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Abstract

We introduce a generalization of the well-known ARCH process, widely used for generating uncorrelated stochastic time
series with long-term non-Gaussian distributions and long-lasting correlations in the (instantaneous) standard deviation
exhibiting a clustering profile. Specifically, inspired by the fact that in a variety of systems impacting events are hardly
forgot, we split the process into two different regimes: a first one for regular periods where the average volatility of the
fluctuations within a certain period of time W is below a certain threshold, w, and another one when the local standard
deviation outnumbers w. In the former situation we use standard rules for heteroscedastic processes whereas in the latter
case the system starts recalling past values that surpassed the threshold. Our results show that for appropriate parameter
values the model is able to provide fat tailed probability density functions and strong persistence of the instantaneous
variance characterized by large values of the Hurst exponent (Hw0:8), which are ubiquitous features in complex systems.
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Introduction

For the last years the physical community has broaden its

subject goals to matters that some decades ago were too distant

from the classical topics of Physics. Despite being apparently at

odds with the standard motivations of Physics, this new trend has

given an invaluable contribution toward a more connected way of

making Science, thus leading to a better understanding of the

world surrounding us [1]. Within this context, the major

contribution of physicists is perhaps the quantitative procedure,

reminiscent of experimental physics, in which a model is proposed

after a series of studies that pave the way to a reliable theory. This

path has resulted in a series of findings which have helped such

diverse fields as physiology, sociology and economics, among

many others [2–4]. Along these findings, one can mention the

determination of non-Gaussian distributions and long-lasting

(power-law like) correlations [5–7]. Actually, by changing the

observable, the conjunction of the two previous empirical

verifications is quite omnipresent. For this reason and regardless

the realm of the problem very similar models have been applied

with particular notoriety to discrete stochastic processes of time-

dependent variance based on autoregressive conditional hetero-

scedastic models [8]. That is to say, most of these models are

devised taking basically into account the general features one aims

at reproducing, rather than putting in elements that represent the

idiosyncracies of the system one is surveying. For instance, many of

the proposals cast aside the cognitive essence prevailing on many

of these systems, when it is well known that in real situations this

represents a key element of the process [9]. On the other hand,

intending to describe long-lasting correlations, long-lasting mem-

ories are usually introduced thus neglecting the fact that we do not

traditionally keep in mind every happening. As a simple example,

we are skilled at remembering quotidian events for some period.

However, we will discard that information as time goes by, unless

the specific deed either created an impact on us or has to do with

something that has really touched us somehow. In this case, it is

likely that the fact will be remembered forever and called back in

similar or related conditions, which many times lead to a collective

memory effect [10].

In this work, we make use of the celebrated heteroscedastic

model, the ARCH process [11] and modify it by pitching at

accommodating cognitive traits that lead to different behavior for

periods of high agitation or impact. Particularly, we want to stress

on the fact that people tend to recall important periods, no matter

when they took place. To that end, we introduce a measure of the

local volatility, as well as a volatility threshold, so that the system

changes from a normal dynamics, in which it uses the previous

values of the variable to determine its next value, to a situation in

which it recalls the past and compares the current state with

previous states of high volatility, even if this past is far.

Standard models of heteroscedasticity
The Engle’s formulation of an autoregressive conditional

heteroscedastic (ARCH ) time series [11] represents one of the

simplest and effectual models in Economics and Finance, for

which he was laureated the Nobel Memorial Prize in Economical
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Sciences in 2003 [12]. Explicitly, the ARCH corresponds to a

