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We obtain the exact nonequilibrium work generating function !NEWGF" for a small system consisting of a
massive Brownian particle connected to internal and external springs. The external work is provided to the
system for a finite-time interval. The Jarzynski equality, obtained in this case directly from the NEWGF, is
shown to be valid for the present model, in an exact way regardless of the rate of external work.
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I. INTRODUCTION

Due to the development of precision manipulation tech-
niques at very small length scales, such as atomic force mi-
croscopes or optical tweezers, it has become possible to
study the response of small systems to applied external in-
fluences, such as the work done by pulling apart the extremi-
ties of DNA molecules #1–3$. These nonequilibrium experi-
ments can yield equilibrium information !free energies"
about the system #4,5$. This can be obtained from relations
such as the Jarzynski equality #6,7$ !JE". The explicit form
for the JE #6$ relating the external work fluctuations and the
variation "F of the free energy between these two states is

exp%− #W& = exp%− #"F& . !1"

In order to understand the equality above, we observe that
an important step in the derivation of Fluctuation Theorems,
and the JE, is to make sure that the changes in the values of
the Hamiltonian of the system are directly associated with
the external work performed by the environment onto the
system #8,9$. In fact, the distinction between environment
and system is a matter of choice. We can decide which vari-
ables are accounted for as belonging to the system, the re-
maining being part of the environment. In fact, conservative
external forces might be incorporated into the Hamiltonian
of the system as potential-energy terms #8$, thus making the
total Hamiltonian invariant under its effect. So, for an iso-
lated system the external work verifies !x and p represent all
phase-space variables"

Wexternal = H!x2,p2,t2" − H!x1,p1,t1" , !2"

where positions and momenta evolve from state 1 to state 2
according to the dynamics of the system. However, external
forces arising from rheonomic constraints #10$ might per-
form work on the system but, since they do not come from a
simple expression of a conservative potential energy, they
cannot be simply incorporated into the Hamiltonian as
above. On the other hand, their work expression can be de-
rived from the constraint’s equations #10$. In fact, these

forces can do work on an otherwise isolated system and
change the Hamiltonian energy landscape upon which the
phase-space point evolve in time #11$. Thus, one has to be
quite careful when defining the external work, as that choice
can substantially change the final form for any fluctuation
relation #9$. Indeed, fluctuation relations that are derived un-
der distinct choices of the definition of work used will lead to
distinct forms of the fluctuation theorems #8,9,12–21$ !FT".

The JE have been demonstrated exactly for systems ini-
tially thermalized at temperature T, that can be either me-
chanically closed or in contact with a thermostat !at tempera-
ture T also" all the time. These results are obtained for
systems that are large enough so that they may be placed into
a true equilibrium state for which a valid partition function
exists, and a correspondingly valid free energy associated
with it #22$, according to the usual derivation of the canoni-
cal ensemble distribution. On the other hand, given the
Hamiltonian for a small system, one can define its canonical
partition function and calculate the corresponding free en-
ergy.

Several models #23–31$ have been proposed where the JE
is verified for distinct systems. In particular, for Ref. #23$,
the system consists of a particle pulled through a thermal
bath in a manner that becomes time invariant as t→$. We
propose the present model as a realization of a nonequilib-
rium process for a system that is clearly nonhomogeneous in
time. Irrespective of the duration of the process, the amount
of external work done is finite, in average, and fluctuates
around a well defined value.

Our model consists of a Hamiltonian that incorporates the
kinetic energy term of a Brownian particle, and the potential-
energy terms associated with two springs connected to the
particle: one represents a harmonic potential centered at x
=0 an the other spring has one end fixed on the particle while
the other end is pulled, according to a given time protocol, as
work is done on the system !mass and two springs" by the
external constraint force at the pulling end of the spring. This
external force is the only force that can change the energy of
the system. Our choice of definition for the work follows
from the discussion above and seems well suited for studying
the JE. This model can be thought as a prototype of a con-
trollable heat engine that can operate in reversible or irre-
versible modes.

We calculated exactly the model dynamics, in the spirit of
other models previously used by the authors #32,33$, and we
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analyzed the behavior of external work fluctuations that are
in contact with thermal bath. The thermal bath is represented
by a noise term in a Langevin equation !LE" #34$. We ap-
proach that problem from the point of view of a nonequilib-
rium work generating function !NEWGF", equivalent to the
complete nonequilibrium work probability distribution. Such
functions have been used in the context of the JE #35,36$.
They allow us to obtain the work probability distribution for
equilibrium and nonequilibrium conditions.

