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TopicsTopics

o Navigation in complex networks.

o Optimal path cracks.



Optimal path in disordered media: some definitions and 
previous related studies

1) On an n-dimensional lattice, we assign to each site i a given “energy”
value εi according to a given probability distribution P(ε). The energy of a 
path is the sum of all energies of its sites. 

3) Optimal paths extracted from energy landscapes generated with weak 
disorder are self-affine and belong to the same universality class of 
directed polymers [Schwartz, Nazaryev & Havlin, Phys. Rev. E (1998)].

4) In the strong disorder limit, optimal paths are self-similar with fractal 
dimensions given by Df≈1.22 and 1.43 in two and three-dimensions, 
respectively [Cieplak, Maritan & Banavar, Phys. Rev. Lett. (1994), (1996);
Porto, Havlin, Schwarzer & Bunde, Phys. Rev. Lett. (1997)].

2) The optimal path (OP) is defined here as the one among all paths 
connecting the bottom to the top of the lattice that has the smallest 
energy [Kirkpatrick & Toulouse, J. Phys. Lett. (1985); Kertesz, Horvath & 
Weber, Fractals (1992); Barabasi, Phys. Rev. Lett. (1996)].





Two important questions arise:

�How and when will the transportation network collapse?

�What is the role of disorder on the performance of the 
transportation network?

We perform numerical simulations:

�Square lattices of size L with fixed BC’s at the top and bottom 
and periodic BC’s in the transversal direction.

�Disorder is introduced by assigning to each site i an energy ε
given by: 

where pi is a random variable uniformly distributed in [0,1].

This is equivalent to choose εi from a power-law distribution,

(now normalizable)

with maximum cutoff              .
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Algorithm
JSA, Oliveira, Moreira & Herrmann, submitted (2009)

1) The Dijkstra algorithm [Dijkstra, Num. Math. (1959)] is used to 
calculate the first OP connecting the bottom to the top of the 
network;

2) The site in the OP having the highest energy is permanently 
blocked (i.e., an irreversible “micro-crack” is formed);

3) The next OP is calculated, from which the highest energy site is 
again removed and so on, and so forth;

4) The process continues iteratively until the system is disrupted, 
i.e., we can no longer find any path connecting bottom to top. 

6.0=β 0.60=β



Results: weak disorder
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dangling endsdangling ends
isolated clustersisolated clusters
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OPC elementsOPC elements
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Results: strong disorder

backbone (preserved!!)backbone (preserved!!)

dangling ends (disappeared)dangling ends (disappeared)

isolated clusters isolated clusters (practically disappeared)(practically disappeared)

first OPfirst OP

last OPlast OP



Quantitative  Results

JSA, Oliveira, Moreira & Herrman, PRL (2009)
� Simulations with 1000 realizations of lattices for each different  
size 32≤L≤512 and distinct values of the disorder parameter β.

� Weak disorder      clear scaling laws.⇒
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1) OP’s under strong disorder
2) Disordered Polymers
3) Strands in IP 
4) paths on MST’s 

Quantitative Results

� Transition from weak to strong disorder.

� The stronger the disorder (small L or high β), the smaller is the 
number of final blocked sites    more localized in a singly-connected 
crack line.

⇒

strong disorder      strong disorder      weak disorderweak disorder



Conclusions
� The backbone of the fracture constituted of OPC’s is apparently 
(not proved) disorder independent. It is also a self-similar object 
with fractal dimension Db≈1.22.

� This information can be used to improve a given transportation 
network or in the design of systems with enhanced performance.

� This dimension is (statistically) similar to the ones obtained for 
OP’s under strong disorder [Schwartz et al., PRE (1998)],
Disordered Polymers [Cieplak et al., PRL (1994)], strands in 
Invasion Percolation [Cieplak et al., PRL (1996)], and paths on 
Minimum Spanning Trees [Dobrin et al., PRL (2001)].  
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� The role of disorder is to dramatically reduce the total number 
of blocked sites before the system collapses:



Navigation on complex networks: 
the conjecture of Kleinberg

1) On an d-dimensional lattice, we assign to a site i a long-range 
connection with a site j with probability Pij ~ rij-a, where rij is the 
“Manhattan distance” between sites i e j.

