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Abstract
The multicritical behavior of the Blume–Capel model with infinite-range
interactions is investigated by introducing quenched disorder in the crystal
field �i , which is represented by a superposition of two Gaussian distributions
with the same width σ , centered at �i = � and �i = 0, with probabilities
p and (1 − p), respectively. A rich variety of phase diagrams is presented,
and their distinct topologies are shown for different values of σ and p. The
tricritical behavior is analyzed through the existence of fourth-order critical
points, as well as how the complexity of the phase diagrams is reduced by the
strength of the disorder.

PACS numbers: 05.50.+q, 64.60.De, 75.10.Hk, 75.40.Cx

1. Introduction

The effect of disorder on different types of condensed matter orderings is nowadays a subject
of considerable interest [1, 2]. For the case of disordered magnetic systems, random-field
spin models have been systematically studied, not only for theoretical interests but also for
some identifications with experimental realizations [3]. An interesting issue is the study of
how quenched randomness destroys some types of criticalities. So, in what concerns the
effect produced by random fields in low dimensions, it has been noticed [4, 5] that first-order
transitions will be replaced by continuous transitions, so tricritical points and critical end
points will be depressed in temperature, and a finite amount of disorder will suppress them.
Nevertheless, in two dimensions, an infinitesimal amount of field randomness seems to destroy
any first-order transition [6, 7]. Interestingly, the simplest model exhibiting a tricritical phase
diagram in the absence of randomness is the Blume–Capel model. The Blume–Capel model
[8, 9] is a regular Ising model for spin-1 used to model 4He–3He mixtures [10]. The interesting
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Figure 1. Phase diagram of the Blume–Capel model in the plane kBT /J − �/J within the mean-
field approach, where kB is the Boltzman constant, T is the temperature, J > 0 is the coupling
constant between each pair of spins and � is the crystal field (also called the anisotropy field), which
is regarded constant (without disorder) for each site i. The black circle represents the tricritical
point. The ferromagnetic and paramagnetic phases are represented by F and P, respectively. The
full line represents the continuous or second-order critical frontier, and the dotted line is for the
first-order frontier.

feature is the existence of a tricritical point in the phase diagram represented in the plane of
temperature versus crystal field, as shown in figure 1. This phase diagram was firstly obtained
in the mean-field approach, but the same qualitative properties were also observed in low
dimensions. The latter was confirmed through some approximation techniques as well as by
Monte Carlo simulations [11–15]. Also, the tricritical behavior is still held in two dimensions
[16–19]. Nevertheless, in other models this situation is controversial. For example, the
random-field Ising model in the mean-field approach [20] also exhibits a tricritical point, but
some Monte Carlo simulations [21] in the cubic lattice suggest that this is only an artifact
of the mean-field calculations. Accordingly, this interesting fact in the Blume–Capel model
motivated some authors to explore the richness of this model, within the mean-field approach,
by introducing disorder in the crystal field [22–25] as well as by adding an external random
field [26]. For the former case, a variety of phase diagrams including different critical points
with some similar topologies found for the random-field spin-1/2 Ising model [27, 28] were
obtained. However, in those studies, the fourth-order critical points, which limit the existence
of tricritical points, were overlooked. Consequently, our aim in this work is to improve those
previous studies by considering a more general probability distribution function for the crystal
field and bettering some results given in [23–25]. The next section is dedicated to define the
model and the special critical points produced by it.

2. The model

The infinite-range-interaction Blume–Capel model is given by the following Hamiltonian:

H = − J

N

∑
(i,j)

SiSj +
∑

i

�iS
2
i , (1)

where Si = −1, 0, 1 and N is the number of spins. The first sum runs over all distinct pairs
of spins. The coupling constant J is divided by N in order to maintain the extensivity. The
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crystal fields are represented by quenched variables {�i}, obeying the probability distribution
function (PDF) given by

P(�i) = p√
2π σ

exp

[
− (�i − �)2

2σ 2

]
+

(1 − p)√
2π σ

exp

[
−�i

2

2σ 2

]
, (2)

which consists of a superposition of two independent Gaussian distributions with the same
width σ , centered at �i = � and �i = 0, with probabilities p and (1 − p), respectively. For
σ = 0, we recover the bimodal distribution studied in [23, 24], and for p = 1, the simple
Gaussian one of reference [25] . For σ = 0 and p = 1, we return to the simple Blume–Capel
model without randomness [10].

