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Abstract. We introduce a new universality class of one-dimensional unimodal dissipative maps. The
new family, from now on referred to as the (z1, z2)-logarithmic map, corresponds to a generalization of
the z-logistic map. The Feigenbaum-like constants of these maps are determined. It has been recently
shown that the probability density of sums of iterates at the edge of chaos of the z-logistic map is
numerically consistent with a q-Gaussian, the distribution which, under appropriate constraints, optimizes
the nonadditive entropy Sq . We focus here on the presently generalized maps to check whether they
constitute a new universality class with regard to q-Gaussian attractor distributions. We also study the
generalized q-entropy production per unit time on the new unimodal dissipative maps, both for strong and
weak chaotic cases. The q-sensitivity indices are obtained as well. Our results are, like those for the z-logistic
maps, numerically compatible with the q-generalization of a Pesin-like identity for ensemble averages.

PACS. 05.45.-a Nonlinear dynamics and chaos – 05.45.Ac Low-dimensional chaos – 05.45.Pq Numerical
simulations of chaotic systems – 89.70.Cf Entropy and other measures of information

1 Introduction

One-dimensional nonlinear maps play an important role in
the development of the theory of chaos. Their long-time
behavior is different for different kinds of maps and, for
dissipative dynamical systems, the phase space measure is
not conserved: all trajectories approach a certain subset of
the phase space called attractor. The characterization of
chaotic attractors is interesting and, as we shall see, a still
open problem whenever the Lyapunov exponent vanishes
(frequently referred to as weak chaos).

The exploration of their special dynamical properties
is, besides their simplicity and convenience for the devel-
opment of theory of chaos, also motivated by the hope that
the study of the possible limits of validity of the canon-
ical statistical mechanics can benefit from the study of
much simpler dynamical systems that are known to ex-
hibit statistical-mechanical analogies [1].

In particular, one-dimensional unimodal maps may de-
pend of a single control parameter that determines the
dynamical behavior of the map. They typically have only
one attractor, which differs for different parameter values.
This fact makes these maps to constitute paradigmatic
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models in the study of the emergence of complexity in
dynamical systems.

Here we introduce and analyze a new universality class
of one-dimensional unimodal dissipative maps. Our initial
scope is to test, through them, the applicability and useful-
ness of generalized dynamical indicators (q-indices) that
emerge within nonextensive statistical mechanics [2,3] in
order to establish a more complete classification of (weak
and strong) chaotic systems.

The paper is organized as follows. In Section 2 we intro-
duce the (z1, z2)-logarithmic maps and we compare their
attractors with those corresponding to two well known
one-dimensional unimodal dissipative maps. In Section 3
we briefly review the generalized properties we are inter-
ested to test, as well as some peculiarities of their numer-
ical study. In Section 4 we present our numerical results.
Our main conclusions are drawn in Section 5.

2 One-dimensional unimodal dissipative
maps: a new class

The well known z-logistic maps are among the simplest
one-dimensional nonlinear dynamical systems that allow a
close investigation of complex behavior. This family reads
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xt+1 = 1 − μ|xt|z (z ≥ 1; μ ∈ [0, 2]; |xt| ≤ 1), (1)

where μ is the control parameter, whose values are lim-
ited in order to avoid the orbits to escape to infinity;
z characterizes the inflection of the map in the neighbor-
hood of the extremal point x = 0. The larger is z, the
flatter is the x = 0 maximum. The z = 2 map is, as is
well known, isomorphic to yt+1 ∝ yt(1 − yt). These maps
are known to have topological properties that do not de-
pendent on z, and they constitute important universality
classes of unimodal maps. However, their metrical proper-
ties, such as Lyapunov exponents, chaos threshold control
parameter values and Feigenbaum-like constants, do de-
pend on z. In particular, the control parameter critical
value μc monotonically increases from 1 to 2, when z in-
creases from 1 to ∞ (we focus here, and hereafter, to the
first entrance to chaos while increasing μ above zero).