discrete time, t, process associated with a variable, zt,

zt~st vt, ð1Þ

with vt being an independent and identically distributed random

variable with zero mean and standard deviation equal to one. The

quantity st represents the time-dependent standard deviation,

which we will henceforth name instantaneous volatility for mere

historical reasons. Traditionally, a Gaussian is assigned to the

random variable vt, but other distributions, namely the truncated

a-stable Lévy distribution and the q-Gaussian (Student-t) have

been successfully introduced as well [13,14]. In his seminal paper,

Engle suggested that the values of s2
t could be obtained from a

linear function of past squared values of zt,

s2
t ~az

Xs

i~1

bi z2
t{i, a,bi§0ð Þ: ð2Þ

In financial practice, viz., price fluctuations modelling, the case

s~1 (b1:b) represents the very most studied and applied of all the

ARCH sð Þ-like processes. The model has been often applied in

cases where it is assumed that the variance of the observable (or its

fluctuation) is a function of the magnitudes of the previous

occurrences. In a financial perspective, Engle’s proposal has been

associated with the relation between the market activity and the

deviations from the normal level of volatility a, and the previous

price fluctuations making use of the impact function [8].

Alternatively, recent studies convey the thesis that leverage can

be responsible for the volatility clustering and fat tails in finance

[15]. Nonetheless, the heteroscedastic ARCH-like processes has

been repeatedly used as a forecasting method. In other words, one

makes use of the magnitude of previous events in order to indicate

(or at least to bound) the upcoming event (see e.g. [16,17]). In

respect of its statistical features, although the time series is

completely uncorrelated, Szt zt’T*dtt’, it can be easily verified

that the covariance S ztj j zt’j jT is not proportional to dtt’. As a

matter of fact, for s~1, it is provable that Sz2
t z2

t’T decays

according to an exponential law with a characteristic time

t: ln bj j{1
. This dependence does not reproduce most of the

empirical evidences, particularly those bearing on price fluctua-

tions studies. In addition, the introduction of a large value of s used

to give rise to implementation problems [18]. Expressly, large

values of s augment the difficulty of finding the appropriate set of

parameters bif g for the problem under study as it corresponds to

the evaluation of a large number of fitting parameters. Aiming to

solve this short-coming of the original ARCH 1ð Þ process, the

GARCH s,rð Þ process was introduced [19] (where G stands for

generalized), with Eq. (2) being replaced by,

s2
t ~az

Xs

i~1

biz
2
t{iz

Xr

i~1

ci s2
t{i a,bi,ci§0ð Þ: ð3Þ

In spite of the fact that the condition, bzcv1, guarantees that

the GARCH 1,1ð Þ process exactly corresponds to an infinite-

order ARCH process, an exponential decay for Sz2
t z2

t’T, with

t: ln bzcð Þj j{1
is found.

Although the instantaneous volatility is time dependent, the

ARCH(1) process is actually stationary with the stationary variance

given by,

Ss2T~ bs2s2~
a

1{b
, (bv1), ð4Þ

(herein S . . .T represents averages over samples at a specified time

and c. . .. . . denotes averages over time in a single sample). Moreover,

it presents a stationary probability density function (PDF), P zð Þ,
with a kurtosis larger than the kurtosis of distribution P(v).
Namely, the fourth-order moment is,

Sz4T~a2Sv4T
1zb

1{bð Þ 1{b2Ss4Tð Þ :

This kurtosis excess is precisely the outcome of the dependence of st

on the time (through z). Correspondingly, when b~0, the process is

reduced to generating a signal with the same PDF of v, but with a

standard variation equal to
ffiffiffi
a
p

. At this point, it is convenient to say

that, for the time being and despite several efforts, there are only

analytical expressions describing the tail behavior of P(z) or the

continuous-time approximation of the ARCH(1) process with the

full analytical formula still unknown [14,20].

In order to cope with the long-lasting correlations and other

features such as the asymmetry of the distribution and the leverage

effect, different versions of the ARCH process have been proposed

[8,18]. To the best of our knowledge, every of them solve the issue

of the long-lasting correlations of the volatility by way of

introducing an eternal dependence on z2
i in Eq. (2), bi:bK ið Þ,

with K :ð Þ representing a slowly decaying function [8,21]. Most of

these generalizations can be encompassed within the fractionally

integrated class of ARCH processes, the FIARCH [22–25]. The

idea supporting the introduction of a power-law for the functional

form of K :ð Þ is generally based on the assumption that the agents

in the market make use of exponential functions K :ð Þ with a broad

distribution of relaxation times related to different investment

horizons [26,27]. This type of model has achieved a huge

popularity in the replication of non-Gaussian time series in several

areas, such as biomedicine, climate, engineering, and physics (a

few examples can be found in [28–35]).