2) The optimal navigation in the presence of long-range connections 
with local information is achieved with a=d [J. M. Kleinberg, Nature
(2000)].



Can a cost constraint affect the optimal?

1) We consider a two-dimensional 
square lattice with sites connected 
with their nearest neighbor.

2) Shortcuts introduced between 
pairs i and j of sites with probability 
Pij~rij

-a, where rij is the “Manhattan 
distance”.

3) The addition of shortcuts stops 
when their total length (cost) 
reaches a given value 



Shortest PathsShortest Paths
2LCost ∝Λ=



Global Information with CostGlobal Information with Cost

2L∝Λ

3=optα

Li, Reis, Moreira, Stanley, Havlin & JSA, PRL (2010)



Where    is the expected density and     is the Where    is the expected density and     is the 
average length of the shortcuts. Since,average length of the shortcuts. Since,

we obtain,we obtain,

(2)

(3)

Some scaling analysisSome scaling analysis……

By arbitrarily fixing the cost parameter to         ,          By arbitrarily fixing the cost parameter to         ,          
we obtain,we obtain,

(1)

2L∝Λ



Thus for Thus for a<3a<3, the density of shortcuts added , the density of shortcuts added 
decreases as a power law withdecreases as a power law with LL..

To see it, we argued that, the average shortest To see it, we argued that, the average shortest 
path length (ASPL) is bounded by the relationpath length (ASPL) is bounded by the relation

Where the rightWhere the right--hand side of the equation hand side of the equation 
appears at the smallappears at the small--world scenario world scenario [M. [M. 
BarthBarthéélléémy and L. A. N. Amaral, Phys. Rev. my and L. A. N. Amaral, Phys. Rev. 
Lett. (1999)]. Lett. (1999)]. Since, for Since, for a<3 a<3 the bound,the bound,

is rigorous for our case and the ASPL must scale  is rigorous for our case and the ASPL must scale  
as a power of as a power of LL. Thus, from Eqs.(3) and (5), it . Thus, from Eqs.(3) and (5), it 
follows that only for follows that only for a=3a=3, the ASPL scales , the ASPL scales 
logarithmically with logarithmically with LL..

(4)

(5)



The next question is…

The global navigation scheme can be considered as a 
lower bound to any other transport navigation process.

What would be the optimal condition when only local 
information is available?

In order of simulate navigation with local information, 
we use the greedy algorithm [J. M. Kleinberg, Nature
(2000); Proc. 32nd ACM Symposium on Theory of 
Computing (2000)].



Local Information with CostLocal Information with Cost
2L∝Λ

3≈optα



USA Airport Network

2.00.3 ±=α [Bianconi et al., PNAS (2009)]



Conclusions

1) Our results suggest that, regardless of the strategy used by 
the traveler, based on local or global knowledge of the network 
structure, the best transportation condition is obtained with an
exponent α=d+1, where d is the topological dimension of the 
underlying lattice. 

3) In the case where the transportation path is decided based on 
the “Manhattan distance” to the target (local knowledge), we 
obtain a linear increase of the transit time with system size, for 
all values of α.

2) In the case where the traveler has global knowledge of the 
network, and is able to identify the shortest path for navigation, 
we obtain a slow (logarithmic) growth with size for the transit 
time at the optimal condition.



Thank you!Thank you!
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The Dijkstra Algorithm The Dijkstra Algorithm 
Dijkstra, Dijkstra, Num. Math. Num. Math. (1959)(1959)



weak disorder     weak disorder     strong disorderstrong disorder

Three RegimesThree Regimes

i) small β

ii) intermediate β

with          

iii) large β

with           
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At the crossover βx we obtain,
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Transition from weak to strong disorder