The z-exponential family of maps was introduced [5]
to characterize a further degree of flatness that z-logistic
maps cannot attain (even for z → ∞ in Eq. (1)). They
are inspired in Cauchy’s exponential function (infinitely
differentiable at x = 0 and nevertheless nonanalytic). This
family is defined as follows:

xt+1 = 1−μe−1/|xt|z (z > 0; μ ∈ [0, μ∗(z)]; |xt| ≤ 1), (2)

where the upper limit μ∗(z) of the control parameter guar-
antees that orbits do not diverge, and depends slowly from
z (e.g., μ∗(0.5) ≈ 5.43). It has been observed that there
is a value of z above which the corresponding attractors
are topologically isomorphic to those of the logistic map.
These maps enabled to investigate chaos in a new uni-
versality class of maps [5]. However, their extreme flat-
ness caused serious numerical problems when we tried to
study various dynamical properties and, very particularly,
the probability density of sums of iterates at the edge of
chaos [6].

We then propose a new family of maps, to charac-
terize chaotic behavior of an universality class different
from that of unimodal maps. From now on we call them
(z1, z2)-logarithmic maps, and they are defined as follows:

xt+1 = 1 − μ
|xt|z1

lnz2
(

|xt|+1
|xt|

)

(z1 ≥ 1; z2 ≥ 0; μ ∈ [0, μ∗(z1, z2)]; |xt| ≤ 1) (3)

where the parameters (z1, z2) characterize the map. Notice
that (z1, z2) = (1, 0) (tent map) makes the map to be not
differentiable at x = 0. The upper limit μ∗(z1, z2) varies
slowly with (z1, z2). These maps generalize the z-logistic
maps (which are recovered for z2 = 0). At their extremum,
they are less flat than the corresponding z1-logistic maps,
in contrast with the z-exponential maps.

We have numerically verified, for a wide range of values
of (z1, z2), that the attractors of the (z1, z2)-logarithmic
map appear to be topologically isomorphic to those
of the logistic map. As an example, Figure 1 exhibits
the μ-dependence of the dynamical attractor of the
(1, 1)-logarithmic map. This bifurcation diagram shows a

Fig. 1. Bifurcation diagram of the (1,1)-logarithmic map.

first whole cascade of period doubling of non chaotic at-
tractors 2k−1 → 2k at parameter values μk, so that the
sequence {μk} (k = 1, 2, · · · ) approaches the critical value
μc ≡ μ∞ = 0.893425 . . . , the point that defines the chaos
threshold. By further increasing μ above μc, the behavior
becomes complex and trajectories become chaotic with
the exception of those ‘windows’ where stable periods re-
emerge (see first window at μ = 0.981 . . . ). The entrances
to such windows exhibit the intermittency phenomenon
related to a tangent bifurcation, which implies the exis-
tence of a ‘laminar phase’. Besides the period doubling
scenario, the (z1, z2)-logarithmic maps also exhibit band
splitting phenomenon, so that when approaching μc from
the chaotic regime, a chaotic attractor band splits into
two chaotic bands in such a way that the iterates alter-
nate between both bands in a periodic way, even though
the movement is chaotic inside each band. A whole cas-
cade of parameter values {μ̂k} (k = 1, 2, · · · ) exists where
there is a splitting from 2k−1 to 2k chaotic bands. Both
the sequences of period doubling parameter values and
the band splitting parameter values converge to the criti-
cal point μc according to the equation:

lim
k→∞

μk − μk−1

μk+1 − μk
= δ(z1, z2), (4)

where δ(z1, z2) is the Feigenbaum-like constant of the
(z1, z2)-logarithmic map: see Table 1. We obtain analo-
gous results for other (z1,z2) values. Therefore we verify
that, in spite of the fact that the topological properties do
not depend on (z1,z2), metrical properties do. The depen-
dance of μc on (z1, z2) is depicted in Figure 2

3 Generalized properties of chaotic systems

We are now ready to characterize chaotic attractors of the
new family of maps. The z-logistic maps, and many oth-
ers, have already been deeply studied [5,8–10]. However,
some questions remain still open, especially at the edge of
chaos. Furthermore, some already known properties might
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Table 1. Numerical values of the critical control parameter
μc(z1, z2), and of the Feigenbaum-like constant δ(z1, z2). In
some cases, the period doubling sequence convergence is very
slow.