Starting from the LE for an underdamped Brownian par-
ticle, we obtain exact information on the structure of the
NEWGF. Solving exactly the LE for a system where the
noise stochastic properties are known is akin to solving the
Kramers-Moyal equation #34$ for the probability distribu-
tion. Establishing exact finite-time Langevin dynamics re-
sults gives us the possibility to calibrate analytical or numeri-
cal models via the JE, in other words, it is a first principles
calculation that corroborates the validity of JE, and it can
also serve as a detailed testing ground for numerical simula-
tion models. The model consists of a Brownian particle of
mass m, under the action of a harmonic potential k, and in
contact with a thermal reservoir at temperature T and friction
coefficient %. We attach to that particle an external spring
!k!", by one extremity, and pull the other extremity at a fixed
time rate !defining the work protocol". The particle-reservoir
coupling is represented by a Langevin force !noise" &!t". The
external spring has the externally moving extremity at the
point xspring!t"=L!t", as work is externally done into the sys-
tem !m ,k ,k!" without ambiguity: the work is the product of
the externally varying force applied to the moving extremity
of the spring k! with its displacement dL. The model and
protocol we use, varying an external coordinate according to
a pre-established time rate, are equivalent to others found in
the literature #9$.

This paper is organized as follows. In Sec. II we define
the model. In Sec. III we obtain the generating function for
the work probability. In Sec. IV we derive the JE, followed
by our conclusions in Sec. V.

II. MODEL

So, let us define our model LE,

mv̇ = − %v − kx − k!!x − L" + & , !3"

ẋ = v , !4"

L = L0!1 − e−t/'" . !5"

The process starts !t=0" with the system initially at equi-
librium with a reservoir !at temperature T". The initial con-
ditions !x0 ,v0" are distributed obeying the canonical distribu-
tion at temperature T, and with xspring!t=0"=0. Then, the
external spring is moved #given xspring!t"=L!t"$ up to t=(,
which may or may not be extended to infinity. The specific

form of L!t" given in Eq. !5" was chosen for being easy to
manipulate, but it can be readily generalized. The rate ' can
be set to any value, with '→$ corresponding to the revers-
ible work process.

By taking the Laplace transform of the Gaussian noise
function’s, we obtain for the second cumulant !given that the
average of & is null"

'&̃!z1"&̃!z2"( =
2%T

z1 + z2
. !6"

We can integrate this system exactly by techniques similar to
the ones used previously #32,33,37$, where the integration
paths are all described therein. However, at present, we will
use a direct solution technique which is different, and sim-
pler than that in references #32,33,37$.

III. GENERATING FUNCTION FOR THE EXTERNAL
WORK

In the spirit of the JE we define the precursor function to
the NEWGF as

F!u" ) exp%− iuW(& = *
n=0

$ !− iu"n

n!
W(

n, !7"

where the average is taken over the thermal noise, which
corresponds to all possible nonequilibrium paths for the
Brownian particle. In order to construct the NEWGF we
need to take averages, thermal !represented by 'f(" and over
the initial conditions !represented by f̄". The expression for it
reads

F!u" = 'F!u"( = *
n=0

$ !− iu"n

n!
'!"U + "Wp + "Wh + "W&"n(

= exp%− iu!"U + "Wp"&*
n=0

$ !− iu"n

n!
!"Wh"n

)*
n=0

$ !− iu"n

n!
'!"W&"n( ,

where the partial terms for the external work "Wp, "Wh, and
"W& will be defined in the following.

The accumulated work function, that measures the total
external work done on the system up to time (, W(, is %Fext
=−k!#x!t"−L!t"$&,

W( = +
0

(

FextdL = − k!+
0

(

dt
dL

dt
!x!t" − L!t""

= "U − k!+
0

(

dt
dL!t"

dt
x!t" , !8"

with "U=k!L2!(" /2. It is the coupling of x!t" and !L!t"
!t will

give rise to the irreversible work loss.
A few thermodynamic properties for our system can be

obtained directly from the equilibrium partition function
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Z=,−$
$ dpdx

* e−#H!x,p", where #H!x , p"= 1
2T # p2

m +kx2+k!!x−L"2$.
We find F= ! kk!

k+k!
" L2

2 −T ln! 2+T
*

- m
k+k!

", S=ln! 2+T
*

- m
k+k!

"+1,
and E=T+ ! kk!

k+k!
" L2

2 , where T corresponds to the kinetic and
elastic energy contributions around equilibrium !via equipar-
tition theorem 2)T /2". The second term on the RHS is the
rest energy of two springs, k and k!, of zero length, con-
nected serially with total extension L.