As described above, the statistical features of the macroscopic

observables are the result of the nature of the interactions between

the microscopic elements of the system and the relation between

microscopic as well as the macroscopic observables. In the case of

the ‘‘financial’’ ARCH process, it was held that z2
i bears upon the

impact of the price fluctuations on the trading activity. On the one

hand, it is understood that the impact of the price fluctuations (or

trading activity) on the volatility does not merely come from recent

price fluctuations and it does actually involve past price

fluctuations. In finance, upgraded versions of heteroscedasticity

models use multi-scaling, i.e., it is assumed that the price will evolve

by modulating the volatility according to the volatility over

different scales (days, weeks, months, years, etc.) [36] in order to

smooth their possible misjudgement about the volatility. However,

in practice, these models do not differ much from FIARCH-like

proposals at the level of the results we are pointing at. Alternately,

it is worthwhile to look upon the ARCH proposal as a mechanism

of forecast [16,17]. In this way, the simplest approach, the

ARCH(1), represents an attempt to foresee future values just

taking into account recent observations, whereas models like the

FIARCH bear in mind all the history weighting each past-value

according to some kernel functional.

Minding impacting events
In our case, we want to emphasize the fact that people tend to

recall periods of high volatility (i.e., impact) in the system, no

Minding Impacting Events
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matter when they took place, by changing the surrounding

conditions as agent-based models suggested [37,38]. Hence, we

introduce a measure of the local volatility,

vt~
1

W

XW{1

i~0

z2
t{i, ð5Þ

and a threshold, w, so that instead of Eq. (2), the updating of s2
t

goes as follows:

s2
t ~

az
Pt
i~1

bi z2
t{i if vt{1vw,

az
Pt
i~1

b
0
i z2

t{i if vt{1§w,

8>>><>>>: ð6Þ

where bi~bK ið Þ~b exp { i=t½ � [39,40]. Therefore, if we assume

the financial market perspective, we are implicitly presuming that

the characteristic time, t, is Dirac delta or at least narrow

distributed, so that the exponential functional is a valid

approximation. This approach is confirmed by recent heuristic

studies in which it has been verified that the largest stake of the

market capitalization is managed by a small number of companies

that apply very similar strategies [41]. With the second branch

equation we intend to highlight the difference in behavior of the

"normal" periods of trading and the periods of significant volatility,

in which the future depends on the spells of significant volatility in

the past as well. The values b
0
i are defined as,

b
0
i~bpiH vt{i{w½ �, ð7Þ

with H . . .½ � being the Heaviside function and pi is a factor that

represents a measure of the similarity (in the volatility space)

between the windows of size W with upper limits at zt and

zt{Wz1, respectively. Analytically, this is equivalent to mapping

segments in the form z2
i , . . . ,z2

i{Wz1

� �
into vectors in RzW

0 and

afterward computing a normalized internal product-like weight,

pi~
1

N
XW
j~1

z2
t{jz

2
i{j , ð8Þ

where, for the sake of simplicity, we set aside the time dependence

of pi and b
0
i in the equations, while N represents the normalization

factor such that
P

i pi~1 for all i (with fixed t).

We are therefore dealing with a model characterized by 5

parameters, namely: a (the normal level of volatility) and b (the

impact of the observable in the volatility), which were both first

introduced by Engle in [11]; t, put forward in exponential models;

and two new parameters W (representing the volatility spell) and w
that we will reduce to a single extra parameter. If we think of

trading activities, our proposal introduces a key parameter, the

volatility threshold, w, which signals a change in behavior of the

agents in the market. At present, significant stake of the trading in

financial markets is dominated by short-term positions and thus a

good part of the dynamics of price fluctuations can be described by

Eq. (2), or by functions with an exponential kernel. As soon as the

market fluctuates excessively, i.e., the volatility soars beyond the

threshold, the market changes its trading dynamics. The main

forecast references are obviously the periods where the volatility

has reached high levels and afterward, the periods of those which

are most similar; this is the rationale described by our Eq. (8).