(z1,z2) μc δ

(1,1) 0.893425. . . 2.9. . .
(1,2) 0.68249659. . . 3.09. . .
(1,3) 0.5009906118. . . 3.24. . .
(2,0) 1.401155189. . . 0.66. . .
(2,1) 1.027082958927880. . . 4.775. . .
(2,1.5) 0.8739420229318233. . . 4.83. . .
(2,2) 0.7413182584853554. . . 4.89. . .
(2,2.5) 0.6272310052913988. . . 4.95. . .
(1.25,1) 0.94343421 . . . 3.45. . .
(1.3,1) 0.951193254 . . . 3.54. . .
(1.4,1) 0.9653357702. . . 3.74. . .
(1.5,1) 0.9779976050295. . . 3.91. . .
(1.6,1) 0.98947839547. . . 4.12. . .
(1.75,1) 1.004931008022 . . . 4.38. . .
(2.5,1) 1.06221102203249533. . . 5.52. . .
(3,1) 1.089407442252358479. . . 6.19. . .

be tested on the presently introduced new family of non-
linear dynamical systems.

In order to characterize chaos, we may say that a dy-
namical system is ‘chaotic’ if it possesses sensitive depen-
dence on the initial conditions. That means that randomly
chosen very close initial conditions generate totally differ-
ent trajectories in the long-time run. When the temporal
discrepancy increase is exponential, the system is said to
be strongly chaotic (or just chaotic). But it is known that
there are ubiquitous natural and artificial dynamical sys-
tems, typically at the edge of chaos, that exhibit a power-
law sensitivity to the initial conditions. Such systems are
termed weakly chaotic ones. In this case, standard dynam-
ical indicators give a poor description of the complexity of
their time evolution. In particular, the Lyapunov exponent
vanishes. Nonextensive statistical mechanics [3] provides
a generalization of the standard dynamical indicators of
chaos to characterize, not only strongly, but also weakly
chaotic systems.

Consistently, the first property we study is the sen-
sitivity to initial conditions. The second property is the
q-generalized entropy production per unit time (a concept
that is devised to be analogous to the Kolmogorov-Sinai
entropy rate for strongly chaotic systems). In this work
we are interested in studying these two properties on av-
erages (denoted as 〈· · · 〉) over the entire phase space of the
maps (−1 ≤ x ≤ 1) instead of using the quickest-spreading
special regions [4]. This kind of averaging mimics Gibbs’
approach to thermostatistical ensembles, and minimizes
the role of fluctuations (particularly large at the edge of
chaos). The third property we are also interested in is
the characterization of the probability density of sums of
iterates of the map and, consequently, the possible appli-
cability of a q-generalized Central Limit Theorem (CLT)
to the iterates of deterministic dynamical systems.

Fig. 2. (Color online) (z1,z2) dependence of μc. The red
lines on the surface are also represented on a two-dimensional
plot. The brown line represents the critical value μc(z) of the
z-logistic map.

It has been shown in many one-dimensional uni-
modal maps that the sensitivity to initial conditions is
given by the generalized functional expression [3] (called
q-exponential function within the context of nonextensive
statistical mechanics)

ξ(t) ≡ lim
Δx(0)→0

|Δx(t)|
|Δx(0)| = [1 + (1 − q)λqt]1/(1−q) ≡ eλqt

q ,

(5)
where Δx(t) is the temporal dependence of the discrep-
ancy of two very close initial conditions at time t, q is
a parameter (for q = 1 the expression recovers the stan-
dard exponential dependence eλ1 t), and λq is a generalized
Lyapunov coefficient (when q = 1 then λ1 = λ and the
Lyapunov exponent is recovered; when q < 1 and λq > 0
the system is said to be weakly sensitive to the initial
conditions; when q > 1 and λq < 0 it is said to be weakly
insensitive).

