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Abstract. We have studied the ground state phase diagram of the quantum
spin-1/2 frustrated Heisenberg antiferromagnet on a square lattice by using
the framework of the differential operator technique. The Hamiltonian is
solved by using an effective-field theory for a cluster with two spins (EFT-2).
The model is described using the Heisenberg Hamiltonian with two competing
antiferromagnetic interactions: mnearest neighbor (NN) with different coupling
strengths J; and J{ along the 2 and y directions and next nearest neighbor (NNN)
with coupling Jo. We propose a functional for the free energy (similar to the
Landau expansion) and using Maxwell construction we obtain the phase diagram
in the (A, «) space, where A = Jj/J1 and o = Jo/J;. We obtain three different
states depending on the values of A and a: antiferromagnetic (AF), collinear
antiferromagnetic (CAF) and quantum paramagnetic (QP). For an intermediate
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region A1 < A < 1 we observe a QP state between the ordered AF and CAF
phases, which disappears for A above some critical value A\; ~ 0.51. We find a
second-order phase transition between the AF and QP phases and a first-order
transition between the CAF and QP phases. The boundaries between these
ordered phases merge at the quantum triple point (QTP). Below this QTP there
is again a direct first-order transition between the AF and CAF phases, with a
behavior approximately described by the classical line o ~ \/2.

Keywords: phase diagrams (theory), quantum phase transitions (theory)

Over the last two decades there has been an intense effort to understand, theoretically,
the phase diagram and thermodynamic properties of frustration in the two-dimensional
(2D) quantum spin-1/2 Heisenberg model (known as the J;—Jo model) with competing
nearest neighbor (NN) and next nearest neighbor (NNN) antiferromagnetic exchange
interactions [1]-[14]. This J;—J> model has been exhaustively studied by several methods,
where the critical properties are relatively well known at 7" = 0. There are two
magnetically long-range ordered phases at small and at large values of o = J5/.J; separated
by an intermediate quantum paramagnetic phase without magnetic long-range order
in the region between a;. ~ 0.4 and as. ~ 0.6. For a < ay. the system possesses
antiferromagnetic (AF) long-range order with wavevector Q = (m,7) and for o > ag.
we have two degenerate collinear states which are the helical states with pitch vectors
Q = (m,0) and (0,7). These two collinear states are characterized by a parallel spin
orientation of nearest neighbors in the vertical (or horizontal) direction and an antiparallel
spin orientation of nearest neighbors in the horizontal (or vertical) direction, and therefore
exhibit Néel order within the initial sublattices A and B.

The nature of the transition between the AF and quantum paramagnetic (QP) phases
as well as the proprieties of the QP phase and the precise values of the transition points
are still debated. Candidates for being the QP phase include homogeneous spin-liquid
(SL) states of various types with no broken symmetry [15] and a valence-bond solid
(VBS) with some broken symmetry [16,17]. Other possible candidate SL states include
a resonating-valence-bond (RVB) state, proposed by Anderson [18], which has been
supported by quantum Monte Carlo simulation [19]. Other studies have indicated that this
intermediate phase (QP) is a dimerized state with both broken translational and rotational
symmetries [20, 9], while others have supported instead a plaquette state with only broken
translational symmetry and keeping the rotational symmetry preserved [5]. The quantum
disordered state is a singlet state with gapped excitations to the first triplet state [14].
In the cuprate compounds, antiferromagnetism and high temperature superconductivity
are separated by a pseudo-gap regime and it has been conjectured that this regime is
connected to a QCP with unusual properties [21]. The AF order may give way to a spin-
liquid phase before the phase coherence of the Cooper pairs sets in at somewhat larger
doping.

For the nature of the phase transition between these two AF and SL phases some
authors [22] have suggested a direct second-order quantum transition, which is not
described by a Ginzburg-Landau-type critical theory, but is rather described in terms of a
deconfined quantum critical point (QCP). This quantum phase transition, with different
broken symmetries, is characterized by two seemingly independent order parameters (i.e.,
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the staggered magnetization for the Néel phase and the dimer order parameter for the VBS
phase or SL). These order parameters are represented in terms of the spinons (i.e., neutral
spin-1/2 excitations which are confined in the two ordered phases), which themselves
become deconfined physical degrees of freedom exactly at the QCP. Each of these phases
has a different broken symmetry (i.e., spin-rotation symmetry for the AF phase and the
lattice symmetry for the VBS phase). The deconfined phase transition theory [22] is still
controversial and establishing the existence of the deconfined quantum criticality in an
actual physical system is a non-trivial issue. Other authors, for example, Sirker et al [9],
have argued by using spin wave theory and numerical results from series expansions that
this transition is more likely to be a (weakly) first-order transition, where this quantum
phase transition between the AF and SL phases must be due to a deconfinement of spinons.
Also others have proposed perhaps less radical mechanisms for explaining such a second-
order phase transition based on an effective-field theory (EFT) [23] within the standard
Ginzburg-Landau critical theory.

