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Abstract – Peyrard-Bishop (PB) models are used for the study of denaturation in DNA.
Unfortunately, there is little connection of these models to linear nearest-neighbour models which
are extensively used for the calculation of melting temperatures in biochemistry. Here we use the
Joyeux-Buyukdagli (JB) model, a variant of the PB model which incorporates stacking enthalpies,
and carry out a fitting procedure to experimental melting temperatures where we let the enthalpies
vary freely. We start out with a single value for the enthalpy for all combinations of base pairs and
after the fitting we obtain a new set of enthalpies which correlate very strongly with the measured
enthalpies. This result provides the needed support for the use of experimental enthalpies in the
JB/PB model.
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One of the earliest approaches to predict experimental
melting temperatures are first-neighbour or nearest-
neighbour (NN) models [1–4]. In this approach, the
double-stranded DNA sequence is broken up into units
of sequential neighbouring base pairs. To each of these
nearest neighbours one assigns a value for entropy and
enthalpy representing the stability of the molecule. This
results in a simple linear model and the entropy and
enthalpy are easily obtained from melting temperatures
with the use of standard numerical techniques. The
resulting parameters can then be used to predict melting
temperatures for unknown DNA sequences and its good
accuracy has made it a very popular method. The NN
models, however, do not provide much insight into what
is happening to the DNA molecule. For instance, they are
of limited use when it comes to understand the local base
pair opening during denaturation.
Fortunately, the denaturation of DNA can be modelled

by a large number of theoretical techniques, ranging from
Ising-type Hamiltonians [5] to atomistic molecular dynam-
ics [6]. One important model, the Peyrard-Bishop (PB)
model [7], finds a compromise between computational effi-
ciency and physics by employing a Hamiltonian which
accounts for the basic ingredients of the stability of the
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DNAmolecule: the hydrogen bonds and the stacking inter-
action. It can be used to calculate the average openings
of the double strand from an equilibrium partition func-
tion which can be correlated to melting temperatures of
DNA [8]. PB models have found their use in numerous
applications, for instance they were recently applied to
the study of thermal transport in DNA [9], genomic melt-
ing [10], pre-melting dynamics of DNA [11], to the analy-
sis of localisation in DNA [12], and to study the order
of the denaturation transition [13]. Please note that this
list highlights just a few recent applications and is by
no means exhaustive. Given the broad application of the
model, there is an active interest in pursuing modifications
to the Hamiltonian to cover a range of important proper-
ties of the DNA molecule. For instance, it is possible to
add solvation barriers [14,15] and other modified poten-
tials [16]. Using this model the thermodynamic properties
of oligonucleotides can be studied with a variety of theoret-
ical techniques such as wavelet analysis [17], Langevin [18]
or Fokker-Plank formalism [19], again just to cite but a few
examples.
Unfortunately, the PB model suffers from a chronic lack

of realistic parameters. One of the earliest works towards
realistic parameters, and still one of the most frequently
used, was obtained by Campa and Giansanti [20]. More
recently, stacking terms were obtained from Monte Carlo
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simulations by Alexandrov et al. [21] and from direct
fitting of experimental melting temperatures [22]. One
way to overcome this problem would be to use well-
established free-energy parameters from NN models such
as the unified set from SantaLucia [3]. Unfortunately,
using these parameters is not straightforward for the PB
model, except for a variant of the PB model proposed by
Joyeux and Buyukdagli (JB) [23–26] which uses a finite-
enthalpy stacking term. In principle, one may use enthalpy
parameters from NN models for the JB model and in fact
this has been attempted with promising results [23,27].
Clearly, further independent validation of this procedure
would be valuable.
In this work we calculate a new set of finite stacking
enthalpies for the JB model from experimental melting
temperatures with the use of the fitting technique which
we developed recently [22]. We will show that this new
independent set of enthalpies correlates very strongly
to the enthalpies from the unified SantaLucia set of
parameters [3] which is essentially the gold standard in
terms of NN model calculations.
The JB model [23–26] incorporates a finite-enthalpy

stacking term ∆HXpY in the Hamiltonian,

W (XpY) =
∆HXpY
C

[

1− exp
(

−b(yn− yn−1)
2
)]

