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Abstract – We report remarkable similarities in the output signal of two distinct out-of-
equilibrium physical systems —earthquakes and the intermittent acoustic noise emitted by
crumpled plastic sheets, i.e. Biaxially Oriented Polypropylene (BOPP) films. We show that both
signals share several statistical properties including the distribution of energy, distribution of
energy increments for distinct time scales, distribution of return intervals and correlations in
the magnitude and sign of energy increments. This analogy is consistent with the concept of
universality in complex systems and could provide some insight on the mechanisms behind the
complex behavior of earthquakes.
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Understanding the underlying mechanisms that govern
the complex spatio-temporal behavior of earthquakes is a
stimulating challenge [1,2]. Concepts and methods from
statistical physics has been largely applied to study earth-
quakes, contributing to identify several patterns in seismic
activity [3–11]. This approach also has been contributing
to identify universal behavior in earthquakes —similarities
between seismic records and the output signal of systems
in different research areas.
For example, it has been reported that γ-ray events

emitted by neutron stars and earthquakes share several
distinctive statistical properties indicating tectonic activ-
ity on neutron stars —“starquakes”— analogous to earth-
quakes on Earth [12]. Another example is a reported anal-
ogy between earthquakes and the Internet. Specifically,
it has been found that two known empirical power laws
for earthquakes —the Omori law and the Gutenberg-
Richter law— hold also for the Internet (ping experi-
ment). In this context, sudden drastic changes of the Inter-
net time series are referred as “internetquakes” [13,14].
Earthquake patterns also can be observed in financial
markets. It has been reported, for instance, that stock
price fluctuations follow a power law distribution [15].
This behavior is quantitatively similar to those found
in earthquakes (see refs. [8,13]), indicating an analogy
between natural and financial earthquakes. For other

examples of universal behavior in complex systems, see
refs. [16–21].
Here, we compare earthquakes with the output signal

of an out-of-equilibrium physical system —the intermit-
tent acoustic noise emitted by crumpled plastic sheets.
Some out-of-equilibrium physical systems emit crackling
noises as a response to external conditions through events
spanning a broad range of sizes [22–29]. In particular,
the sharp and intermittent noises emitted by some kinds
of crumpled papers and similar materials —including
plastic sheets— qualitatively recall earthquakes which
arise when two tectonic plates rub each other. Starting
from this qualitative picture, we search for a quantitative
support for this analogy. Specifically, in a series of exper-
iments we measure the acoustic noise emitted by a crum-
pled plastic sheet —a Biaxially Oriented Polypropylene
(BOPP) film— in relaxation and compare these records
with real data on the magnitude of earthquakes. We
find that both processes exhibit several similar statistical
properties.
To quantitatively test this analogy, we consider real

data on earthquakes obtained from the Northern Cali-
fornia catalog for the period 1966–2006 [30]. This seis-
mic database contains ∼435000 records from one of the
most active and studied geological faults on the Earth
—the San Andreas Fault. For each event, we calculate a
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measure of the energy dissipated, E = exp(M), where M
is the reported magnitude of the earthquake.
We also perform a series of experiments in order to

obtain measures of the energy dissipated by crumpled
plastic sheets in relaxation process. First we crumpled a
given sample of plastic sheet (of size 1.0m× 1.5m) into
a compact ball. This procedure is similar to the common
experience of crumpling an unwanted sheet of paper prior
to disposing of it [24]. In such conditions, the plastic sheet
emit sound in discrete pulses of a variety of intensities
for a relatively large time after released to relax (about
10 minutes).
We record the sound emitted with a condenser micro-

phone (Shure Microflex MX202W/N) positioned at
1 meter from the sample for five minutes and digitalized
at frequency 8000Hz. For the analysis, the noise was
reduced by applying a cutoff filter for low frequencies. A
single event is identified by a set of peaks with intensity
larger than a threshold value. The start time of the
single sound is taken as the time corresponding to the
first sound with intensity larger than the threshold,
whose value was chosen above the noise intensity. The
end time corresponds to the time when the intensity
becomes lower than the threshold for a time bigger than
a given tc ≈ 1–2ms (the characteristic length of single
event). Figure 1 shows a typical example of the acoustic
emission recorded and the corresponding energy intensity
S obtained for a specific event.
We first determine the probability distribution of the

energy intensity for earthquakes and crumpled plastic
sheets. Figure 2(a) shows that both distributions are
consistent with a power law decay,