Thence, our proposal is nothing but the use of simple mechanisms

that in a coarse-grained way master a good part of our decisions.

Results

General results
In this section we present the results obtained by the numerical

implementation of the model. For comparison, we will use the

results of a prior model that can be enclosed in the class of

FIARCH processes [25]. There, the adjustment of the parameters

comes from the delicate balance between the parameter b, which

is responsible for introducing deviations of the volatility from its

normal level a, and the parameter controlling the memory. On the

one hand, large memory has the inconvenient effect of turning

constant the instantaneous volatility, so that after a seemly number

of time steps the value of s becomes constant, hence leading to a

Gaussian (or close to it) distribution of the variable z,

independently of how large b is. On the other hand, short

memory is unable to introduce long-range correlations in the

volatility, although it enhances larger values of kurtosis excess. The

model we introduce herein is rather more complex. In order to

deal with the change of regime, we define a parameter establishing

this alteration and we need to specify W and t. Henceforth, we

have assumed W~t, which is very reasonable as it imposes that

the volatility and the time scale that the agents in the market use to

assess the evolution of the observable are the same. In order to

speed up our numerical implementation, we have imposed a cut-

off of 10W in the computation of the first line in Eq. (6). This

approximation turns the numerical procedure much lighter with a

negligible effect because the influence of the discarded past is not

much relevant in numerical terms (within standard numerical

implementation error). In all of our realizations, we have used a

normalized level of expected volatility, a~1, and we have defined

the volatility threshold in units of a= 1{bð Þ, following a stationary

approach, as well.

We have adjusted the probability distributions of z by means of

the distribution,

P zð Þ~Z{1 1zBz2n
� � 1

1{q
0
, ð9Þ

the behavior of which follows a power-law distribution for large jzj

with an exponent equal to
2n

q
0
{1

and where (using Ref. [42], sec.

3.194),

ð
zn(1zBz2n)

1

1{q
0
dz~

1z {1ð Þn

1zn

C
2nznz1

2n

� �
C

2nz nz1ð Þ 1{q
0	 


2n q
0
{1

� �
24 35

B
1zn

2n C
1

q
0
{1

� � ,

ð10Þ

2n

q
0
{1

w1zn

� �
, and Z represents the previous integral with

n~0. The fittings for the probability density distribution (9) were

obtained using non-linear and maximum log-likelihood numerical

procedures and the tail exponents double-checked with the value

given by the Hill estimator [43,44]. As a matter of fact, values of n
different from 1 have only been perceived for large values of b and

small values of w (slightly larger) or large values of w (slightly
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smaller). For n~1 and q
0
=1, the PDF corresponds to a q

0
-

Gaussian distribution (or Student-t distribution) [45] and when

q
0
~1 we have either the Gaussian (n~1) or the stretched

distribution (n=1). Since that in the majority of the applications

one is interested in the tail behavior, we have opted for following

the same approach by defining the tail index as,

2

q{1
~

2n

q
0
{1

uq~n{1 q
0
zn{1

	 

: ð11Þ

In spite of the fact that other functional forms could have been

used, we have decided on Eq. (9) because of its statistical relevance

and simplicity (in comparison with other candidates involving

special functions, namely the hypergeometric). Moreover, the q-

Gaussian (t-Student) is intimately associated with the long-term

distribution of heteroscedastic variables since it results in the exact

distribution when the volatility follows an inverse-Gamma

distribution [35,46–48].