+Kb(yn− yn−1)
2 (1)

where XpY are the nearest-neighbour base pairs, X and
Y from 5′ to 3′. For instance, an AT base pair (X=A)
followed by CG (Y=C) will be represented as ApC in this
work. C is a constant and Kb was described as a backbone
stiffness constant which is several orders of magnitude
smaller than the elastic constant usually employed in PB
models [7,28]. The Morse potential is given in its usual
form [7]

V (XY) =DXY(e
−yn/λXY − 1)2. (2)

where DXY and λXY are the potential depth and width of
the XY base pair.
Recently, we developed a fitting procedure to adjust
PB model parameters from melting temperatures [22].
With this method we were able to obtain a much better
fit to experimental melting temperatures and gained an
insight into the physics of DNA, especially in regard to
the elastic constants. This method uses the equivalent
melting index [8] which speeds up the numerical calcula-
tion and makes the fitting procedure feasible. The method
is computationally efficient enough to allow for a robust
statistics estimation of the error of these parameters.
The basic approach is to calculate the predicted melting
temperatures for a large set of sequences for which melt-
ing temperatures were measured. Initially, we start with
a tentative set of parameters which are optimised using
standard numerical methods to obtain progressively better
fittings to the experimental data, that is, we seek to reduce

the squared difference between the measured temperatures
Ti and predicted temperatures T

′
i ,

χ2 =

N
∑

i=1

(T ′i −Ti)
2
. (3)

We also refer in this work to an average melting temper-
ature deviation

〈∆T 〉=
1

N

N
∑

i=1

(T ′i −Ti) (4)

for a more intuitive discussion of the accuracy of the
melting temperature predictions.
To avoid common problems associated to the optimi-
sation such as local minima and to estimate the relative
uncertainty of the optimised parameters, the optimisation
was repeated several times with a modified set of melt-
ing temperatures. We modify the original experimental
temperatures by small random amounts ∆Ti such that
the standard deviation from the original data matches
the reported experimental error. The optimisation is then
carried out again and new sets of parameters are obtained
which provide the closest fit to the modified data. This
procedure is repeated several times, creating new modi-
fied sets of experimental data and optimising them all over
again. Eventually, after a large enough number of optimi-
sations we obtain average parameters and their respective
standard deviations.
In this work we used published melting temperature
data from ref. [29] which allow us to explore the salt depen-
dence of melting temperatures. The melting temperatures
were modified by small random amounts, as described
previously, and we obtained a standard deviation of 0.3 ◦C
which is similar to the reported experimental uncer-
tainty [29].
The initial parameters used for the JB model [30]
were: a uniform enthalpy of ∆H = 0.409 eV for all NN
pairs. The initial Morse parameters were DAT = 41meV,
DCG = 54meV, λAT = λCG = 1.7× 10

−2 nm. The specific
initial parameters for the JB model were b= 80nm−2,
Kb = 40meV · nm

−2 and C = 4. When using these initial
parameters we obtained melting temperatures with an
average temperature deviation 〈∆T 〉= 5.6 ◦C and χ2 =
18000 ◦C2, when compared to the melting temperatures of
ref. [29]. All these parameters were allowed to vary during
the optimisation, except for the parameter C which was
kept constant.
The optimisation was carried out in two steps. First, we
optimised the parameters while keeping a log dependence
for the regression parameters, see eq. (37) of ref. [31], in
this way all five sets are optimised simultaneously. For
this step we performed 100 optimisations with randomly
modified melting temperatures and we obtained a new
average melting temperature deviation 〈∆T 〉= 1.0 ◦C.
The resulting Morse potentials were 〈DAT〉= 28(3)meV
and 〈DCG〉= 65(3)meV which deviate significantly from
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Table 1: Average finite enthalpies 〈∆HXpY〉 for 100 rounds of
optimisations with log-dependent regression parameters. Also
shown are nearest-neighbour equivalent representations. The
standard deviations are shown in parenthesis as uncertainties
to the last significant digit.