By standard procedures [28], we obtain the analytical expression for the free energy per
spin (f ), through which a self-consistent equation for the magnetization m may be obtained.
Thus, we have the following relations at the equilibrium:

f = 1

2
Jm2 − 1

β
E {log(2 exp(−β�i) cosh(βJm) + 1)} , (3)

m = sinh(βm)E
{[

cosh(βm) + 1
2 exp(β�i)

]−1
}

, (4)

where the quenched average, represented by E{· · ·}, is taken with respect to the PDF given
in equation (2), and β = 1/(kBT ). To write conditions for locating tricritical and fourth-
order critical points, we expand the right-hand side of equation (4) in powers of m (Landau’s
expansion, see [29]). Conveniently, we expand the magnetization up to seventh order in m, so

m = A1m + A3m
3 + A5m

5 + A7m
7 + · · · , (5)

where

A1 = βE{gi}, (6)

A3 = β3E
{(

1
6gi − 1

2g2
i

)}
, (7)

A5 = β5E
{(

1
120gi − 1

8g2
i + 1

4g3
i

)}
, (8)

A7 = β7E
{(

1
5040gi − 1

80g2
i + 1

12g3
i − 1

8g4
i

)}
(9)

and

gi = (
1 + 1

2 exp(β�i)
)−1

. (10)

In order to obtain the continuous critical frontier, one sets A1 = 1, provided that A3 < 0.
If a first-order critical frontier begins after the continuous one, the latter line ends at a tricritical
point if A3 = 0, provided that A5 < 0. The possibility of a fourth-order critical point is given
for A1 = 1, A3 = 0, A5 = 0 and A7 < 0. Thus, a fourth-order point may be regarded as the
last tricritical point.

By taking β → ∞ (T → 0), we obtain the asymptotic limit of equations (3) and (4), so
we have

f = 1

2
Jm2 − p

(
1

2
(Jm − �)

(
1 + erf

[
Jm − �√

2 σ

])
+

σ√
2π

exp

[
− (Jm − �)2

2 σ 2

])

− (1 − p)

(
1

2
Jm

(
1 + erf

[
Jm√

2σ

])
+

σ√
2π

exp

[
−J 2m2

2σ 2

])
, (11)

m = p

2

(
1 + erf

[
Jm − �√

2 σ

])
+

(1 − p)

2

(
1 + erf

[
Jm√
2 σ

])
, (12)
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where

erf

(
x√
2

)
=

√
2

π

∫ x

0
dze−z2/2. (13)

The critical frontiers, for a given pair (σ, p), are obtained by solving a nonlinear set of
equations, which consist of equating the free energies for the corresponding phases (Maxwell’s
construction), and the respective magnetization equations based on the relations given in
equations (3) and (4). We must carefully verify that every numerical solution minimizes the
free energy.

The symbols used to represent the different critical lines and points [28] are as follows:

• continuous or second-order critical frontier: continuous line;
• first-order critical frontier: dotted line;
• tricritical point: located by a black circle;
• fourth-order critical point: located by an empty square;
• ordered critical point: located by an asterisk;
• critical end point: located by a black triangle.

To clarify, a continuous critical frontier is that which separates two distinct phases through
which the order parameter changes continuously pass from one phase to another. This is
contrary to the case of the first-order transition through which, the order parameter suffers
a discontinuous change, so the two corresponding phases coexist as each critical point. A
tricritical point is basically the point in which a continuous line terminates to give rise a
first-order critical line. A fourth-order critical point is sometimes called a vestigial tricritical
point, because it may be regarded as the last tricritical point. An ordered critical point is the
point, inside an ordered region, where a first-order critical line ends, above which the order
parameter passes smoothly from one ordered phase to the other. Finally, a critical end point
corresponds to the intersection of a continuous line that separates the paramagnetic from one
of the ferromagnetic phases with a first-order line separating the paramagnetic and the other
ferromagnetic phase. In the following section, we make use of these definitions.

3. Results and discussion

The distinct phase diagrams for the present model were numerically obtained by scanning
the whole p-domain for each σ -width. So distinct topologies belonging to different p-ranges
were found for a given σ . For instance, figure 2 shows the whole variety of them for a small
σ/J = 0.1, for each arbitrary representative p.

Note that for small values of p, only one ferromagnetic order appears at low temperatures,
as shown in figure 2(a) for p = 0.15. We designate it as topology I. Figures 2(b) and (c)
(p = 0.5, 0.8) represent the same topology (topology II), which consists of one first-order
critical line separating two different ferromagnetic phases F1 and F2, and a continuous line
remaining for �/J → ∞. Figure 2(c), though qualitatively the same as in figure 2(b), is
intended to show how the first-order line and the continuous line approach themselves as p
increases. Figure 2(d) shows topology III, for p = 0.85, so the preceding first-order line is
now dividing the continuous line by two critical end points. Note that the upper continuous
line terminates, following a re-entrant path, at a critical end point where the phases F1, F3

