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A novel cryptography method based on the Lorenz’s attractor chaotic system is pre-
sented. The proposed algorithm is secure and fast, making it practical for general use.
We introduce the chaotic operation mode, which provides an interaction among the
password, message and a chaotic system. It ensures that the algorithm yields a secure
codification, even if the nature of the chaotic system is known. The algorithm has been
implemented in two versions: one sequential and slow and the other, parallel and fast.
Our algorithm assures the integrity of the ciphertext (we know if it has been altered,
which is not assured by traditional algorithms) and consequently its authenticity. Nu-
merical experiments are presented, discussed and show the behavior of the method in
terms of security and performance. The fast version of the algorithm has a performance
comparable to AES, a popular cryptography program used commercially nowadays, but
it is more secure, which makes it immediately suitable for general purpose cryptography

365

http://dx.doi.org/10.1142/S0129183110015166


March 26, 2010 15:21 WSPC/141-IJMPC S0129183110015166

366 A. G. Marco, A. S. Martinez & O. M. Bruno

applications. An internet page has been set up, which enables the readers to test the
algorithm and also to try to break into the cipher.

Keywords: Encryption/decription; chaos; Lorenz’s attractor; nonlinear systems.

PACS Nos.: 05.45.-a, 05.45.Vx, 05.45.Gg, 05.45.Ra.

1. Introduction

Since ancient times, the art of encrypting messages using ciphers or breaking into

them, has decided the destiny of the civilization. Throughout the history, in many

situations, cryptography was directly responsible for the fortune or doom of kings

and queens. The success of exchanging secret messages decided the future of many

battles and even wars. Some of them were important and very famous, such as

the Thermopiles battle (Greece — 490 BC), where according to the legend, the

Spartans were notified of the Persian invasion by a crypto message hidden in earth-

enware, which enabled the Spartans to plan a defense strategy before the Persian

attack. Although the secret of the information plays an essential role in military

strategy, it was only during the 20th century wars that its real importance become

obvious and popular. With the advent of radio, it was possible to exchange vital

strategy information by electromagnetic waves. Since there are no boundaries for

radio waves, the cryptography power appeared as a fundamental strategy element.

It is responsible for ensuring that the enemy, although being able to receive the

message, is not capable of understanding it. In fact, cryptography was decisive in

the destiny of the first and second world war. Although cryptography is an impor-

tant military and political information tool, these uses overcame the war times. In

the digital ages, cryptography ensures security of business and bank transactions

over the internet, and it can also ensure privacy of private messages, making the

modern computer, the internet and wireless networks secure and usable technolo-

gies.

The objective of cryptography consists of encrypting a message, file, document

or image. To understand this procedure, consider the following definitions. One

thinks of the object to be encrypted as a string (vector) of size np. The components

of this vector is transformed to decimal ASCII representation (integers ranging from

0 to 28 − 1) forming the plaintext, which is represented by P, with size np. Also,

one needs a password string, which is transformed to decimal ASCII representa-

tion forming π, with size nπ. The plaintext P is transformed into the ciphertext C

via an encode function C = Eπ(P), which is parametrized by the password π. To

retrieve the plaintext from the cipher, one uses the decode function P = Dπ(C),

where Dπ = E−1
π

is the inverse of the encode function and parametrized by π. Per-

haps the simplest encode function is the monoalphabetic (Cesar) cipher Eπ(Pi) =

(Pi + π) mod 28, where 28 is the length of our alphabet, Pi is a component of P

and π is the integer associated to the password. The associated decode function

is: Dπ(Ci) = (Ci − π) mod 28. Here, we call attention to the reversibility prop-

erty of the mod operation. Care must be paid because the signal in one of the
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arguments of the mod operation is reversed, for instance, C = A + B mod D and

A = C − B mod D.