Concerning the persistence of the volatility, we have settled on

the Detrended Fluctuation Analysis (DFA) [49], which describes

the scaling of a fluctuation function related to the average

aggregated variance over segments of a time series of size ‘,

F ‘ð Þ*‘H , ð12Þ

where H is the Hurst exponent. Although it has been shown that

Fluctuation Analysis methods can introduce meaningful errors in

the Lévy regime [50], we have verified that for our case, which

stands within the finite second-order moment domain, the results

of DFA are so reliable as other scaling methods.

Let us now present our results for b~0:5, which is able to depict

the qualitative behavior of the model for small b. This case

corresponds to a situation of little deviation from the Gaussian,

when long-range memory is considered. In accordance, we can

analyse the influence of the threshold w and W . Overall, we verify

a very sparse deviation from the Gaussian. Keeping W fixed and

varying w, we understand that for small values of w the distribution

of zt is Gaussian and the Hurst exponent of jztj is 1=2. It is not

hard to grasp this observation if we take into account that, by using

small values of w, we are basically employing almost all of the past

values which limits the values of instantaneous volatility to a

constant value after a transient time. As we increase the value of w,

we let the dynamics be more flexible and therefore the volatility is

able to fluctuate, resulting in a kurtosis excess. For small values of

W , the Hurst exponent is slenderly different from 1=2 and the

value of the Hurst exponent increases with W . However, because

of the small value of b, the rise of W turns out the distribution of z
barely undistinguishable from a Gaussian. This behavior is

described in Fig. 1. We have obtained a Gaussian distribution

and a Hurst exponent H~0:5 for small values of w (w~0:1) and

W (W~5). When we augment the value of the threshold, w~5,

the system is loose and the instantaneous volatility is able to

fluctuate leading to the emergence of tails (q~1:09) and a subtle

increase of the Hurst exponent (H~0:52+0:01). Hiking up both

W and w (W~75 and w~2), we have achieved large values of the

Hurst exponent (H~0:58+0:02), but the small value of b is not

sufficient to induce relevant fluctuations, bringing on a distribution

that is almost Gaussian (q~1:02). The distribution fittings were

assessed by computing the critical value P�KS~1{acrit from the

Kolmogorov-Smirnov test [51] that are equal to 0:9634 and

0:9454, respectively.

As we increase the value of b, we favor the contribution of the

past values of the price dynamics, thus, for the same value of W we

are capable of achieving larger values of the kurtosis excess, that

we represent by means of the increase of the q index. The same

occurs for the Hurst exponent. This general scenery is illustrated in

Fig. 2 for the value b~0:998, where we present the dependence of

q and H with w, for different choices of W . Again, the higher W ,

the lower the tail index q, because the extension of the memory

surges a weakening of the fluctuations in the volatility. The

opposite occurs with the Hurst exponent, which increases towards

unit (ballistic regime) as we consider W larger, for obvious reasons.

In all the cases of b,Wð Þ investigated, we verified that both q and

H augment with w. The assessment of the numerical adjustments

is provided in Tab. 1 in the form of the P�KS critical values from the

Kolmogorov-Smirnov test [51]. The only case we obtained a value

1 (within a five-digit precision) was for the pair W~10 and w~5,

which results in a value quite close to the limit of finite second-

order moment (a fat-tailed distribution with q~5=3). At this point

it is worth saying that we have investigated the likelihood of other

well-known continuous distributions, such as the stretched-

exponential, the simple t-Student, Lévy, and Gaussian. Nonethe-

less, the fittings carried with Eq. (9) outperformed every other

analyzed distribution.