An interesting phenomenon generated by frustration is the dimensional reduction
recently observed in the Bose-Einstein condensation quantum phase transition in the
BaCuSi;Og compound [24]. Recently synthesis of layered magnetic materials [25]-]28],
such as SrZnVO(POy)s, Li;VOSiIOy, LioVOGeOy, VOMoO,, and BaCdVO(POy),, which
might be described by this frustrated model in the case of Jo ~ J; (v = Jy/J; ~ 1), has
spurred a great deal of interest in the quantum spin-1/2 .J;—J; model. In these compounds
a second-order phase transition to a long-range ordered magnetic phase has been observed.
NMR spin-lattice relaxation measurements [25] below T, show that the order is collinear.
Due to the twofold degeneracy of the ground state for a > 0.7 it is not possible to say
a priorit which will be the magnetic wavevector (i.e., Q = (m,0) or (0,7)) below Te.
On the other hand, such a scenario can be changed by considering spin-lattice coupling
which will lift the degeneracy of the ground state and will lower its energy [29]. Then,
any structural distortion should inevitably reduce the competing interactions and thus
reduce the frustration. In the case of this frustrated magnetic material, the competing
interactions are inequivalent but their topology and magnitudes can be tuned so that the
strong quantum fluctuations destroy the long-range ordering.

From the theoretical viewpoint, the isotropic J;—J; model consists of a quantum spin-
1/2 Heisenberg Hamiltonian with NN interaction J; running along the sides and NNN
interaction J5 running along the diagonals of the square lattice. The two interactions (J;
and .Jy) are equivalent along all directions of the square lattice. The ground state phase
diagram reveals two ordered phases: antiferromagnetic—AF (o < aj.) and collinear—
CAF (a0 > ay.), and an intermediate quantum paramagnetic (spin-liquid) phase without
magnetic long-range order in the parameter region oy, < o < g.. A generalization of
this frustrated model was introduced by Nersesyan and Tsvelik [30] and also studied by
other groups [31]-[36]: the so-called J;—J]—J> model, considering inequivalence of NN
couplings J; and J{ = AJ; in the two orthogonal spatial lattice dimensions with all the
NNN bonds across the diagonals having the same strength J,. This spatial anisotropy
tends to narrow the critical region and destroys it completely at a certain value of the
interchain parameter .

On the other hand, by using the continuum limit of the J;—J]—J5 spin-1/2 model
Starykh and Balents [31] have shown that this transition splits into two, with the
presence of an intermediate quantum paramagnetic (columnar dimer) phase for A < 1.
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Bishop et al [34], by using the coupled cluster treatment, found the surprising and novel
result that there exists a quantum triple point (QTP) with coordinates at (o = 0.33+0.02,
At = 0.60 £ 0.03), below which there is a second-order phase transition between the
AF and CAF phases while above this QTP there are two ordered phases separated by
the intermediate magnetically disordered phase (VBS or RVB). The order parameters
of both the AF and CAF phases vanish continuously both below and above the QTP,
which is typical of second-order phase transitions. There is some evidence that the
transition between the CAF and intermediate phases is a first-order one. Using exact
diagonalization [32] with a small lattice of N < 36 (6 x 6) size, the intermediate QP
phase for all intervals of A € [0, 1] has been obtained for the pure spin-1/2 J;—J; model
on a square lattice. These results are in accordance with results obtained by Starykh and
Balents [31], that predicted no QTP in the ground state phase diagram recently observed
by Bishop et al [34].

