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The theory of large deviations constitutes a mathematical cornerstone in the foundations of
Boltzmann-Gibbs statistical mechanics, based on the additive entropy SBG = −kB

∑W
i=1 pi ln pi.

Its optimization under appropriate constraints yields the celebrated BG weight e−βEi . An ele-
mentary large-deviation connection is provided by N independent binary variables, which, in the
N → ∞ limit yields a Gaussian distribution. The probability of having n $= N/2 out of N throws is
governed by the exponential decay e−Nr, where the rate function r is directly related to the relative
BG entropy. To deal with a wide class of complex systems, nonextensive statistical mechanics has

been proposed, based on the nonadditive entropy Sq = kB
1−

∑W
i=1

pq
i

q−1 (q ∈ R; S1 = SBG). Its opti-

mization yields the generalized weight e
−βqEi
q (ezq ≡ [1 + (1− q)z]1/(1−q); ez1 = ez). We numerically

study large deviations for a strongly correlated model which depends on the indices Q ∈ [1, 2) and
γ ∈ (0, 1). This model provides, in the N → ∞ limit (∀γ), Q-Gaussian distributions, ubiquitously
observed in nature (Q → 1 recovers the independent binary model). We show that its correspond-

ing large deviations are governed by e
−Nrq
q (∝ 1/N1/(q−1) if q > 1) where q = Q−1

γ(3−Q) + 1 ≥ 1.
This q-generalized illustration opens wide the door towards a desirable large-deviation foundation
of nonextensive statistical mechanics.

PACS numbers: 02.50.-r,05.20.-y,05.40.-a,65.40.gd

In his 1902 historical book Elementary Principles in Statistical Mechanics [1], Gibbs emphasizes that systems
involving long-range interactions are intractable within the Boltzmann-Gibbs (BG) theory, due to the divergence of
the partition function. Amazingly enough, this crucial remark is often overlooked in most textbooks. However, this is
clearly why no standard temperature-dependent thermostatistical quantities (e.g., specific heat) are computable for
the free hydrogen atom, for instance. Indeed, an infinite number of excited energy levels accumulate at the ionization
value, which makes the canonical partition function to trivially diverge at any finite temperature.
To solve this and related complexities it has been proposed in 1988 [2–5] a generalization of the BG theory, currently

referred to as nonextensive statistical mechanics. It is based on the nonadditive entropy

Sq = kB
1−

∑W
i=1 p

q
i

q − 1

(

q ∈ R;
W
∑

i=1

pi = 1
)

, (1)

which recovers SBG = −kB
∑W

i=1 pi ln pi for q → 1. If A and B are two probabilistically independent systems

(i.e., pA+B
ij = pAi p

B
j , ∀(i, j)), definition (1) implies the nonadditive relation Sq(A+B)

kB
= Sq(A+B)

kB
+ Sq(A+B)

kB
+ (1 −

q)Sq(A+B)
kB

Sq(A+B)
kB

. Moreover, if probabilities are all equal, we straightforwardly obtain Sq = kB lnq W , with

lnq z ≡ z1−q−1
1−q (ln1 z = ln z). If we extremize (1) with a constraint on its width (in addition to normalization of

the probabilities {pi}), we obtain

pi =
e
−βq Ei
q

∑W
j=1 e

−βq Ej
q

, (2)

ezq being the inverse function of the q-logarithmic function, i.e., ezq ≡ [1 + (1 − q)z]1/(1−q) (ez1 = ez); {Ei} are the
energy levels; βq is an effective inverse temperature.
Complexity frequently emerges in natural, artificial and social systems. It may be caused by various geometrical-

dynamical ingredients, which include non-ergodicity, long-term memory, multifractality, and other spatial-temporal
long-range correlations between the elements of the system. During the last two decades, many such phenomena have
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FIG. 1: Tossing N independent coins: the large-deviation probability P (N ; n/N < x) decays exponentially with N . The slopes
are given by the rate function r1(x), which is shown in Fig. 2