Concerning the instantaneous volatility, st, we verified that the

Dirac delta distribution, p sð Þ~d s{1ð Þ, starts misshaping and

short tails appear as we depict in Fig. 3 (upper panel) for the case

b~0:998, W~75 and w~0:25. Considering this particular case,

we can present relevant evidence of the effectiveness of our

proposed probability distribution approach. The empirical

distribution function in the upper panel of Fig. 3 may be simply

approximated by

p sð Þ~ f
1

2c
if s=1

1{fð Þd s{1ð Þ otherwise

8<: , ð13Þ

with c§0, f ƒ1, and s [ 1{c,1zcð Þ; when f ~0 we recover the

homoscedastic process distribution as a particular case. Reminding

that at each time step the distribution is a Gaussian (conditioned to

a time-dependent value of s) the long-term distribution is,

P zð Þ~
ð1zc

1{c

p sð Þ 1ffiffiffiffiffiffi
2p
p

s
exp {

z2

2s2

� �
ds, ð14Þ

which gives (Ref. [42], sec. 3.351),

P zð Þ~ f

4
ffiffiffiffiffiffi
2p
p

c
Ei {

z2

2 1{cð Þ2

" #
{Ei {

z2

2 1zcð Þ2

" # !

z
1{fffiffiffiffiffiffi

2p
p exp {

z2

2

� � ð15Þ

where Ei :½ � is the Exponential Integral function (see e.g. Ref. [52]).

Considering c~1=2 (which is appropriate to the case shown) and

taking for the sake of simplicity f ~1=2, we obtain the function

presented in Fig. 4, the kurtosis of which is k~
10854

3125
&3:47

(making use of Ref. [42], sec. 5.221). Actually, this curve is

represented in the scaled variable z=s so that the standard

deviation, which is originally equal to
cz1ð Þ3z c{1ð Þ3z6c

12c
,

becomes equal to one, like in other depicted distributions. The

accordance between this distribution and the empirical distribu-

tion is quite remarkable since it emerges from no numerical

adjustment and can be further improved by tuning the values

Minding Impacting Events
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of f and c. Regardless, this kurtosis value is only 2:2% larger

than our numerical adjustment (see Table 1 for the good-

fness of fitting). Furthermore, comparing the distributions by

means of the symmetrized Kullback-Leibler divergence KL~
1

2ð
P zð Þln P zð Þ

P
0

zð Þ
dzz

ð
P
0

zð Þln P
0

zð Þ
P zð Þ dz

 !
, we obtain a value of

0.00014 that is 19 times smaller than the distance between our

fitting and a Gaussian. These results show that the PDF of Eq. (9)

not only provides a good description of the data, but it is much

more manageable as well.

Cases for which the kurtosis excess is relevant (qw5=4) stem

from wider distributions of s (see the lower panel of Fig. 3).

Actually, it is the emergence of larger values of the instantaneous

volatility that brings forth fat tails. Although we have not been

successful in describing the whole distribution, we have verified

that, for values of qw5=4, the distribution p sð Þ is very well

described by a type-2 Gumbel distribution,

p sð Þ!exp {bs{f

 �

s{f{1, ð16Þ

and after certain value of s the distribution sharply decreases

Figure 1. Probability density functions P(z) vs z in a log-linear scale on the left column; On the right column the fluctuation
functions F(‘) vs ‘ for jzj in a log-log scale. The values of the model parameters are: w~0:1,W~5 yielding q~1 and H~0:5+0:01 (upper
panels); w~5,W~5 yielding q~1:09+0:01 and H~0:52+0:01 (middle panels); w~2,W~75 yielding q~1:02+0:01 and H~0:58+0:02 (lower
panels). The results have been obtained from series of 4|105 elements and the numerical adjustment of P(z) gave values of x2=n never greater than
0.00003, with R never smaller than 0.998.
doi:10.1371/journal.pone.0018149.g001
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according to a power-law with a large exponent. We credit this

sheer fall to the threshold w, which introduces a sharp change in

the dynamical regime of the volatility and thus in its statistics. In

finance, such a cut-off is more than plausible as real markets do

suspend trading when large price fluctuations occur. This also

grants feasibility to descriptions based on truncated power-law

distributions [6]. Moreover, a fall off is also presented in the

quantity se of Fig. 3 in Ref. [53]. It is known that for

heteroscedastic models the tail behavior of the long-term

distribution is governed by the asymptotic limit of p(s) when s
tends to infinity. For the case of distribution (16), this limit is the

power-law s{f{1 and therefore we can verify that the asymptotic

behavior of the long-term distribution of the variable z,

lim
jzj??