Keeping T constant, the reversible work Wr and the free-
energy "F are identical #L!t=0"=0$,

Wr = "F = . kk!
k + k!

/.L2

2
/ = . k

k + k!
/"U . !9"

The dissipative work Wd=W(−Wr can be expressed as the
integral of fluctuations of x around the instantaneous equilib-
rium position xeq= k!

k+k!
L!t",

Wd = − k!+
0

(

dt
dL

dt
.x!t" −

k!
k + k!

L!t"/ . !10"

We can obtain a particular solution xS!t" associated with
the source term S!t", via the Green’s function method, ex-
plicitly as

xS!t" = +
0

t

dt!
2e−,!t−t!"/2

m-4-2 − ,2
sin.-4-2 − ,2!t − t!"

2
/S!t!" ,

!11"

where ,=% /m, and -2= !k+k!" /m.
The exact solution x!t" for Eqs. !3"–!5", taken in the sense

that the exact form for the Langevin term &!t" is known !due
to the linearity of the problem under scrutiny" is simply the

sum of the homogeneous solution xh!t", the term xp!t" with
source L0!1−e−t/'", and the term x&!t" with source &!t":
x!t"=xh!t"+xp!t"+x&!t".

We may write the total work as

W( = "U − k!+
0

(

dt
!L!t"

!t
!xh!t" + xp!t" + x&!t""

) "U + "Wh
( + "Wp

( + "W&
( . !12"

The work expressions, for "Wh
$ and "Wp

$ are given be-
low. The detailed form of the coefficients is given in Appen-
dix A in Eqs. !A1" and !A2",

"Wh
( = C1

(x0 + C2
(v0, !13"

"W&
( = − k!+

0

(

dt
!L!t"

!t
x&!t" . !14"

Making the summation for the NEWGF,

*
n=0

$ !− iu"n

n!
!"Wh"n = exp0− u2C1

(2x0
2 + C2

(2v0
2

2
1 ,

where x0
2= T

m-2 and v0
2= T

m .
The thermal contribution for the work arises from the

need to compensate the dissipative coupling of the noise
term with the pulling rate expressed below,

"W&
( = − k!+

0

(

dt
!L!t"

!t
x&!t" .

The contribution above is the only source of irreversibility
into the system. The expression for "W&

( is then

"W&
( = − lim

.→0
+

−$

$ dq1

2+
&̃!iq1 + .".2L0k!

'm
/+

0

(

dt+
0

t

dt!
e!iq1+."t!−t/'−,!t−t!"/2

-4-2 − ,2
sin.-4-2 − ,2!t − t!"

2
/

= − lim
.→0
+

−$

$ dq

2+
&̃!iq + ."!W&1

( !iq + ." + W&2
( !iq + ." + W&3

( !iq + ." + W&4
( !iq + ."" , !15"

where the detailed expressions for the W&j
( listed in Appendix A.

The Gaussian property of the noise function leads to the disappearing of the odd momenta of "W&
( . The even ones are given

as products of '"W&
( "W&

( (, that can be expressed as sums of terms of the form,

Iij = lim
.→0
+

−$

$ dq1

2+
+

−$

$ dq2

2+
'&̃!iq1 + ."&̃!iq2 + ."(W&i

( !iq1 + ."W&j
( !iq2 + ."

= lim
.→0
+

−$

$ dq1

2+
+

−$

$ dq2

2+

2%T

!iq1 + iq2 + 2."
W&i

( !iq1 + ."W&j
( !iq2 + ." . !16"

There are ten possible distinct pairs above but we can show that only I11, I12, and I11 give nonzero results. Thus, we have
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'!"W&
( "2n( =

!2n"!
n!2n !I11 + 2I12 + I22"n,

yielding

*
n=0

$ !− iu"n

n!
'!"W&"n( = exp0− u2 I11 + 2I12 + I22

2 1 .

The expression for the NEWGF reads

F!u" = exp0− iu!"U + "Wp" − u2C1
(2x0

2 + C2
(2v0

2

2

− u2 I11 + 2I12 + I22

2
1

) exp%− iuR1 − u2R2& .

Generating functions of Gaussian shape #38–40$, for qua-
dratic time-varying potentials, have already been found in
the literature. The explicit expressions for R1 and R2 can be
found in Appendix A.