The current cryptography methods are based on discrete mathematics (sym-

metrical key)1–4 and number theory (asymmetrical key).5–7 These algorithms use

elementary mathematical as ciphers and have to increase the computing complexity

to ensure a secure crypto. Taking this into account, they carry out many bit-to-

bit operations and permutation between neighboring elements, or they have to use

very long keys (asymmetrical algorithms — nowadays RSA algorithms, for instance,

use keys varying between 210 and 211 bits) to hide information. However, for both

strategies, the increase in the computing complexity and the size of the keys only

ensure that the cipher is secure for a certain time. The constant increase in com-

puter power and the evolution of the cryptoanalyses algorithm have made it easy to

break into. Nowadays, although there are algorithms which are capable to breaking

into this kind of ciphers, they take too long, making them impractical.8–10 The in-

crease in computational power makes algorithms based on elementary mathematics

weak. One example is the DES method,9 which was popular and largely used in the

past. However, the algorithm became too weak and is no longer in use nowadays.

To make the ciphers more secure, some new mathematical methodologies have

to be considered and consequently new cryptography approaches arise. In this con-

text, the chaos theory and the complex dynamical systems appear as very attractive

alternatives to develop cryptography methods.11 Chaotic systems have some char-

acteristics that make them valuable for cryptography, such as:

(i) complex numerical patterns,

(ii) unpredictably for unknown initial conditions,

(iii) strong dependence on the initial conditions,

(iv) based on relatively simple equations, and

(v) determinism.

The cryptography algorithms based on chaos generally explore the symmetrical

approach.

Cryptography algorithms using chaos appeared in the 90’s. The first ones shuffle

continue time signals using chaos12–15 and also digital signals.16 At the end of

the decade, chaos cryptography applied to digital data was introduced. In 1998,

Baptista17 proposed the use of the logistic map as a pseudorandom generator to

make a cipher capable of dealing with bit sequences. The Baptista’s algorithm

was improved by Wong and collaborators18 making it faster and more secure. The

block cryptograph was incorporated in the logistic map in 2005 by Xiang et. al.19

as an enhancement of the previous methods. As far as we are aware, there are two

proposals in the literature using the Lorenz’s attractor as basis of cryptography

methods. The first one20 was proposed in 1998, but it is very simple and weak. In

the second one,21 the Lorenz’s attractor is used to generate pseudorandom numbers

in the same sense as the logistic map based ciphers.
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In this work a novel cryptography method based on the Lorenz’s attractor is

introduced. The proposals of the algorithm are to be secure and fast, making it

practical for general use. In cryptography theory, the strongest cipher (impossible

to break) is reached when the pad has the same length as the message (OTP — One-

time pad cipher).22 We use the Lorenz’s attractor to compute a virtually infinite

pad exploring the chaos. The complexity of the attractor and its determinism,

makes it possible to compute chaotic and long number sequences. What makes the

OTP impossible to be broken in is the fact that one does not know the pad. For

instance, if one uses a book to write a OTP cipher, the cipher is decoded when the

book is discovered. Since we use the Lorenz’s attractor to compute a pad, although

it is difficult, one can compute the Lorenz’s trajectory and discover the cipher

pad. To make this task harder to perform, we have added an operation mode in

chaos, which we call the chaotic operation mode. The chaotic operation mode is a

technique, inspired by traditional cryptography (operation mode23), which provides

an iteration between the password, already coded message and chaotic system to

make a complicated walk over the attractor.

The presentation of this paper starts with a discussion and a description of

the chaotic operation mode (Sec. 2). The cryptographic algorithm is proposed in

detail in Sec. 3 and the results are shown in Sec. 4, illustrating the behavior of the

proposed method. In Sec. 6, the paper ends with a discussion about the method.

2. Chaotic Operation Mode

Cipher-block algorithms are able to carry out bit-to-bit operations between the

neighbors of the plaintext and the password. This approach has a disadvantage

of making similar ciphertext sequences for similar blocks of the plaintext, conse-

quently making a weak cipher. The operation mode was created to correct this fault,

whose main idea is to make the blocks independent. Consequently, the ciphertext

is encrypted combining the information of the password plus the previous plaintext

sequence. It can ensure that similar blocks of the plaintext are codified as different

ciphertext, making the cipher stronger.

