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Abstract

An extension of SDL (Shiner, Davison, Landsberg) and LMC (Lépez-Ruiz,
Mancini, Calbet) complexity measures is proposed for the quantum information
context, considering that Von Neumann entropy is a natural disorder quantifier
for quantum states. As a first example of application, the simple qubit was
studied, presenting results similar to that obtained by applying SDL and LMC
measures to a classical probability distribution. Then, for the Werner state, a
mixture of Bell states, SDL and LMC measures were calculated, depending on
the mixing factor 7, providing some conjectures concerning quantum systems.

Keywords: disorder; qubit; Von Neumann entropy; Werner state.

1. Introduction

Over the last two decades, several attempts to quantify complexity have
been proposed with a significant amount of them using information-theoretic
or computational tools to address this issue [1, 2, 3, 4]. Their use in various
systems analysis justifies these efforts of complexity quantification, in order
to better understand complex systems, unraveling underlying structures and
sometimes bridging together very distinct systems.

To assess quantum systems there are some proposed quantum informational
complexity measures [5, 6, 7, 8]; however, they are quantum extensions of the
Kolmogorov’s algorithmic complexity [8, 9, 10] being able to estimate necessary
physical resources to implement tasks and algorithms.
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Considering the physics point of view, a perfect crystal and an isolated ideal
gas, standing for totally ordered and totally disordered system, respectively,
are the paradigms of simplicity. A small piece of information can describe a
perfect crystal, being enough to describe its elementary cells. For the ideal gas,
any accessible state has the same occurrence probability, implying maximum
information [11].

Consequently, these two simple systems are on the extreme of the scales
of order and information implying that a convenient definition of complexity
should be proposed combining order and information [11].

Starting with the association of disorder and entropy representing thermody-
namic equilibrium, for classical systems, two different complexity measures were
defined: SDL (Shiner, Davison, Landsberg) and LMC (Lépez-Ruiz, Mancini,
Calbet). SDL and LMC only differ in the way of representing thermodynamic
disequilibrium and are equally useful in practical cases [11, 12, 13, 14].

The idea to be presented here is to generalize SDL and LMC measures
considering the Quantum Information Theory context, based on Von Neumann
entropy of quantum states as a measure of disorder [15, 16]. Firstly, the concept
of Von Neumann entropy will be summarized, followed by the definitions of SDL
and LMC quantum complexity measures. These definitions will be applied to
two relevant examples: the single qubit and the Werner state, closing with some
conclusions about quantum complexity measures.

2. Quantum SDL and Quantum LMC complexity measures

From now on, H is considered to be a finite dimension(/N) Hilbert space
containing the states |¥ > of a quantum system. To each state |¥ > corresponds
a density matrix p, according to the usual notation of Quantum Mechanics
(16, 17].

Under these conditions, the Von Neumann (VN) entropy is defined as:

S(p) = triploga(p)], (1)

with ¢r representing matrix trace. Matrix loga(p) is obtained by calculating the
logarithm of each element of p and, when the element is zero, the correspond-
ing element of loga(p) is considered to be zero, as usual even in the classical
information theory [16].

Considering A;,i = 1,..., N the eigenvalues of p, the VN entropy can be
rewritten as:

N
S(p) = ZN loga(Ai). (2)
i=1

Expression (2) of Von Neumann entropy is verified to be analogous to the
formula to calculate Shannon entropy for a discrete distribution with probability
values given by the set of the eigenvalues A;.