IV. JARZYNSKI EQUALITY

The Jarzynski equality !JE" is verified, after some tedious,
but straightforward, manipulations of the terms R1 and R2
from Appendix A, for all values of ( and ' since for u=
−i /T,

F.−
i

T
/ = 2exp.−

W

T
/3 = exp.−

R1

T
+

R2

T2 /
= exp.−

"F

T
/ , !17"

where "F= kk!
!k+k!"

Lf
2, and Lf =L!(". Despite the highly non

trivial dependence of R1, and R2, on ' and (, at u=−i /T the
correct cancellations occur and the JE is verified.

We notice that by fixing the final position of the external
spring 0/Lf 0L0 the ratio ( /' gets fixed,

(

'
= ln. L0

L0 − Lf
/ ,

which gives us an infinite number of distinct protocols for
taking the system from state A)!L=0" to state B)!L=Lf",
verifying the JE for all cases for a fixed "F

T =
FB−FA

T .
The Gaussian form of F!u" is the expected one due to the

linear form of the harmonic potential #41$. The present
model is an explicit dynamic solution that could be extended
to other forms of the noise, in the case that its cumulants are
known. In fact, for the quasistatic case, ' ,(→$ !( /' fixed",
F!u"→exp%−iu"F&→p!W"=1!W−"F". In this case, there
is only one way of carrying out the process.

We can also obtain the forward ratio for the work distri-
butions. We notice that W is finite !with probability equals to
1" and positive. The probability distribution for the total
work p!W" is the inverse Fourier transform of FW!u",

p!W" = +
−$

$ du

2+
F!u"eiuW. !18"

The expression for p!W" explicitly reads

p!W" =- +

R2
exp0−

!W − R1"2

4R2
1 . !19"

It can be seen that the average work done externally on the
system is given R1, while the variance is given by 2R2,
which is proportional to T for all ' and (.

The ratio p!W" / p!−W", not to be mistaken with the
Crooks Fluctuation expression #7$, can be obtained explicitly

p!W"
p!− W"

= exp0WR1

4R2
2 1 . !20"

The expression above is well behaved in the instantaneous
work case, '→0, since averaging over an ensemble of initial
conditions distributed with temperature T converges, while it
becomes proportional to a delta-function when '→$, since
R2→0 in this case. In fact, the averages of the work do
depend on the work rate ' and the elapsed time (, but the JE
arises regardless of it.

V. CONCLUSIONS

In conclusion, we develop an exact technique appropriate
for treating a system consisting of a massive particle coupled
to two harmonic springs in contact with an external thermal
reservoir, represented by a Langevin force term. External
work can be done by pulling one of the springs at a given
rate, which is the protocol we follow. The main advantage of
this model is that we can explicitly make all the calculations
with no approximations. No approximations are needed in
respect to the mass of the particle, the calculations being able
to take care of the particle’s inertia exactly. This model can
be thought as a controllable, and simple, heat engine.

To the best of our knowledge, for the first a Langevin
model was exactly integrated, taking into account inertia and
general initial conditions, for a Brownian particle under the
action of a given protocol. An exact form for the nonequilib-
rium work generating function !NEWGF" is obtained. The
Jarzynski equality is then explicitly verified, such as pre-
dicted #6$, showing that the method used in this paper can be
seen as a first principle exact, and nontrivial, verification of
the JE. This shows the appropriateness of using white Gauss-
ian noise to represent the interaction between a thermal bath
and a system. Furthermore, the work probability distribution
is derived explicitly for this case and shows that the mo-
ments of the work W are complex functions of the work rate
' and the time interval (.
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APPENDIX A: FINITE-TIME COEFFICIENTS

The exact finite-time coefficients are listed below.

C1
( = −

k!L0!2'-2 − ,2' − ,"
-4-2 − ,2!1 + ,' + '2-2"

e−(!2+,'"/2' sin. (-4-2 − ,2

2
/ +

k!L0!1 + ,'"
!1 + ,' + '2-2"

e−(!2+,'"/2' cos. (-4-2 − ,2

2
/ −

k!L0!1 + ,'"
1 + ,' + '2-2

!A1"

C2
( =

k!L0!2 + ,'"
!1 + ,' + '2-2"-4-2 − ,2

e−(!2+,'"/2' sin. (-4-2 − ,2

2
/ +

k!L0'

!1 + ,' + '2-2"
e−(!2+,'"/2' cos. (-4-2 − ,2

2
/ −

k!'L0

1 + ,' + '2-2

!A2"