One of the most popular operation mode algorithms is Cipher-Block Chain-

ing (CBC).23 Each component of the plaintext P, of size np is XORed with

the previous ciphered element: Ci = Eπ(Pi ⊕ Ci−1), where C0 is an arbitrary

value used to encode the first component of C that can also be used as an ex-

tra password. This value has an important role in the crypt process, since with-

out it one cannot decode the message. The value of C0 is generated from the

password and it is desirable to include an additional parameter which may be

different for each user. The symbol ⊕ represents the bitwise XOR logical oper-

ation. We notice that the size of C is nc = np + 1 and that the elements of

P and C are integers ranging from 0 to 28 − 1 representing the decimal ASCII

code. Here, the encode function Eπ represents any symmetrical cryptography al-

gorithm1–4 using password π. The operation mode uses information from the
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previous coded sequence (Ci−1) to code Ci to ensure that similar sequences in

P do not have the same sequences in C. The inverse process also combines pre-

vious coded sequence to decode: Pi = Dπ(Ci ⊕ Ci−1), where Dπ is the decode

function.

We observe that encryption and decryption operation can be carried out by the

same procedure due to the reversible property of the bitwise XOR logical operator.

To illustrate the reversibility property, consider two bit sequences P and π and the

resulting bit sequence C = P⊕π = π ⊕P. One then has P = C⊕π = π⊕C and

π = P⊕C = C⊕P. There are other operators that allow the reverse operation, for

instance, as mentioned in the introduction, the mod combined with a sign inversion

in the argument. One interesting cryptographic scheme uses cellular automata.24

In this case, the cellular automata must be reversible to preserve the information of

the initial states.25–27 For a cellular automaton to be reversible, the global function

must be bijective to have an inverse. Local functions that involve only bitwise XOR

logic operation lead to a linear global function, therefore, a bijective function (with

non-singular transition matrix).28,29

Since the preserved patterns of the plaintext in the ciphertext may give clues for

cipher analysis and the cipher-block chain is not strong enough, here, we propose

to use dynamical systems in the chaotic regime to accomplish this task. We call

this procedure the chaotic operation mode.

The chaotic operation mode has the same basis of the traditional operation

mode. The message, password and previous code are combined to achieve a strong

cryptography not preserving repetitive patterns of the original message. While the

operation mode combines the message and the previous coded message using ele-

mentary operations, the chaotic operation mode uses a chaotic system to compute

this combination. This approach improves the cryptography, making the analysis

of it more difficult.

In the following, we show how to use a dynamical system in cryptography.

Firstly consider nl = nc vectors r, with initial condition r0. Notice that r is

a vector, where each component represents a variable of the Lorenz attractor

so that it is a three-dimensional vector. Each vector is obtained by the itera-

tion: ri = F[ri−1 + M(Pi)], where F(x) is a given vectorial function of a vec-

tor x which represents the dynamical system. The components of the vectorial

function M = (m1, m2, m3), with 0 ≤ mi ≤ 0.255, with i = 1, 2, 3, trans-

forms the argument Pi (an integer between 0 and 255) depending on the iter-

ation step. Notice that the plaintext characters alter step-by-step the iteration

process, which in a parameter region of chaos gives rise to the chaotic operation

mode. The elements of the ciphertext are obtained from: Ci = Eπ [Pi + f(ri−1)],

which encrypts the scalar Pi, using bit-to-bit operations with bits extracted from

the vectors r. The function f(r) extracts a value from the vector r of the dy-

namic system. The decode process is simply achieved with the inverse operation:

Pi = Dπ [Ci + f(ri−1)].
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Recently a security fault in the logistic map based algorithm that could be

extended to other chaos system was demonstrated.30 It is based on the return

of the map that can be explored to break into the cipher. The chaotic operation

mode solves this security fault of the chaos based cryptography algorithms, since it

combines the password and plaintext with the chaos system, making it more secure.

When using the chaotic operation mode we call attention to the fact that if a

message is altered we are able to detect it. In this way we guarantee its authentica-

tion. Besides, we can also guarantee the integrity of cipher. The chaotic operation

mode can guarantee the authentication because a minimal change in Ci leads to

a huge modification in the Lorenz’s path, that can be easily identified, assuring

integrity and consequently its authenticity.