been successfully approached in the frame of nonextensive statistical mechanics. Predictions, verifications and various
applications have been performed in high-energy physics [6–11], spin-glasses [12], cold atoms in optical lattices [13],
trapped ions [14], anomalous diffusion [15], dusty plasmas [16], solar physics [17–21], relativistic and nonrelativistic
nonlinear quantum mechanics [22], among many others.
It is known since several decades that the mathematical foundation of BG statistical mechanics crucially lies on the

theory of large deviations (see [23, 24] and references therein). To attain the same status for nonextensive statistical
mechanics, it is necessary to q-generalize the large deviation theory itself. The purpose of the present effort precisely
is to make a first step towards that goal through the study of a simple model.
Let us start with the standard example which consists in tossing N times a (fair) coin. The probability of obtaining

n (n = 0, 1, . . .N) heads is given by

pN,n =

(

N
n

)

1

2N
, (3)

and the probability of having a ratio n/N smaller than x with 0 ≤ x ≤ 1/2 (the case 1/2 ≤ x ≤ 1 is totally symmetric)
is given by

P (N ; n/N < x) =
∑

{n| n
N

<x}

pN,n (4)

It is straightforward to obtain that, in the N → ∞ limit,

P (N ; n/N < x) ( e−N r1(x) (0 ≤ x ≤ 1/2) , (5)

where the subindex 1 in the rate function r1(x) will soon become clear. This exponential decay with N , deeply related
with the exponential decay with energy of the BG weight (namely, the q = 1 particular case of Eq. (2)), can be
verified in Fig. 1.
The rate function r1(x) also is easy to analytically calculate for the present trivial model. The relative entropy

or mutual information for a single random variable with discrete W events with probabilities {pi} (i = 1, . . . ,W ) is
defined as

I1 = −
W
∑

i=1

pi ln
p(0)i

pi
, (6)

where p(0)i is a reference distribution. By choosing {p(0)i } as the uniform distribution, (i.e., p(0)i = 1/W ) we have

I1 = lnW −
W
∑

i=1

pi ln
1

pi
= lnW −

S1

kB
(7)
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FIG. 2: The rate function for independent binary variables. The dots have been numerically obtained from Fig. 1. The
continuous curve corresponds to Eq. (9).

For a coin we have W = 2 (head or tail), hence I1 reads

I1 = ln 2 + p1 ln p1 + p2 ln p2 . (8)

By identifying (p1, p2) → (x, 1− x) we obtain

r1(x) = ln 2 + x ln x+ (1− x) ln (1 − x) , (9)

as can be verified in Fig. 2.
Before focusing on a model of correlated coins, let us q-generalize Eq. (9). Definition (6) and the nonadditive

entropy Sq naturally lead to the generalization [25]

Iq = −
W
∑

i=1

pi lnq
p(0)i

pi
=

W
∑

i=1

pi
[(pi/p

(0)
i )q−1 − 1]

q − 1
(10)

By once again choosing as {p(0)i } the equiprobability distribution (i.e., p(0)i = 1/W ), we have

Iq = W q−1

[

lnq W −
Sq

kB

]

(11)

For W = 2 and (p1, p2) → (x, 1− x), we obtain

Iq(x) =
1

1− q

[

1− 2q−1[xq + (1− x)q ]
]

, (12)

which recovers expression (9) for q → 1.
Let us now extend the above model to the case where the coins might be strongly correlated. The simple model that

we have just reviewed yields, for N → ∞, a Gaussian distribution. This conforms to the Central Limit Theorem, valid
for sums of many independent random variables whose variance is finite. This classical theorem has been q-generalized
[26] for a special class or correlations referred to as q-independence (1-independence recovers standard independence).
The attractors in the probability space are q-Gaussians, which precisely extremize the (continuous form of the) entropy
Sq when an appropriately generalized q-variance is maintained fixed. It is then this class of correlations that we are
going to focus on here in order to illustrate how the classical large-deviation theory can be generalized. We adopt the
specific class of binary variable models introduced in [27]. These models consist in discretized forms of Q-Gaussians
(1 ≤ Q < 2) [28], which exactly converge onto Q-Gaussians in the limit N → ∞. The {pN,n} in (4) are now given by

pN,n =
pQ(yN,n)

N
∑

n=0

pQ(yN,n)