and P coexist. So, at the lower critical end point, F1, F2 and P coexist. Above the ordered
critical point, the order parameter passes smoothly from F1 to F3 (see the inset there). If we
increase p up to some p = p∗, the upper continuous line and the first-order line will be met at a
fourth-order point (represented by a square) as shown in figure 2(e). Thus, p∗ is the threshold
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Figure 2. Phase diagrams of the Blume–Capel model whose crystal field obeys the PDF given in
equation (2). For σ/J = 0.1, the diagrams show a variety of topologies according to the probability
p. For convenience, we classify them into four topologies, so in (a) topology I is shown; in (b) and
(c) topology II; in (d) topology III, and then in (e) and (f ) topology IV. The symbols representing
special critical points are interpreted in the text.
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Figure 3. Some fourth-order critical points located in the plane p–σ/J . Note that if σ = 0, we
recover the bimodal case studied in [23, 24], where we found p∗ = 0.9258, just in agreement with
them. Note that if p = 1, σ/J = 0.202, then it is a σ -limit for the tricritical behavior. The dashed
line is only a guide.

for topology IV. Then, for p > p∗, those lines will be met at a tricritical point, as noticed in
figure 2(f ). Conversely, tricritical points appear for p > p∗, so the last one for p = p∗. The
same types of phase diagrams are found in [23–25]. Nevertheless, we improve their results,
not only bettering some of their numerical calculations but also in that we may now locate the
regions of validity of these topologies in the plane σ/J–p. To this end, we start by locating
the fourth-order points in the plane σ/J–p, as shown in figure 3.
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Figure 4. Phase diagrams (for σ/J = 0.1) showing two slightly different values of p, between
which there is a critical p for passing from topology II to III. So, that critical point must be found
for p = 0.8365 ± 0.0005.

Note that σ/J = 0.202 is a cut-off for the tricritical behavior. Then, topology IV will
no longer be found for greater widths. On the other hand, we determine the threshold for
topology III, by estimating numerically which value of p, for each σ/J , produces a situation
like that presented in figure 4 (case σ/J = 0.1), where we see how topology III emerges
for a p slightly greater than 0.836. For the special case σ/J = 0, we found this threshold
for p = 0.8245, which was not calculated in [24]. However, it is worthwhile to mention
that in [23] (case σ/J = 0), the authors ignored the existence of the second ferromagnetic
phase F2 appearing at low temperatures and large �/J in topology III, so a greater value of
p (p < 8/9 = 0.888 . . .) was found by them as an inferior limit of this topology. This error
was noticed by the authors in [24], but they did not give any limit value for this threshold
as we have already mentioned. For completeness, figure 5 illustrates that this type of phase
diagram (topology III) is still present even for a smaller p (p < 8/9), as confirmed by the
free energy evaluated at three distinct (kBT /J,�/J )-points along the first-order critical line,
at which there are three types of coexistences, namely, F1 with F3, F1 with P, and F1 with
F2. On the other hand, we also noted another discrepancy with respect to a critical σ/J ,
found in [25], above which topology III disappears for p = 1. There, the authors affirmed
that if σ/J > 0.229, the paramagnetic–ferromagnetic transition becomes second order at all
temperatures, but we noticed (and checked it by plotting the free energy) that it only happens
for a greater width, namely σ/J = 0.283. We think that the reason of this difference may be
on account of having better computation power now.

In order to obtain the frontier which separates topologies I and II (in the plane σ/J–p),
we have to find the corresponding p, for a given σ/J , that locates the ordered critical point at
T = 0. To this end, we focus the rest of this section on zero-temperature calculations.

In order to perform zero temperature calculations, we make use of equations (11) and (12).
Consequently, for σ/J = 0 (see reference [24]), there are two ferromagnetic phases F1 and F2

coexisting at �/J = 1 − p/2, having magnetizations m1 = 1 and m2 = 1 − p, respectively.
We observed that these relations still remain up to some finite σ , after which a σ -dependence
emerges. So, for a greater width called σ ′, the ordered critical point (that of topology III) must
be found at T = 0. Then, the first-order critical line is suppressed and only one ferromagnetic
order exists for any p. For instance, if we choose p = 0.5, we find σ ′/J = 0.2, as illustrated
in figure 6. There, the zero temperature free energy versus the order parameter is plotted for
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Figure 5. In (a) the most critical region of the phase diagram for σ = 0 is shown, and p = 0.83.
It is a typical phase diagram for topology III (like that of figure 2(d)). Note that three points
belonging to the first-order critical line are highlighted by an ellipse, a rectangle and a circle. The
ellipse is surrounding a critical point where the phases F1 and F3 coexist, as confirmed through the
free energy versus the magnetization in (b). In (c) and (d), the free energy shows which phases are
coexisting at the points surrounded by the rectangle and the circle. Thus, in (c), the phases F1 and
P coexist, because two symmetric minima at finite values of m, and one minimum at m = 0, are at
the same level. In (d), like in (b), four symmetric minima at the same level are shown. Therefore,
phases F1 and F2 coexist at this critical point.
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Figure 6. The free energy (see equation (11)) versus the order parameter, plotted for p = 0.5, for
three different values of σ/J . In (a) and (b), two ferromagnetic phases coexist but in (c) we note
that for σ/J = 0.2, there is already a crossover to pass from one ferromagnetic phase to the other.