We consider very close initial conditions, randomly
chosen within the interval [−1, 1], from which we esti-
mate ξ(t). We perform this operation many times (typi-
cally 107), and average all the values of the corresponding
lnq ξ(t) (where lnq x ≡ (x1−q − 1)/(1 − q) is the inverse
function of the q-exponential; ln1 x = lnx) for various
values of q. We consider increasingly small initial discrep-
ancies Δx(0) between each pair of initial conditions such
as to obtain results which no further depend on the value
of Δx(0) for increasingly long times. We vary the value
of q and verify a nontrivial property [5], namely that a
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special value of q, noted qav
sen (where sen and av stand re-

spectively for sensitivity and average), exists which yields
a linear dependence with time. In other words, we verify
that 〈lnq ξ〉(t) � λav

qav
sen

t, where the linear coefficient λav
qav

sen

constitutes a q-generalized Lyapunov coefficient.
With respect to the entropy production per unit time,

it is known that the Boltzmann-Gibbs entropy (SBG ≡
−∑W

i=1 pi ln pi) is the appropriate one when strong chaos
is present. But, at the edge of chaos (see [2–4] and refer-
ences therein), we may conveniently use the q-generalized
entropy

Sq =
1 − ∑W

i=1 pq
i

q − 1
(S1 = SBG). (6)

For each universality class of maps (characterized by
(z1, z2)), one special value of the entropic index q, noted
qent (where ent stands for entropy), exists for which the
entropy production is finite. We expect, at the light of
many maps that have been previously studied, this en-
tropic index to coincide with the one obtained from the
study of the sensitivity to initial conditions (Eq. (5)), i.e.,
qsen = qent. Other methods (e.g., based on multifractal-
ity) do exist for the calculation of q, but we address here
just these two ones.

The estimation of the q-entropy production consists in
dividing the phase space x in W (typically 105) equal cells,
and putting Nic 
 W randomly chosen initial conditions
inside one of the W cells. We accompany the spread of
points within the phase space, and calculate Sq(t) from the
set of occupancy probabilities {pi(t)} (i = 1, 2, · · · , W ).
We repeat the operation many times (typically 103–104

for strong chaos, and W/2 for weak chaos), choosing dif-
ferent initial cells within which the Nic initial conditions
are chosen (we usually use Nic = 10W ). Finally, we aver-
age the entropies Sq(t) over the Nc initial cells so that the
proper value of the entropic parameter qav

ent is the special
value of q which makes the averaged q-entropy 〈Sqav

ent
〉Nc

production to be finite. The q-entropy production per unit
time

Kqav
ent

≡ lim
t→∞ lim

W→∞
lim

Nic→∞
〈Sqav

ent
〉Nc

t
(7)

is calculated taking into account that the partitions of
phase space must be such as to obtain robust results.

We also investigate the probability density of sums
of iterates of the maps. The iterates of a deterministic
dynamical system can never be completely independent,
since they are generated by a deterministic algorithm.
However, a Central Limit Theorem (CTL) for determin-
istic dynamic systems can be proved [7] when we con-
sider a one-dimensional map, xt+1 = f(xt), with posi-
tive Lyapunov exponent. More precisely, the well known
CLT assumption about the independence of N identi-
cally distributed random variables is replaced by a weaker
property that essentially means asymptotic statistical in-
dependence for large time difference. In particular, the
probability distribution of the rescaled sum

y =
1

Nγ

N∑
t=1

g(xt) (8)