Consequently, the maximum possible value for S(p) corresponds to the
equiprobable distribution, i.e., the distribution with all A; equal to 1/N. There-
fore:

Smaz = logaN. (3)

2.1. Quantum SDL complexity measure

Analogously to the classical case, quantum SDL complexity measure is de-
fined by considering that quantum disorder (A,) of a state can be expressed by
the relation between its VN entropy and the maximum possible value of the VN
entropy:

Ag(p) = 20) ()

Smam

As SDL classical complexity measure, quantum complexity measure is de-
fined by the weighted product of the quantum disorder (A,) by the quantum
order (1 —A,) [12]:

(SDL)q = (Ag)* (1= Ay)°, (5)

with a and [ representing how order and disorder are weighted. The natural
choice for these parameters is @« = 8 = 1, providing equal contributions of the
two factors to complexity. Under this hypothesis:

(SDL)g = (Ag) (1 = Ay). (6)

2.2. Quantum LMC complexity measure

LMC complexity measure differs from SDL, given by (6), by the replace-
ment of the disorder term (1 — A,) by a term called disequilibrium D, that
measures the distance between the eigenvalues probability distribution and the
equiprobable one [11], and is defined as:

N
Dy =7 (A —1/N)* (7)
1
Then, quantum LMC complexity measure is given by:

(LMC)q = Aq Dy (8)

3. Examples

In this section, two problems are studied: how quantum complexity of a
single qubit depends on the probability distribution between the states |0 >
and |1 > and how quantum complexity of a Werner state is related to the
mixing factor.



8.1. Complezity of a single q-bit

In order to calculate the complexity of a single qubit, it will be represented
by:

lg >=al0 > +b[1 >, 9)
with |0 > and |1 > being pure states in a two dimension Hilbert space and
p=lal?and 1 —p = |b|?, with 0 < p < 1.

Calculating the corresponding density matrix:

_(p» 0
'0_(0 1p)'

Considering the expression of p, the VN entropy, the (SDL), and the (LMC),
were calculated as p is varied and the results are shown in Fig. 1.

8.2. Complexity of a mizing entangled state

The property of entanglement in quantum states can be expressed in terms
of qubits by the Bell states, defined in a four-dimension Hilbert space as [18]:

1 1

[T >= —[|00 > +[11 >]; |®~ >= —[|00 > —[11 >];
V2 V2
1 1

Ut >= —[|01 > +[10 >]; |¥~ >= —=[|01 > —|10 >].

5

2 V2

The Werner state is an emblematic example showing that, sometimes, an
entangled mixed state does not violate Bell’s inequalities [18]. Here it will
be used for another objective: show how the mixing factor affects complexity
calculation in case of entanglement.

The Werner state version to be considered here has its density matrix given
by:

1—
pu =107 >< U+ W >< WP >< @ |87 >< @), (10)

with 7y € [0, 1] representing the mixing degree.
Expressing (10) in a matrix form in the four dimension double-qubit basis:

=00 0 0
0 142y 1—4~y 0
Pw = 0 1—647 14927 0

1
o o 0 3

By using the definitions of section 2, SDL and LMC quantum complexity
measures were calculated for the Werner state given by density matrix p,,,
varying mixing degree . The results are shown in Fig. 2.



4.

Conclusions

When extending the concepts of classical SDL and LMC complexity mea-

sures to the quantum information world by considering VN entropy a disorder
measure, some Consequernces appear:

are

e the results for the single qubit systems (Fig. 1) were compatible with those
presented in [11, 12] as the qubit VN entropy reproduces the Shannon
entropy corresponding to a discrete probability distribution;

e for the single qubit, (SDL), and (LM C), present qualitatively the same
results (Fig. 1);

o for the mixed entangled state (Werner state) the results are robust (Fig.
2), too. Both complexity measures resulted zero for the conditions of
S = 1or S = 0, corresponding to maximum disorder and maximum
order, respectively;

e for the Werner state, the maximum complexity value corresponds to a
mixing factor of 0.8 for both measures (Fig. 2;

e concerning the Werner state (SDL), and (LMC), present qualitatively
the same results (Fig. 2).

Based on those facts, it can be concluded that either (SDL), or (LMC),
good alternatives to measure the complexity of quantum systems.
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Figure captions
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Figure 1. Entropy and quantum complexities for a single qubit.
Figure 2. Entropy and quantum complexities for the Werner state varying
mixing degree.



