, we argued that, the average shortest
path length (ASPL) is bounded by the relation

(6) > p'/° (4)

Where the right-hand side of the equation
appears at the small-world scenario [M.
Barthélémy and L. A. N. Amaral, Phys. Rev.
Lett. (1999)]. Since, for a<3 the bound,

() ~ L[B3=)/d (5)

is rigorous for our case and the ASPL must scale
as a power of L. Thus, from Egs.(3) and (5), it
follows that only for a=3, the ASPL scales
logarithmically with L.



The global navigation scheme can be considered as a
lower bound to any other transport navigation process.

The next question is...

What would be the optimal condition when only local
information is available?

In order of simulate navigation with local information,
we use the greedy algorithm [J. M. Kleinberg, MNature
(2000); Proc. 329 ACM Symposium on Theory of
computing (2000)].



Local Information with Cost
A O L?
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Conclusions

1) Our results suggest that, regardless of the strategy used by
the traveler, based on local or global knowledge of the network
structure, the best transportation condition is obtained with an
exponent a=d+1, where d is the topological dimension of the
underlying lattice.

2) In the case where the traveler has global knowledge of the
network, and is able to identify the shortest path for navigation,
we obtain a slow (logarithmic) growth with size for the transit
time at the optimal condition.

3) In the case where the transportation path is decided based on
the “Manhattan distance” to the target (local knowledge), we
obtain a linear increase of the transit time with system size, for
all values of a.



Thank you!



The Dijkstra Algorithm
Dijkstra, Num. Math. (1959)




Transition from weak to strong disorder

weak disorder
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i strong disorder

Three Regimes

i) small B
0 =const

ii) infermediate B
p(B)~B°

with 6=4/3

iii) large B
pL)~L>

with D =1.22

At the crossover B, we obtain,

,BX—B —_ LDb—Z — IBX — L(2—Db)/9