P (x)∼ x−α, (1)

with α≃ 3. This result, already known for earthquakes,
suggests that both systems are self-organized into a
scale-free state —there is not a typical scale for the
dissipated energy. Observe that the power law exponent
is quantitatively similar for earthquakes and crumpled
plastic sheets.
To find information on the dynamics of energy dissipa-

tion, we define energy increments as ∆E =E(i+ τ)−E(i)
and ∆S = S(i+ τ)−S(i), where E(i) and S(i) are propor-
tional to the energy of the i-th event. The distributions
of energy increments, for different values of the time
scale τ , are shown in fig. 2(b) (earthquakes) and fig. 2(c)
(crumpled plastic sheets). All curves are symmetrical, very
peaked and have wings larger than expected for a normal
process. In both cases, data for distinct time scales collapse
onto a single curve indicating that the distribution of
energy increments exhibits a common functional form for
all time scales in the range considered. We also shuffled the
original series and then calculated the distribution of ∆E
and ∆S again, but no significant changes were observed.
This result may indicate no correlations or weak correla-
tions in the time organization of energy intensities.

Fig. 1: (Colour on-line) Obtaining the energy intensity from
the recorded acoustic noise. Top: a sample of crumpled plastic
sheet in relaxation. Middle: the corresponding acoustic noise
recorded (in arbitrary units). Bottom-left: detail of a single
event; and bottom-right: the corresponding intensity of a single
event, I = cp2, where c is a constant and p is the sound pressure.
The variable S, given by the area under the corresponding set of
peaks, is related to the energy dissipated in the event. Because
of the short time distance between events in the beginning
of the relaxing process, it was not possible to discriminate
individual events. Then, for each experimental dataset, we cut
out the first 10 seconds in the recording.

Assuming a given variable x following a power law distri-
bution with exponent α (see eq. (1)) and no correlation
between two events (a first approximation), the proba-
bility distribution for the increments ∆x= x(i+ τ)−x(i)
is given by P (∆x) =K

∫
∞

0
dx
∫
∞

0
dx′(xx′)αδ(x′−x− ǫ) =

K
∫
∞

τ
dx[x(x+ |ǫ|)]−α, where K is a normalization

constant and ǫ is a small positive value to avoid diver-
gence in x= 0. The integration leads, for real and positive
α, to the normalized probability density function (PDF)

P (∆x) =
(α− 1)2

ǫ(2α− 1)
F 21

(
α, 2α− 1, 2α,−

|∆x|

ǫ

)
, (2)

where F 21 is the confluent hypergeometric function [8].
This PDF is shown in figs. 2(b) and (c) in comparison
with real data. Notice that both curves are given by eq.
(2) with the same parameters. The good adjustment to the
data indicates that the distribution of energy increments
exhibits a common shape for both systems.
The non-Gaussian behavior of the distributions of

energy increments, shown in figs. 2(b) and (c), also can
be characterized by q-Gaussian distributions —typical
in Tsallis statistics [31–33]. In fact, it has been reported
that eq. (2) can be very well reproduced by means of
q-Gaussians, whose values of q are related with the
parameter α [8]. In the range considered, a q-Gaussian
distribution, with q≃ 1.75, practically coincides with the