Experimentally the ground state phase diagram of frustrated compounds, described
by the Ji—J; model, can be explored continuously from the high to the low a = Jy/.J;
regime by applying high pressures (P), which modify the bonding lengths and angles.
Recent results from x-ray diffraction measurements [37] on the Li;VOSiO4 compound
have shown that the ratio a decreases by about 40% when the pressure increases from
0 to 7.6 GPa. Studies of extensive band structure calculations [36] for the vanadium
phosphates ABVO(POy)s (AB = Pbs, SrZn, BaZn, and BaCd) have indicated four
inequivalent exchange couplings: J; and J| between NN and J, and J; between NNN.
For example, for SrZnVO(POy)s, Ji/Ji1 >~ 0.7 and J5/Jo ~ 0.4 were estimated, causing a
spin—lattice distortion.

In previous studies [23], [38]-[41], effective-field theory (EFT) was developed and used
to treat a few frustrated models (classical and quantum) on two- and three-dimensional
lattices. In this work we will apply EFT to study the ground state phase diagram of the
quantum spin-1/2 J;—J{—J; model in the a—\ plane (where o« = J5/J; and A = J]/.J;).
The objective of this work is to investigate the existence of a QTP (quantum triple point)
at non-zero values of a and A, as well as the nature of the phase transitions (first or second
order?)

The critical behavior of the quantum spin-1/2 J;—Jo Heisenberg model has been
studied for many years, but very little has been done in the anisotropic square lattice
case, which is described by the following Hamiltonian:

H = Z (103 Oip1 + J105 - 0ij1) + T Z (Oij " Tiv1ji1+ 01 Tijr1), (1)
(53) ()

where o ; = (0f;,0/;,07;) are the spin-1/2 Pauli spin operators, and the index (3, j)

labels the z (row) and y (column) components of the lattice sites. The first sum runs
over all NN and the second sum runs over all NNN pairs. We denote the Hamiltonian (1)
as the J;—Jj—Jy model, with strength J; along the row direction, J| along the column
direction, and J; along the diagonals, and we assume all couplings to be positive with
Ji < Ji. In our EFT calculations we set a = Jo/J; and A\ = J|/J; to obtain the ground
state (T" = 0) phase diagram in the a—\ plane.

The classical (S = oo0) model (1) has only two ordered ground states: AF (or Néel)
for a > A/2 and columnar stripe (CAF) for o < A/2, separated by a first-order line
at a. = A/2. In the S = 1/2 case (quantum limit), the line splits into two phase
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transitions, where the ordered states (AF and CAF) are separated by an intermediate
quantum paramagnetic (QP) phase, also on a square lattice. Exact diagonalization [11]
has estimated a critical line at acap = . + SN2 / 872 for the transition between the
CAF and QP states, and at aar = a. — A\?/87% between the AF and QP states. The
phase diagram in the a—\ plane obtained is in accordance with Starykh and Balents [31].
However, the existence of the QTP (quantum triple point) that was predicted by Bishop
et al [34] is not present in their phase diagram. Moreover, they found only the presence
of second-order phase transitions in the phase diagram. These contradictory qualitative
results (existence or absence of the QTP) is the primary motivation behind this present
work. Our goal is to study this anisotropic J;—J{—Jo model using our EFT-2 technique.
Mean-field theory works fairly well for small frustration. For large frustration one must
take into account quantum fluctuations especially in two dimensions, where they are quite
large.

The effective-field theory technique is briefly described below (for more details see [23],
[38]-[41]). The starting point is to calculate the averages of a general function involving
spin operator components, the order parameter (the magnetization of sublattice A is m4),
that are obtained from the generic expression

Trgy {O({n})e M }
Trpy {e™00} [

(O{n})) = < (2)

Above, the partial trace Try,{---} is taken over the set {n} of spin variables (finite
cluster) specified by the multisite spin Hamiltonian Hy,y and (---) indicates the usual
canonical thermal average. The interactions within the cluster are exactly treated and
the effect of the remaining lattice spins is treated by means of a suitable approximation
which forms the basis of the effective-field theory technique.

The EFT provides a hierarchy of approximations for obtaining thermodynamic
properties of magnetic models. On can continue this series of approximations to consider
larger and larger clusters and as a consequence, better results are obtained. The exact
solution would be obtained by considering an infinite cluster. In practice it is necessary to
use systematic approximation schemes to truncate them to some finite cluster. However,
as shown below, by using relatively small clusters which contain the topology of the lattice,
one can obtain a reasonable description of the thermodynamic properties. The EFT is
an effective tool for studying highly frustrated quantum models [23], [38]-[41], where, for
example, the quantum Monte Carlo simulation is not applicable due to the negative-sign
problem.