P zð Þ*
ð

lim
s??

p sð Þ
h i 1ffiffiffiffiffiffi

2p
p

s
exp {

z2

2s2

� �
ds

*
ð

s{f{2exp {
z2

2s2

� �
ds,

ð17Þ

yields a power-law distribution (applying Ref. [42], sec. 3.326),

P zð Þ?jzj{f
, z??ð Þ: ð18Þ

For p(s) following an exponential decay in the form exp {cs½ �, a

similar procedure yields,

P zð Þ?G
c2

8
z2j

{ { {

0,
1

2
, 1

" #
, z??ð Þ, ð19Þ

where G :½ � is the Meijer G-function [42,52]. It is worth noting that in

an effort to obtain a full description of p sð Þ we also used a function

such as f xð Þ~Z exp {bx{f

 �

1{
A

B
z

A

B
exp

A

m
x

� �� �{m

which

Figure 2. Value of the tail index q vs parameter w for several
values of W and b~0:998 according to the adjustment
procedures mentioned in the text in the upper panel. In the
lower panel Hurst exponent H vs w. The results have been obtained
from series of 4|105 elements and the numerical adjustment of P(z)
gave values of x2=n never greater than 0.00003 with R2 never smaller
than 0.998. Regarding the values of the Hurst exponent, the absolute
error has never been greater that 0:015 and a linear coefficient
Rw0:999.
doi:10.1371/journal.pone.0018149.g002

Figure 3. Probability density function of the instantaneous
volatility p(s) vs s for two different b~0:998. In the upper panel:
b~0:998, w~0:25 and W~75 which leads to a sharply peaked
distribution around s~1 and to a P(z) tail index q~1:1. In the lower
panel: b~0:998, w~2:5 and W~25 that results in a broader
distribution largely described by a type-2 Gumbel distribution with
b~0:421+0:002 and f~2:323+0:006 (x2=n~0:00011 and R2~
0:9982). For s*5, p(s) changes its behavior to a faster decay with an
exponent equal to 8:4+0:2 represented by the gray symbols. The
ANOVA test of the type-2 Gumbel adjustment (up to s*5) have yielded
a sum of squares of 0:03553 (323 degrees of freedom) and 20:3684 (2
degrees of freedom) for the error and the model, respectively. The
uncorrected value of the sum of squares is 20:4039 (325 degrees of
freedom) and the corrected total is 12:5941 (324 degrees of freedom).
The empirical distribution function has been obtained from series of
4|105 elements.
doi:10.1371/journal.pone.0018149.g003
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allows the appearance of a crossover from a power law to an

exponential decay. Nonetheless, it did not provide better results.

It is worth saying that we can reduce the number of parameters

to a, b and w, i.e., apply the simple ARCH(1) process, and obtain

fat tails and persistence still.

Comparison with a real system
Following this picture, we can now look for a set of parameters

that enable us to replicate a historic series such as the daily

(adjusted) log-index fluctuations, r tð Þf g, of the SP500 stock index,

S tð Þf g, between 3rd January 1950 and 12th April 2010 (14380

data points) with,

r tð Þ~lnS tz1ð Þ{lnS tð Þ: ð20Þ

The adjusted values of the index take into account dividend

payments and splits occurred in a particular day. Inspecting over a

grid of values of b, W and w, we have noted that the values of

0:9998, 22 and 1:125, respectively, yield values of q and H for

ztf g that are in good agreement with a prior analysis of r tð Þf g
which gave q~1:48+0:02 (using a simple t-Student distribution)

and q~1:51+0:02 q
0
~1:47+0:003,n~0:92+0:008

	 

[x2=n~

0:00003, R2~0:999 and P�KS~0:9276](using the PDF of Eq. (9))

and persistence exponent H~0:86+0:03 (see Fig. 4). Comparing

the numerical distribution of our model with the data we obtained

DKS~0:014 and a P�KS critical value equal to 0:991 from the two-

sample Kolmogorov-Smirnov test [51], while the comparison

between the distribution of the numerical procedure and the

adjustment of the SP500 empirical distribution function yielded

P�KS~0:9998. Once again we have tested other possible numerical

adjustments and the only other relevant distribution was the

stretched exponential with n~1:3+0:02 (q
0
~1) which has given

a P�KS different from 1 P�KS~0:9999
� �

, but a significantly larger

value of x2 [x2=n~0:00009, R2~0:9963] (see Fig. 5).