29001-p2



Earthquake-like patterns of acoustic emission in crumpled plastic sheets

Fig. 2: (Colour on-line) Analysis of the probability density function (PDF) of data. (a) Probability density, P (E/σE) and
P (S/σS), of normalized energy for earthquakes (circles) and crumpled films (squares). σ is the standard deviation calculated
over all records in a given series. The curves are shown vertically shifted for clarity. The solid lines are power laws given by
eq. (1), with exponent α= 3.2. (b) Probability density of normalized increments, P (ΔE/σ∆E), for time scales τ = 1, 10, 100.
The solid line corresponds to eq. (2) with α= 3.2. (c) Probability density P (ΔS/σ∆S), for time scales τ = 1, 10, 100. As well
as in (b), the solid line is given by eq. (2), with α= 3.2. (d) Probability density of normalized return intervals, P (R/µR), for
earthquakes (circles) and crumpled films (squares). In both cases, R is calculated within subseries of size 1016. µR is the average
of R in a given subseries. The threshold is Rc = 2. The solid line is an exponential distribution P (r) = exp[−r].

curves shown in figs. 2(b) and (c) (solid lines). For q > 1,
the tails of a q-Gaussian decreases as a power law with
exponent β = 2/(q− 1). This result indicates that the
tails of the distribution of energy increments follow a
power law behavior,

P (∆x)∼∆x−β , (3)

with β ≃ 2.7 for both systems.
Another way to characterize the dynamics of the output

signal of a given system is to analyze the return interval
series. The return intervals R are defined as the inter-
val between events that exceed a certain threshold Rc.
We obtain R from the normalized energy series —with
elements E/σE and S/σS , where σ is the standard devi-
ation. Figure 2(d) shows the distribution P (r) for earth-
quakes and crumpled plastic sheets where r=R/μR and
μR is the average of R in a given subseries of size 1016
(the typical size of a given experimental record for a crum-
pled sheet). For comparison, we also show the exponential

distribution P (r) = exp[−r]. Observe that the distribution
of return intervals for earthquakes and crumpled films
share a common shape. We perform a parallel analysis
for several values of the threshold Rc but no significative
changes were observed. The exponential behavior found in
the distribution of return intervals suggests no correlation
or weak correlations in the energy series of both systems.
Next, we investigate fractal properties in the output

signal of the systems. For a given time series x(i), the
autocorrelation function is defined as C(τ) = 〈x(i)x(i+
τ)〉− 〈x(i)2〉. In order to reduce fluctuations in C(τ), it is
common to obtain the root-mean-square fluctuation func-
tion F (τ), such that F (τ)2 =

∑τ
i=1

∑τ
j=1 C(j− 1) [34].

The net displacement after τ steps is y(τ) =
∑τ
i=1 x(i)

and the root-mean-square fluctuation is defined as F̂ (τ) =√
〈∆y(τ)2〉− 〈∆y(τ)〉2, where ∆y(τ) = y(τ0+ τ)− y(τ0).

For fractal series, F̂ (τ) follows a power law behavior,

F̂ (τ)∼ τh, where h is the scaling exponent which quanti-
fies the degree of correlations. When h> 0.5 (h< 0.5) the
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Fig. 3: (Colour on-line) Analysis of temporal correlations in the data. Fav(n) is an average of the DFA fluctuation function
F (n) calculated for several subseries. F intav (n) is the average DFA fluctuation function obtained from integrated subseries. We
investigate F in the range 5� n� 100. We also show Fav and F

int
av obtained from shuffled series (open circles). In all cases, the

exponent h is obtained by least square linear fits to the data. As expected, h≃ 0.5 for all shuffled series. (a) Fav(n) calculated
from normalized energy series for earthquakes, E/σ(E). The slope gives h= 0.57. (b) Fav(n) calculated from normalized energy
series for crumpled plastic sheets, S/σ(S). The linear fits gives h= 0.55. (c) Fav(n) calculated from normalized magnitude series
for earthquakes, |ΔE|/σ(|ΔE|), giving h= 0.66. (d) Fav(n) calculated from normalized magnitude series for crumpled plastic
sheets, |ΔS|/σ(|ΔS|). In this case, h= 0.63. (e) F intav (n) calculated from integrated sign series for earthquakes, sign(ΔE). The
slope is 1.30, giving h= 0.30. (f) F intav (n) calculated from integrated sign series for crumpled plastic sheets, sign(ΔS). The slope
is also 1.30, giving h= 0.30.