As in our previous work on frustrated models [23], [38]-[41], we use here the EFT for
a cluster with N = 2 spins (EFT-2) to investigate the effect of the interchain coupling
(J1) in the ground state phase diagram in the A—« plane. We chose a cluster with two
spins in the vertical direction (see figure 1), and the Hamiltonian (1) for this cluster is
given by

Hy = Jjo, - 0y — Ac? — Boj, (3)
with
A=—[Jioi+ Ji (0] + i)+ Jo (05 + 0] + 0 + 03], (4)
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Figure 1. Configuration of the cluster with NV = 2 spins used to treat the
model (1) by using EFT-2.

and
B = —[Jiog + Ji (05 + 0y) + J2 (07 + 05 + 07 + 03)] . (5)

Substituting equation (3) in (2), we obtain the magnetization per spin in sublattice
A (i.e., ma = (07)) which is given by

_ <sinh [B(A + B)] + (e*K1/W (A, B)) sinh [W (A, B)] > |

cosh [B(A + B)] + e cosh [W (A, B)] (6)

where W (A, B) = \/AK? + 32(A — B)? and K| = 3J].
We now define the function g(z,y) by

sinh(z + y) + (/W (z, y)) sinh [W(x, y)]

b - / ) 7
9(@,y) cosh(x +y) + ¥ cosh [W(x, y)] (7)
where W (z,y) = \/4K? + (z —y)2. Next using the identity e*P=+Pvg(z y) = g(z +
a,y + b) where D = (0/ a,u) is the differential operator, equation (6) can be rewritten as

ma = <eB(ADI+BDy)> g(x, y>|m,y:0 : (8)

Now using the van der Waerden identity e’’i = cosh 6§ + o7 sinh 6, equation (8) can
be exactly written in terms of the multiple-spin-correlation function occurring on the
right-hand side. However, is clear that if we try to treat exactly all boundary spin—
spin correlation functions, the problem becomes unmanageable. The simplest and most
frequently used approximation is to decouple them according to

(705 af) = (07} (o) (o) (P £ G #1), (9)
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which means that the NN and NNN of site ¢ are assumed to be completely independent
of each other. It should be noted that the above decoupling scheme (equation (9)) is a
better approximation than the approximations used in standard mean-field theory (MFT).
This is because within the present framework (EFT-2) the kinematics relation is treated
exactly (i.e., (67)? = 1) through the van der Waerden identity and as a consequence it
neglects correlations only between different spin variables. On the other hand in the usual
MFT all the self-spin and multi-spin correlations are neglected.

For treatment of the model (1) by using EFT-2, we use the classical ground state
(AF or Néel at small J, and CAF at large .J5). To obtain the equation of state in the AF
phase, we use the following boundary conditions: (i) (07) = —mayp for i =1,3,5,7,9 and
(i) (07) = mayp for i = 2,4,6,8, 10, as given by

4
mar = Qar(mar, t,a, \) =Y A5 (o, Yym3, (10)
r=0

where t = kgT/J1, o« = Jo/Ji, A = Ji/Jy and the coefficients AJ¥ (¢, v, A) are determined
analytically by applying the identity e*P=T*Pvg(z y) = g(x+a,y+0b). The final expression
is too lengthy and will therefore be omitted.

In the case of the CAF state, we use the following boundary conditions: (i) (07) =
—mear for i =1,2,4,5,6,7,9,10 and (ii) (07) = mcar for i = 3,8, and the equation of
state is given by

4

mear = Qear(moar, 6o, A) = Y ASAN (1 o, Ny, (11)
r=0

where the expressions for the coefficients ASAF (t,, \) are again omitted here.

We observe first-order or second-order transitions, depending on the values of the
parameters o and X\. We note that it is not possible to calculate the first-order transition
line on the basis of just the equations of state (equations (10), and (11)). To solve
this problem one needs to calculate the free energy for each state (AF, CAF and QP).
Assuming that these equations of state are obtained by the minimization of a given free
energy functional like ¥,(m,), i.e., (d¥,(m,)/dm,) = 0, we obtain after integration

4 2r 2
m m
\Ijﬂ(mu> = Al(tv Q, >‘) + A2(t> a, )‘> 1- § :Agr—i-l(t? «, )\>7‘ _:1 2M7 (12)
r=0

where A, (t, o, \) are arbitrary functions which turn out to be irrelevant for searching for
the second-order and first-order transitions.