It is worthy to be mentioned that all the three values of the

parameters are plausible. First, within an application context, b is

traditionally a value robustly greater than 0:9. Second, W is close

to the number of business days in a month and last, but not least, w
is somewhat above the average level of the mean variance

presented above. This provides us with a very interesting picture of

the dynamics. Specifically, at a relevant approximation we can

describe this particular system as monitoring the magnitude of its

past fluctuations with a characteristic scale of a month, from which

it computes the level of impact resulting in an excess of volatility.

Actually one month moving averages are established indicators in

quantitative analyses of financial markets. When the volatility in a

period of the same order of magnitude of W surpasses the value

w= 1{bð Þ, then the system recalls previous periods of time, no

matter how long they happened, in which a significant level of

volatility excess occurred. Those periods are then averaged in

order to determine the level of instantaneous volatility s2
t .

Discussion

We have studied a generalization of the well-known ARCH
process born in a financial context. Our proposal differs from

other generalizations, since it adds to heteroscedastic dynamics the

ability to reproduce systems where cognitive traits exist or systems

showing typical cut-off limiting values. In the former case, when

present circumstances are close to extreme and impacting events,

the dynamics switches to the memory of abnormal events. By

poring over the set of parameters of the problem, namely the

impact of past values, b, the memory scale, W , and the volatility

threshold, w, we have verified that we are able to obtain times

series showing fat tails for the probability density function and

strong persistence for the magnitudes of the stochastic variable

(directly related to the instantaneous volatility), as it happens in

several processes studied within the context of complexity. In order

to describe the usefulness of our model we have applied it to mimic

the fluctuations of the stock index SP500, we verified that the best

values reproducing the features of its time series are W close to

one business month and w greater that the mean variance of the

process which is much larger than the normal level of volatility for

which trading is not taken into account. Concerning the volatility,

we have noticed that for the problems of interest (i.e., fat tails and

Figure 4. Probability density function P(z) vs z. The points
represent the empirical distribution function for b~0:998, w~0:25 and
W~75; the dashed red line is our adjustment with Eq. (9) with
q~1:1+0:01, n~1 a n d B~(q{1)=(5{3q) [x2=n~0:00003 a n d
R2~0:9986]; the green line is PDF (15) with f ~c~1=2 and the dotted
cyan line is the Normal distribution.
doi:10.1371/journal.pone.0018149.g004

Table 1. Critical values P�KS~1{acrit from the Kolmogorov-
Smirnov test for typical pairs (W ,w) used for adjustments.

W w P�KS W w P�KS

10 0:25 0:9997 75 0:25 0:9865

0:5 0:9998 0:5 0:9898

0:6 0:9998 0:6 0:9902

0:75 0:9998 0:75 0:9908

1:25 0:9999 1:25 0:9918

2:5 0:9999 2:5 0:9925

5 1 5 0:9943

25 0:25 0:9985 125 0:25 0:9749

0:5 0:9989 0:5 0:9761

0:6 0:999 0:6 0:976

0:75 0:9991 0:75 0:9767

1:25 0:9992 1:25 0:9780

2:5 0:9994 2:5 0:9817

5 0:9996 5 0:9870

doi:10.1371/journal.pone.0018149.t001
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strong persistence), the distributions are very well described by a

type-2 Gumbel distribution in large part of the domain, which

explains the emergence of the tails.

Materials and Methods

Our results have been obtained from numerical simulation

using code written in fortran language and run on the 64-bit

ssolarII cluster (http://mesonpi.cat.cbpf.br/ssolar/).
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