XpY 〈∆H〉 (eV) XpY 〈∆H〉 (eV)
ApT 0.35(4) TpA 0.38(3)

CpC=GpG 0.39(1) ApA=TpT 0.39(2)
ApG=CpT 0.39(2) ApC=GpT 0.42(2)
CpG 0.43(2) GpA=TpC 0.43(1)

CpA=TpG 0.45(2) GpC 0.51(3)

their initial values. The potential widths 〈λCG〉= 1.5(2)×
10−2 nm and 〈λAT〉= 1.8(3)× 10

−2 nm, on the other hand,
show only a minor change. The model-specific constants
〈b〉= 79(8) nm−2 and 〈Kb〉= 40(3)meV · nm

−2 essentially
vary around their initial values. The finite enthalpies,
shown in table 1, all deviate from the initial value.
We use the Spearman’s rank correlation coefficient

ρSet 1|Set 2 [32] to evaluate the correlation between our
calculated finite enthalpies and those derived from NN
models. We will represent the sets either by the variable
symbol or by a reference citation number, for instance
ρ∆H|3 is the correlation between the enthalpies ∆H
and the corresponding data from ref. [3]. This ranking
correlation shows if the values of the two sets do increase
or decrease in the same order. When compared to the
enthalpies obtained from the NN model by SantaLucia [3]
we obtain a strong rank correlation of ρ∆H|3 = 0.89.
For comparison, the rank coefficient for the enthalpies
obtained by Huguet et al. [33] from single-molecule
measurements, when compared to those of SantaLucia [3]
is only ρ33|3 = 0.73.
The next step of optimisation is to use the average para-
meters from table 1 as new initial parameters, but this
time we optimise independently for each salt concentra-
tion, that is, we do not use eq. (37) of ref. [31]. Since
each set contains less data we increased the number of
randomised sets to 250. In fig. 1 we show the resulting
average enthalpies 〈∆HXpY〉 of the second optimisation
step as a function of the salt concentration. For most
enthalpies (fig. 1(a) and (b)) we observe no pronounced
variation with salt concentration. This bears some relation
to enthalpies from NNmodels which are generally assumed
not to vary with salt concentration [3]. However, for
enthalpies related to weakly bonded nearest-neighbours we
observe an important dependence with salt concentration,
in a very similar way as was found for elastic constants
in the canonical PB model [22]. These similarities were
expected since the elastic constants k were replaced by
finite enthalpies ∆H in the Hamiltonian of eq. (1) and the
exponential dependence with base pair distances y essen-
tially accounts for most of the differences seen in fig. 1.
The correlation of the fitted enthalpies with those from

nearest-neighbour models are exemplified in fig. 2 where
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Fig. 1: (Colour on-line) Average finite enthalpy 〈∆HXpY〉
as function of salt concentration [Na +]. The enthalpies are
grouped according to the strength of the hydrogen bond: (a)
strong, (b) intermediate and (c) weak. Error bars are standard
deviations from 250 runs.
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Fig. 2: (Colour on-line) Correlation between the calculated
finite enthalpies 〈∆XpY〉 and the enthalpies obtained from
nearest-neighbour models [3]. The calculated finite enthalpies
shown are for 620mM salt concentration which displays the
best ranking coefficient ρ∆H(621)|3 = 0.92 and the lowest p-value
0.0014.

we show the enthalpies for a salt concentration of 621mM
and the enthalpies reported by SantaLucia [3]. The Spear-
man’s rank correlation coefficient is ρ∆H(621)|3 = 0.92,
which is generally agreed to be a very high-ranking corre-
lation. Still, given the small number of parameters this
rank coefficient could be misleading. Therefore, we also
evaluated the p-value which is the probability of obtain-
ing this rank coefficient by chance. We calculated the p-
value by randomly reassigning the enthalpies to differ-
ent nearest neighbours and counting how many times we
obtained the same or a larger rank correlation coefficient.
For 621mM we obtain a p-value of 0.0014 which indicates
a very low probability of obtaining the given rank corre-
lation by chance. The poorest rank coefficient found is
0.73 for a salt concentration of 1020mM which is mainly
due to the change in position of TpA and ApA seen in
fig. 1(c). The complete set of ranking coefficients are shown
in table 2. The evaluation of the linear regression, however,
given by its goodness of fit R2 [32] of 0.66, is somewhat
poorer. Nevertheless, this still larger than the R233|3 = 0.43
for the enthalpies of Huguet et al.
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Table 2: Statistical coefficients as a function of salt concentration for finite stacking enthalpies and nearest-neighbour enthalpies
from ref. [3]. Shown are the rank correlation coefficient ρ∆H|3 between calculated enthalpies and NN enthalpies from ref. [3],
their respective goodness of fit R2∆H|3 and p-values p∆H|3; the rank correlation coefficient ρ∆H|34 between calculated enthalpies
and NN enthalpies from ref. [34], and ρk|3 between calculated elastic constants k from ref. [22] and NN enthalpies from ref. [3].
Also shown are the optimisation merit values 〈∆T 〉 and χ2.