"Wp
( = −

,k!2L0
2!3-2'2 − ,2'2 + 1"

m-2-4-2 − ,2#!1 + '2-2"2 − ,2'2$
e−(!2+,'"/2' sin. (-4-2 − ,2

2
/

−
k!2L0

2!− ,2'2 + -2'2 + 1"
m-2#!1 + '2-2"2 − ,2'2$

e−(!2+,'"/2' cos. (-4-2 − ,2

2
/ −

k!2L0
2!− 2-2'2 + -2'2e(/' − 2,' − 2"

2m-2!1 + ,' + -2'2"
e−(/'

−
k!2L0

2'2

2m!1 − ,' + -2'2"
e−2(/' !A3"

W&1
( !s" =

k!L0

m!,s + s2 + -2"!s' − 1"
e(!s'−1"/', !A4"

W&2
( !s" = −

k!L0'2

m!s' − 1"!,' + 1 + -2'2"
, !A5"

W&3
( !s" = −

!− ,'s − ,2' + 2'-2 − 2s − ,"k!L0

m-4-2 − ,2!,s + s2 + -2"!,' + 1 + -2'2"
e−(!2+,'"/2' sin. (-4-2 − ,2

2
/ , !A6"

W&4
( !s" =

!s' + ,' + 1"k!L0

m!,s + s2 + -2"!,' + 1 + -2'2"
e−(!2+,'"/2' cos. (-4-2 − ,2

2
/ , !A7"

I11 =
%TL0

2k!2!− ,' − 1+ '-"!1 + ,' + '-"
m2-2-4-2 − ,2!1 + ,' + -2'2"2

e−(!2+,'"/' sin!(-4-2 − ,2"

−
%TL0

2k!2!− ,3'2 − , − 2,2' + 4'-2 + 3,'2-2"
m2-2!4-2 − ,2"!1 + ,' + -2'2"2 e−(!2+,'"/' cos!(-4-2 − ,2"

−
%TL0

2k!2!,3' − 4,'-2 − 4-2 + 4e−(,-2 + ,2"
m2-2,!4-2 − ,2"!1 + ,' + -2'2"

e−2(/' !A8"

I12 =
2%TL0

2k!2'2!,2'2 − 2-2'2 − 2"
m2-4-2 − ,2!1 + ,' + -2'2"#!1 + '2-2"2 − ,2'2$

e−(!2+,'"/2' sin. (-4-2 − ,2

2
/

+
2%TL0

2k!2'4,

m2#!1 + '2-2"2 − ,2'2$
e−(!2+,'"/2' cos. (-4-2 − ,2

2
/ −

%TL0
2k!2'3

m2#!1 + '2-2"2 − ,2'2$
e−2(/' !A9"

I22 =
%TL0

2k!2'3

!1 + ,' + -2'2"2m2 , !A10"
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R1 = −
k!2L0

2!1 + -2'2 − '2,2"
m-2#!1 + -2'2"2 − ,2'2$

e−(!2+,'"/2' cos. (-4-2 − ,2

2
/

−
k!2L0

2,!1 − '2,2 + 3-2'2"
m-2-4-2 − ,2#!1 + -2'2"2 − ,2'2$

e−(!2+,'"/2' sin. (-4-2 − ,2

2
/

−
L0

2k!-2#k!'2!1 + ,'" + m!− 2+ ,2'2 − 2'2-2 − '4-4"$
2m-2#!1 + -2'2"2 − ,2'2$

e−2(/'

−
L0

2k!#− k!2 + k!'2!,2 − '2-4" + -2!m − m,2'2 + 2m'2-2 + '4-4"$
m-2#!1 + -2'2"2 − ,2'2$

e−(/'

+
L0

2k!-2!1 − ,' + '2-2"!m + m,' − k'2 + m'2-2"
2m-2#!1 + -2'2"2 − ,2'2$

. !A11"

R2 = −
!1 + -2'2 − '2,2"TL0

2k!2

m-2#!1 + -2'2"2 − ,2'2$
e−(!2+,'"/2' cos. (-4-2 − ,2

2
/

−
,TL0

2k!2!1 − '2,2 + 3-2'2"
m-2-4-2 − ,2#!1 + -2'2"2 − ,2'2$

e−(!2+,'"/2' sin. (-4-2 − ,2

2
/ +

Tk!2L0
2!1 + -2'2 − ,-2'3 − ,2'2"

2m-2#!1 + -2'2"2 − ,2'2$
e−2(/'

+
Tk!2L0

2!1 + ,'3-2 + -2'2 − '2,2"
2m-2#!1 + -2'2"2 − ,2'2$

. !A12"
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