three different values of σ/J , at the point where F1 and F2 coexist. Thus, in (a), two minima
are at the same level for σ = 0.1. In (b), it still happens for σ = 0.15. Nonetheless, in (c),
for σ/J = 0.2, the ordered critical point is already at T = 0. Therefore, for this particular p,
there is only a ferromagnetic phase for σ/J > 0.2.
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Figure 7. In (a) the phase diagram obtained for p = 0.5 is shown, for the corresponding critical
σ ′/J . Note that the ordered-critical point (that appeared in topology II) is now located at the
horizontal axis. So, for σ > σ ′ there will be only one ferromagnetic order at low temperatures
for p = 0.5. In (b), the line separates topologies I and II. This line is made of points numerically
obtained by finding σ ′/J , for each p.
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Figure 8. Regions, in the plane σ/J versus p, associated with the topologies for the present
model (see also figure 2). The horizontal and the vertical axes represent the probability p and
the width σ , respectively (see equation (2)). The tricritical behavior belongs to the region IV.
The simplest topology belongs to region I, where only one ferromagnetic phase appears, whereas
the rest topologies contain two ferromagnetic orders at low temperatures.

For completeness, figure 7(a) shows what figure 6(c) illustrates by means of the free
energy. There, it is shown where the ordered critical point is located at T = 0. In figure 7(b),
we see the line composed by the (p, σ ′/J )-points. This line separates phase diagrams
containing two and one ferromagnetic phases. Particularly, for p = 1, σ ′/J = (2π)−1/2,
as obtained in [25] and confirmed numerically by us. We summarize the preceding analysis by
showing, in figure 8, the regions of validity for the four qualitatively distinct phase diagrams.
Note that along the horizontal axis (σ/J = 0), regions II and III are separated by p = 0.8245
and regions III and IV by p = 0.9258. Along the vertical axis (at p = 1), regions IV and III
are separated by σ/J = 0.202, regions III and II by σ/J = 0.283, and then regions II and I by
σ/J = (2π)−1/2 ≈ 0.3989. Furthermore, the line separating topologies I and II is the same
as in figure 7(b). The frontier separating topologies II and III consists of points estimated by
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the analysis illustrated by figure 4. Finally, the line between topologies III and IV is made of
fourth-order critical points, i.e. it is based upon the points in figure 3.

4. Conclusions

We revisit the study of the infinite-range-interaction spin-1 Blume–Capel model with quenched
randomness, by considering a more general probability distribution function for the crystal
field �i , which consists of two Gaussian distributions centered at �i = � and �i = 0,
with probabilities p and (1 − p), respectively. For σ = 0, we recover the bimodal case
studied in [23, 24], and for p = 1, the Gaussian case studied in [25]. For σ -widths in
0 < σ < 0.202J , the system exhibits four distinct topologies according to the range in which
p belongs. So, we designate them as topologies I, II, III and IV, in increasing order of p.
Topology I contains one continuous critical line separating a ferromagnetic phase from the
paramagnetic phase. In topology II, one first-order critical line separating two ferromagnetic
phases is added. This line terminates at an ordered critical point. The most complex criticality
belongs to topology III, where the first-order line now divides the continuous critical line by
two critical end points. In topology IV, the first-order line and the continuous line are met by
a tricritical point. Accordingly, topology I presents one ferromagnetic phase, whereas the rest
show two distinct ferromagnetic orders at low temperatures. On the other hand, the tricritical
behavior manifested in topology IV emerges for p > p∗, where p∗ denotes the probability
for a given σ/J , where a fourth-order critical point is found. This point may be regarded
as the last tricritical point vanishing for σ/J > 0.202, since σ/J = 0.202 leads to p∗ = 1.
Consequently, the tricritical behavior is no longer found for any p. Topology III disappears
for σ/J > 0.283 and topology II is limited by σ/J = 0.3989, above which the first-order line
separating the two ferromagnetic phases is suppressed for any p. After that, for σ/J > 0.3989,
only the simplest topology survives.

Therefore, we show through this model how a complex magnetic criticality is reduced by
the strength of the disorder (see also [28, 30, 31]). In finite dimensions, as far as we know, a
few works related to the Blume–Capel model are found analyzing how above certain amount
of [32, 33] (or by any amount of [7]) quenched randomness in the crystal field the multicritical
behavior disappears. Nevertheless, the critical dimensions for these types of phase diagrams
is still an open problem to be solved.
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