becomes a Gaussian for the number of iterates N → ∞, re-
garding the initial value x1 as a random variable (γ = 1/2
for strongly chaotic maps). Here g : �d → �k is a suitable
smooth function with vanishing average which projects
from the d-dimensional phase space to a k-dimensional
subspace. In our case, d = k = 1, and g(xt) = xt−〈x〉. It is
rigorously proved that the conditions of validity of a CLT,
due to the mixing property associated with strong chaos,
are satisfied for the logistic map, μ = 2. A CLT has not
been rigorously proved neither for other parameter values
nor for other z-logistic maps, but Gaussian limit behavior
is also numerically observed in [9] for other z values on
strong chaos regime. Consistently, we also expect to ver-
ify the Gaussian limit behavior on strong chaotic (z1, z2)-
logarithmic maps. It is clear, however, that this CTL does
not hold at the critical points, where the Lyapunov expo-
nent vanishes. Due to strong correlations between the it-
erates, a non-Gaussian limit behavior is expected in those
points [9,10].

On the other hand, it is well known that q-Gaussian
distributions

ρ(y) ∝ e−βqy2

q =
(
1 + βq (q − 1) y2

)1/(1−q)
(9)

maximize the entropy Sq under appropriate constraints.
Consequently, on weakly chaotic z-logistic maps, where
the q-generalized entropy (6) is to be used, numerical
indications of a q-generalized CLT are available [9,10].
With this respect, we are interested here in studying the
distribution of the rescaled sums of iterates (8) for the
(z1,z2)-logarithmic maps. Notice that the rescaling factor
Nγ can be absorbed by calculating the variance σ of the
non-rescaled sum (γ = 0 in Eq. (8)) for a given N , and
then plotting the histogram of the variable y/σ.

The sum (8) must be evaluated for initial conditions lo-
cated close to the space phase attractor. Consequently, we
may omit the first iterates (i.e., a transient) until we ob-
tain transient-independent distributions (a typical length
of transient is up to 211). This is of course irrelevant in
the N → ∞ limit, but it is numerically convenient when
we must use finite values of N (typically up to 222). We
use quadruple precision of Intel Fortran, to avoid roundoff
induced effects.

4 Numerical results

We studied the sensitivity to initial conditions in both
strong and weak chaos regimes. For strong chaos we obtain
qav
sen = qav

ent = 1. This means that the Boltzmann-Gibbs
entropy is the appropriate one for this regime. For weak
chaos, instead, we obtain qav

sen = qav
ent < 1.

These facts are illustrated in Figure 3 for the
(2, 1)-logarithmic map. We obtained these entropic indices
by fitting, over the intermediate regime (occurring before
saturation), the curves with the polynomial A+ Bt + Ct2

and comparing their nonlinearity measure R ≡ C/B. The
optimum value of the entropic index corresponds to R = 0
(a straight line). The intermediate regime that we con-
sider is such that the linear regression coefficient is con-
stant (typically 0.9999). Intrinsic fluctuations still persist,
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Fig. 3. (Color online) (2, 1)-logarithmic map. Time dependence of the of 〈lnq ξ〉 ((a), (b)) and 〈Sq〉 ((c), (d)) for strong and weak
chaos. The values of the control parameter are μ = 1.2 for strong chaos, and μ = 1.027082958927880 for weak chaos. (e) Shows
the convergence of 〈Sq〉, for strong chaos, to the infinite fine grain limit (qav

ent = 1). The q-entropy function 〈Sq〉 averages over
Nc = W/2 cells. See that series of finer partitions in phase space do not change the value of the q-entropy production per unit
time but, when increasing W , the first stage remains for a longer time: the rate of q-entropy production for far-from-equilibrium
evolution depends neither on the number N of points of the initial ensemble, nor on W . (f) Shows the convergence of 〈lnq ξ〉, for
weak chaos, to the infinitely small initial discrepancy of two different realizations (qav

sen = 0.340). Sensitivity function 〈lnq ξ〉(t)
averages over NR = 107 pairs of realizations; unless otherwise indicated, the discrepancy we consider is Δx(0) = 10−13.

in spite of averaging (see Fig. 3). We overcome them by
studying the composed maps f (j) (j = 2, 4).