, (13)
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where

pQ(z) ∝ [1 + (Q− 1)z2]−1/(Q−1) (14)

and yN,n (n = 0, 1, . . . , N) correspond to (N +1) equally spaced points in the support of the discretized Q-Gaussian.
More precisely, yN,n = ∆N

(

n
N − 1/2

)

∈ [−∆N/2,∆N/2], where

∆N = δ(N + 1)γ (δ > 0; 0 < γ < 1). (15)

The model is fully determined by (Q, γ, δ). Fig. 3 (left column) shows how the distributions P (y) = N
∆N

pN,n

approach the corresponding Q-Gaussians while N increases.
We observe that, for each pair of values (Q, γ), P (N ; n/N < x) presents a q-logarithmic decay (see Fig 3, right

column), i.e.,

P (N ; n/N < x) ( e−N rq(x)
q (0 ≤ x ≤ 1/2) , (16)

where

q =
Q− 1

γ(3−Q)
+ 1 (0 < x ≤ 1/2; ∀δ) , (17)

hence,

1

γ(q − 1)
=

2

Q− 1
− 1 (0 < x ≤ 1/2; ∀δ) . (18)

We see that, for Q = 1 hence q = 1, Eq. (16) recovers Eq. (5). For Q > 1, we have q > 1, consequently
P (N ; n/N < x) ∝ 1/N1/(q−1), i.e., a power law instead of exponential. We also verify that, the value of q for x = 0,
noted q[x=0], differs (possibly due to a boundary effect) from the value corresponding to 0 < x ≤ 1/2, noted q[0<x≤1/2]

and given by Eqs. (17) or (18). For all (Q, γ, δ) we have that

q[x=0] = 2−
1

q[0<x≤1/2]
. (19)

The rate function satisfies, for 0 < x ≤ 1/2,

rq(x; Q; γ; δ) = rq(x; Q; γ; 1) δ1/γ (δ > 0) , (20)

where rq(x; Q; γ; 1) depends on the model parameters (Q, γ), as illustrated in Fig. 4 [notice that Eq. (15) yields
∆N ∼ (Nδ1/γ)γ for N >> 1]. In all cases, due the above mentioned boundary effect, rq(0) < limx→0 rq(x). For
comparison purposes we have also represented, in this same figure, IQ(x) as given by Eq. (12). We verify that,
although it is of the same order of magnitude as rq(x), it does not coincide with the numerical results from Fig. 3
(neither the corresponding Iq(x)’s, not shown in the figure, coincide). This cannot be considered as surprising since
the present model includes, for Q > 1, nontrivial correlations between the N random variables, which have not been
taken into account in the calculation of (12). It is however remarkable that the exponent of the q-exponential (16)
remains extensive (i.e., proportional to N) for all values of Q. Since the nature of this exponent is entropic, this
results naturally reinforces the approach currently adopted in nonextensive thermostatistics, where, in the presence
of strong correlations, one expects a value of the index q to exist such that Sq preserves the extensivity it has in the
BG theory [3, 5, 30, 31].
The present study opens the door to a q-generalization of virtually many, if not all, of the classical results of

the theory of large deviations. In this sense, the present effort points a path which would be parallel to the q-
generalization of the classical and Lévy-Gnedenko Central Limit Theorems [26]. Indeed, the present results do suggest
the mathematical basis for the ubiquity of q-exponential energy distributions in nature, just as the q-generalized
Central Limit Theorem suggests the ubiquity of q-Gaussians in nature.
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FIG. 3: Illustrative histograms of the discretized model (left column) and their corresponding distributions P (N ; n/N < x),
in semi q-log representation (right column). The cases γ = 0 and γ = 1 do not yield q-Gaussians with q > 1 because the
discretization never achieves the desired continuous limit (indeed, ∆N = δ and ∆N/N ∼ δ respectively). The case Q = 1 yields
a Gaussian with a specific discretization, which only in the N → ∞ coincides with that of the independent-coin model.

FIG. 4: Rate function rq(x) corresponding to typical values of (Q, γ). The continuous curves correspond to IQ(x) (Eq. (12)
with q → Q).
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