The zero-temperature phase diagram in the A-« plane contains first-order and second-
order lines. To obtain these phase transitions we have used a Maxwell construction that
corresponds to the intersection point where the free energies of the phases are equal. In
the case of the transitions between the AF (CAF) ordered and QP (m = 0) disordered
phases we obtain the point of intersection ¥, (m,) = Uqp(m = 0) from equation (12):

4 2r

m
AL () —— = 1. 1
; 2r+1( y O >7’—|—1 ( 3)
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Figure 2. Ground state phase diagram in the A—« plane for the quantum spin-
1/2 Ji—J{—J2 model on a square lattice, where @ = Jo/Jy and A = Jj/J;.
The dashed and solid lines correspond to the first-order and second-order
transition lines, respectively. The black point represents the quantum triple
point (QTP). AF, CAF and QP correspond to the antiferromagnetic, collinear
antiferromagnetic and quantum paramagnetic phases, respectively.

In the ground state (7" = 0), the quantum phase transitions in the A-« plane between
the AF (CAF) and QP states are found by simultaneously solving two transcendental
expressions, equation (13) and the equation of state m, = Q,,(m,,,0, o, ). For the second-
order transition between the AF and QP phases, we obtain mar = 0, while for the first-
order transitions between the CAF and QP phases we have mca # 0 which corresponds
to the discontinuity of the staggered magnetization m¢ p(a) at ac(A).

For the case of the quantum phase transition between the two ordered phases (AF
and CAF), using Maxwell construction, we obtain

m2r+2 m2'r+2
AF CAF CAF 2
E A2r+1 r _mAF E A2r+1 7"+1 — Mcar- (14)

By simultaneously solving three transcendental expressions, equations (10), (11) and (14),
we obtain a direct first-order transition.

The ground state phase diagram in the A-« plane of the quantum spin-1/2 J;—J|—Js
model on a square lattice is shown in figure 2. It is dependent on the values of o and
A. We observe three phases: AF (antiferromagnetic), CAF (collinear antiferromagnetic),
and QP (quantum paramagnetic). For A > A\ ~ 0.51 there exists a disordered (QP)
intermediate region between the AF and CAF phases. The order parameters of the AF
(mar) and CAF (mcar) phases vanish continuously and discontinuously, respectively,
both below and above the correspondingly quantum triple point (QTP). The presence of
the interchain parameter \ has the general effect of suppressing the QP phase. The QP
phase region decreases gradually with the decrease of the parameter A\, and it disappears

doi:10.1088/1742-5468/2010/06/P06022 8



The ground state phase diagram of the quantum Ji—J> spin-1/2 Heisenberg antiferromagnet

completely at the QTP = (A, ;) where the boundaries between phases merge. Below
this QTP, which is for A < Ay, there is a direct first-order transition between the AF and
CAF phases, with a transition line a. ~ \/2 (like the classical line).

In summary, we have studied the ground state phase diagram of the anisotropic
quantum spin-1/2 J;—J{—J model on a square lattice in the A—« plane. The influence
of quantum fluctuations, frustration («) and interchain coupling () has been discussed.
Using the differential operator technique within the so-called effective-field theory for a
cluster with N = 2 spins (EFT-2), we obtain a closed set of analytical equations for
the free energy (¥,(m,)) and order parameters (map and mcar) which can be used to
determine the phase transition lines. The phase diagram is equivalent (qualitatively) to
the one obtained by the coupled cluster method (CCM) [34], where a QTP was observed
at Ay ~ 0.60. With EFT-2 we find the QTP at A\; ~ 0.51. On the other hand, the results
on the nature of the phase transitions analyzed by using the CCM were inconclusive,
indicating that the transitions are all continuous (second-order ones), while with our
method we have obtained that the CAF-AF and CAF-QP transitions are first-order
ones. In the isotropic limit (A = 1), our calculations reproduce the results obtained by
Viana and de Sousa [23]. However, our estimated values for the quantum critical points
are underestimated in comparison with the values obtained by other methods [1]-[14].
Using linear spin wave theory (see, for example, [1,2] for the isotropic case), the results
do not show the existence of a QTP in the phase diagram. Our result, that there exists
a QTP along with first-order phase transitions between the different phases, is in conflict
with results obtained using other methods such as the linear spin wave theory, CCM, and
exact diagonalization approaches. It may be worthwhile to investigate the existence of a
QTP and to characterize the true ground state phase diagram of the J;—J{—J; model on a
square lattice using other analytical or numerical methods, such as using quantum Monte
Carlo simulations and higher order spin wave theory calculations.
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