The same procedure is applied to other
(z1, z2)-logarithmic maps (see Tab. 2). In all cases
we obtain, within a small error bar, qav

sen = qav
ent. In

Figure 4 we can see the influence of (z1, z2) on the
q-indices.

Another interesting result that emerged is the co-
incidence, for both chaotic regimes, of the slopes of
the sensitivity and entropy functions of time. For the
(2, 1)-logarithmic map, we have Kav

1 = 0.382 ± 0.005 ≈
λav

1 = 0.372 ± 0.007 (for strong chaos) and Kav
0.34 =

0.27 ± 0.01 ≈ λav
0.34 = 0.28 ± 0.01 (for weak chaos). These

results reinforce those in [5], as they are numerically com-
patible with the q-generalized Pesin-like identity for en-
semble averages.

The probability distribution of the rescaled sums of
iterates of the strongly chaotic (2, 1)-logarithmic map
presents, as expected, a Gaussian shape (see Fig. 5). The
weakly chaotic regime is more subtle. Indeed, it turns out
to be necessary to gradually approach the exact value of
μc in order to attain the limit distribution. The critical
parameter μ should approach μc, while the number of iter-
ates N of the sum (8) should diverge. In practice, N must



582 The European Physical Journal B

Table 2. Numerical values, within the (z1, z2)-logarithmic
family of maps, of qav

sen and qav
ent indexes, on the Feigenbaum

attractor (weak chaos).

(z1,z2) qav
sen qav

ent

(1,1) 0.355 ± 0.005 0.36 ± 0.01
(1,2) 0.347 ± 0.005 0.35 ± 0.01
(1,3) 0.330 ± 0.005 0.34 ± 0.01
(2,0) 0.358 ± 0.005 0.36 ± 0.01
(2,1) 0.340 ± 0.005 0.34 ± 0.01
(2,1.5) 0.336 ± 0.005 0.33 ± 0.01
(2,2) 0.322 ± 0.005 0.31 ± 0.01
(2,2.5) 0.315 ± 0.005 0.30 ± 0.01
(1.5,1) 0.363 ± 0.005 0.38 ± 0.01
(2.5,1) 0.321 ± 0.005 0.30±0.01
(3,1) 0.300 ± 0.005 0.31 ± 0.01

Fig. 4. (Color online) (z1, z2)-dependence of qav
sen and qav

ent.
These non-monotonic functions coincide within some small er-
ror bar. Dotted lines are guides to the eye.

be large enough to verify the N → ∞ TCL assumption,
but not so large that the system “realizes” that μ is not
exactly μc.

First of all, we check that a transient time Nt = 212 is
enough to consider trajectories close to the phase space
attractor. Omitting this transient, the distributions of the
sums become independent of the transient length in all
cases (see Fig. 6). Summarizing, instead of 8 we use

y =
1

Nγ

N∑
t=Nt

g(xt). (10)

Fig. 5. (Color online) Numerical estimation of the normal-
ized probability distribution of the rescaled sums of iterates
of (2, 1)-logarithmic map, for two different control parameter
values (σ = 1.85 for μ = 1.05, and σ = 6.62 for μ = 1.1). To
study the problem near the attractor, we exclude a transient
of Nt = 212 iterates. Nc = 107 is the number of random initial
conditions and N = 212 is the number of iterates. Black line
corresponds to the Gaussian function e−β(y/σ)2, β = 3.1.

Fig. 6. (Color online) Numerical estimation of the nor-
malized probability distribution of the rescaled sums of iter-
ates of (2, 1)-logarithmic map for the control parameter value
μ = 1.027083. We consider different transient times Nt. N is
the finite number of iterates considered on the sum estimation.