series is long-range correlated (anti-correlated). Uncorre-
lated series present h= 0.5. Short-range correlations also
may exhibit h= 0.5.
For non-stationary records, it is common to apply

detrended fluctuation analysis (DFA) [35,36] to investigate
correlations in the data. For fractal series, the DFA root-
mean-square fluctuation, F (n), also follows a power law
behavior,

F (n)∼ nh, (4)

where n is a time scale. Here we apply DFA method in
order to quantify temporal correlations in the data.
The typical size of a given time series in the experiment

of crumpled plastic sheets is ∼1016 (20 samples). In
order to perform a parallel analysis, we partition the
energy series for earthquakes in subseries of size 1016 (428
samples). For each subseries we obtain the DFA root-
mean-square fluctuation, F (n), and perform an average
of F (n) over all subseries —obtaining Fav(n). Because the
size of a typical subseries, we investigate F (n) in the range
5<n< 100. Figures 3(a) and (b) show Fav(n) for the
energy series for earthquakes and crumpled plastic sheets
—E and S. We find h≃ 0.55 for both records suggesting
weak correlations in the data. As expected, we find h≃ 0.5
for shuffled series.

Starting from the sequence of energy increments, we
also obtain two sub-series: magnitude of energy incre-
ments —|∆E| and |∆S|— and sign of energy increments
—sign[∆E] and sign[∆S]. The function sign[∆x] assumes
the values −1, 0 or 1 if the increment ∆x is negative, null
or positive, respectively. For details of the magnitude-sign
decomposition approach, see refs. [37,38]. Figures 3(c) and
(d) show Fav(n) for the magnitude series of energy incre-
ments for earthquakes and plastic sheets. For both records
h≃ 0.65 indicating long-range correlations in the data.
Figures 3(e) and (f) show F intav (n) —the average DFA fluc-
tuation function obtained from integrated series— for the
sign series of energy increments for earthquakes and plastic
sheets. This previous integration is necessary in the DFA
method when h< 0.5. For both records we find h≃ 0.30,
indicating anti-correlations in the data. As expected, shuf-
fled magnitude and sign series exhibit h≃ 0.5, indicating
uncorrelated behavior. Notice the quantitative agreement
between the values of h for both systems.
The analysis reported here indicates remarkable simi-

larities between two distinct out-of-equilibrium physical
systems, providing a quantitative support for the anal-
ogy between earthquakes and crumpled films. Specifi-
cally, we show that for both signals i) the distribution
of energy follows a power law with exponent α≃ 3; ii) the
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distribution of energy increments exhibits a common non-
Gaussian shape in the range 1� τ � 100, with power law
tails with exponent β ≃ 3; iii) the distribution of return
intervals follows an exponential behavior; iv) the DFA
power law exponent is h≃ 0.55 for energy series, h≃ 0.65
for magnitude series of energy increments and h≃ 0.30 for
sign series of energy increments in the range 5� n� 100.
These findings are consistent with the hypothesis that
earthquakes and crumpled plastic sheets may be driven
by common underlying mechanisms.
The nature of both processes analyzed here also presents

analogies. It has been pointed out that the energy stored in
a crumpled material is originated in the buckling process
while the film is crumpled, and it is mainly concentrated
in the formed ridges [39,40]. The non-equilibrium behavior
observed in the relaxation process can be understood as
a consequence of the frustration in the crossed ridges,
characterizing a stress [41]. Moreover, it is known that
Earth’s crust can also exhibit buckling under viscous
stresses on its layers [40].
Some phenomenological models, as the epidemic-

type aftershock sequence model (ETAS) [42,43], the
continuous-time random walk models (CTRW) [43] and
the Olami-Feder-Christensen model (OFC) [8,44,45] try
to incorporate the main properties of the complex spatio-
temporal behavior of earthquakes. Since the experiments
with crumpled plastic sheets are simple and reproducible,
they may be used as an additional data source to compare
with artificial data. We hope that this analogy could
provide some insight on the mechanisms behind the
complex spatial and temporal behavior of earthquakes.
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