[Na+] (mM) ρ∆H|3 R2∆H|3 p∆H|3 ρ∆H|34 ρk|3 〈∆T 〉 (◦C) χ2 (◦C2)

all — initial parameters — 5.6 18000
all 0.89 0.54 0.015 0.68 — 1.0 830
69 0.90 0.56 0.014 0.64 0.76 0.83 120
119 0.89 0.52 0.017 0.68 0.75 0.83 120
220 0.89 0.51 0.017 0.68 0.59 0.74 100
621 0.92 0.66 0.0014 0.72 0.76 0.83 110
1020 0.73 0.40 0.023 0.39 0.36 0.80 120

Since the results for finite enthalpies of fig. 1 are
qualitatively similar to those of the elastic constants
(see fig. 2 of ref. [22]) one may ask whether the elastic
constants k may also correlate with the NN enthalpies. We
calculated the rank correlation ρk|3 of the elastic constants
k presented in ref. [22] and obtained values ranging from
0.36 to 0.76, see table 2. Therefore, the enthalpies show a
significantly better correlation than the elastic constants
when compared to the results from SantaLucia [3].
Joyeux and Buyukdagli [23,27] used a set of exper-
imental NN enthalpies from Blake et al. [34,35] which
were measured for tandem sequences inserted in recom-
binant plasmid at low salt concentration. However, the
rank correlation ρ∆H|34 shown in table 2 are not as good
as for the unified SantaLucia set [3].
The linear regression calculated for 621mM salt concen-

tration, shown as a straight line in fig. 2, is given by

∆H = 0.0924+0.892|∆HNN|. (5)

We may ask: how worse does the fit to the experi-
mental melting temperatures become if we use enthalpy
parameters calculated with eq. (5) instead of the actual
ones shown in fig. 2? We performed this calculation and
obtained a 〈∆T 〉 of 0.93 ◦C, roughly 10% up compared to
the optimised parameters shown in table 2. Therefore, the
use of eq. (5) is already a quite acceptable approximation.
The Morse potential parameters, shown in fig. 3 are
qualitatively very similar to those for the harmonic
model [22]. The Morse potential depth D for the JB
model is somewhat smaller for CG base pairs than for
the harmonic Morse potential [22]. The potential widths
λ for both types of base pairs are roughly of the same
magnitude in contrast to the harmonic model where they
are markedly different [22], yet this is likely due to the
initial parameters used for both models. For the JB model
we used the same potential width λ as initial parameter
for AT and CG base pairs, while for the canonical PB
model [22] we used different initial values. The parameters
introduced in the finite-enthalpy model, b and kb, remain
largely constant with varying salt concentration as shown
in fig. 4.
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Fig. 3: (Colour on-line) Average Morse potential parameters
(a) 〈D〉 and (b) 〈λ〉 as a function of salt concentration.
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and 〈Kb〉 as functions of salt concentration.

A number of new experimental techniques to study local
melting or bubble opening were developed recently. For
instance, Cuesta-Lopez et al. [36] used guanine probes to
spatially resolve bubbles in DNA, and Reisner et al. [37]
demonstrated how local melting can be used as a barcod-
ing method in nanofluidic channels. The NN model, while
being successful in predicting average melting tempera-
tures, cannot provide the necessary details of the melt-
ing mechanism which are needed for the interpretation of
these experimental results (see ref. [38] for an interesting
discussion on this). We believe that validating the use of
NN enthalpies in the JB model provides an increased level
of confidence for using PB-type models to study local DNA
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melting. More importantly perhaps, it makes the appli-
cation of PB-type models to non-DNA oligonucleotides
a lot more straightforward. One attractive possibility is
the study of local melting in RNA. Given the validation
presented in this letter one should be able to use, with
reasonable confidence, the experimental NN enthalpies for
RNA from Xia et al. [39]. Such studies could even be of
clinical importance as they may be helpful in understand-
ing the intricate mechanism of microRNA target hybridi-
sation [40–42].
In conclusion, we have provided an independent
confirmation that the finite stacking enthalpies for the
Joyeux-Buyukdagli Hamiltonian are consistent with the
experimental enthalpies from nearest-neighbour regression
models. This provides a much needed validation of the use
of experimental enthalpies in the Peyrard-Bishop model
and opens up the opportunity to use this model for more
complicated situations such as nucleotide mismatches or
RNA.
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