See, in Figure 7, the probability density functions when
we gradually approach to the exact value of μc. An opti-
mum intermediate value of N exists, for which the data
collapse is produced. To obtain the 1.27-Gaussian conver-
gence for an even more precise value of μc, we expect that
a much larger numerical value of N (N 
 222) is needed.
The numerical experiment becomes therefore computa-
tionally untractable. Figures 8, 9 illustrate the effect, on
the distribution shape, of considering a finite value of N
for two finite-precision values of the critical parameter μc.
In both cases, we find that intermediate values of N show
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Fig. 7. (Color online) Data collapse of probability density
functions for μ → μc, and consistently enlarging N = 22n

(see Fig. 10).

Fig. 8. (Color online) Rescaled probability density function
at the edge of chaos with 4 digits precision (μ = 1.02709). For
N = 218 it presents a 1.27-Gaussian behavior in its central
part. For N � 219, q → 1, and probability density function
tends to a Gaussian.

q-Gaussian behavior. When N is not large enough (i.e.,
N = 215 for μ = 1.027083), the limit distribution ex-
hibits a peaky shape in its central part, due to the fact
that summation given by equation (8) is not adequate to
approach the edge-of-chaos limiting distribution.

Figure 10 sketchily shows the effect, on the shape of the
distribution, of considering approximate values of the crit-
ical parameter with gradually improved precision, while N
increases. We then find a plateau of N values for which fi-
nite summation is adequate to approach the edge-of-chaos
limiting distribution, which plausibly is a q-Gaussian.

This scenario is fully consistent with the one observed
for the z = 2 logistic map [10].

5 Conclusions

Let us summarize our main results:

(i) A new universality class of one-dimensional unimodal
dissipative maps is introduced, characterized by a de-
gree of flatness smaller than that of z-logistic maps.

Fig. 9. (Color online) Approach to a q-Gaussian distribution
with q = 1.27, for an approximated critical value with a 5-digit
precision μ = 1.027083 (Δμ = 4 × 10−8).

Fig. 10. (Color online) Shape of the rescaled probability den-
sity function of a map at the edge of chaos, for finite N and
finite precision for the critical parameter μc (μ is the control
parameter of the map). limN→∞ limμ→μc+0 PDF = peaky;
limμ→μc+0 limN→∞ PDF = Gaussian; limN→∞ PDF = q −
Gaussian [fixedN(μ−μc) ∈ (0,∞)]. By courtesy of the authors
of reference [10], where μ ≡ a, μc ≡ ac, and s = log 4/ log δ.

(ii) The critical value on chaos threshold μc(z1, z2) and
the Feigenbaum-like constant are numerically esti-
mated for (z1, z2) ∈ [1, 3] × [0, 3]. Topological proper-
ties do not depend on (z1, z2) but metrical properties
do.

(iii) The entropic index qav
ent, which makes the average

of the q-entropy production finite, and qav
sen coincide.

This result is in accordance with the behavior of other
classes of maps. For strong chaos we verify qav

ent =
qav
sen = 1.

(iv) The q-generalization of the Pesin-like identity is ver-
ified for ensemble averages for the (z1, z2)-logarithmic
maps, in both strongly and weakly chaotic cases.
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(v) Quantitative (z1, z2)-dependence of the indices qav
ent =

qav
sen is numerically studied for a certain range of

(z1, z2) values.
(vi) The probability distribution of the sums of iterates

in a strongly chaotic (z1, z2)-logarithmic map is a
Gaussian, as expected from the Central Limit Theo-
rem for deterministic chaotic systems.

(vii) The probability distribution of the sums of iter-
ates for weakly chaotic (z1, z2)-logarithmic map (i.e.,
at the edge of chaos) appears to approach a q-
Gaussian, the probability distribution that maximizes
the nonadditive entropy Sq. These numerical results
are consistent with a q-generalized Central Limit The-
orem [11].

All these results are expected to contribute to the correct
interpretation of various experimental features in dissipa-
tive dynamical complex systems [12,13].
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