3. Lorenz-Based Cryptography Algorithm

We propose a full method that combines the dynamic system F(x) with the encode

function Eπ . In our case, the dynamical system is the Lorenz’s attractor that gen-

erates a trajectory which is combined with the message, password with the chaotic

operation mode. We start defining the quantities used in the algorithm and then

we carefully describe it.

3.1. Definitions

The proposed algorithm uses the Euler differential discretization method to numer-

ically compute the Lorenz’s equation system (other numerical methods could be

considered) ri+1 = F(ri), with r = (x, y, z) and:

xi+1 = [(1 − σ)xi + σyi]δt

yi+1 = (ρxi − 2yi − xizi)δt

zi+1 = [xiyi + (1 − β)zi]δt . (1)

The parameters 0 < δt ≤ 0.027, σ = 10.0, ρ = 28.0 and β = 8/3 are values where

the system gives rise to chaotic sequences. The number of iterations nit, along the

Lorenz’s attractor, determines the speed of the processing of the algorithm. Here

we have used nit = 3000.

The password π is converted to decimal ASCII values, with size nπ. Notice that

nπ has a limit, this is because of the representation of a real number in double

precision in a given computer. The quantity ξ = 52, according to the IEEE754

convention, is the number of bits of the mantissa to represent a double precision

number.

The first stage of the algorithm is devoted to the conversion of the password into

a coordinate of the Lorenz’s attractor space. The vector π, of size nπ, is converted

into a vector a = (a1, a2, a3), with the following components:
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a1 =























L
∑

i=1

πi2
8(i−1) if nπ mod 3 = 0

L
∑

i=1

πi2
8i + π3L+1 if nπ mod 3 6= 0

(2)

a2 =























2L
∑

i=L+1

πi2
8[−L+(i−1)] if nπ mod 3 6= 2

2L
∑

i=L+1

πi2
8(−L+i) + π3L+2 if nπ mod 3 = 2

(3)

a3 =

3L
∑

i=2L+1

πi ∗ 28[−2L+(i−1)] , (4)

where L = floor(nπ/3). The vector a is then converted to a′ = (g(a1), g(a2), g(a3)),

where g(x) = x/10ceil(log[28(L+1)]) so that 0 ≤ a′

i ≤ 1, with i = 1, 2, 3.

The starting point to move in the Lorenz’s attractor is written as:

r0 = a′ + λ , (5)

with λ = (λ1, λ2, λ3). The components of λ are chosen to have values in the fol-

lowing range: −15.67 < λ1 < 16.01, −11.28 < λ2 < 16.01 and 0.090 < λ3 < 62.000.

These ranges guarantee stable chaotic phases.

Firstly, compute µ = (µ1, µ2, µ3), so that: µ1 = (a1 + a2 + a3) mod 3, µ2 =

(a1 ∗a2 +a3) mod 3 and µ3 = (a1 +a2 ∗a3) mod 3. Compute now, α = (α1, α2, α3),

so that:

αi =











xn , µi = 0

yn , µi = 1

zn , µi = 2

, (6)

with n = 0. Now, choose values for k = (k1, k2, k3), with the components of this

vector in the range: 2 < ki ≤ floor[(ξ − 14)/8], so that ki being an integer. Finally,

compute Ω = (Ω1, Ω2, Ω3) so that:

Ωi = hash(ia) mod ki , (7)

where hash(a) is a hash function such as MD5 or SHA. These values have been

chosen to obtain the less significant bytes in the coordinates of the Lorenz’s attrac-

tor. This contrasts to the procedure presented in Refs. 20 and 21 where the integer

and first digits from the decimal part are considered. The procedure we propose

makes the cipher frequency distribution uniform not giving clues for undesirable

decodification as shown in Sec. 4. In Fig. 1 we depict the frequency distribution of

the integer part as well as the decimal part of the Lorenz’s attractor. In Fig. 1(a),

we show that the integer part of coordinates of the Lorenz’s attractor are concen-

trated in the middle of the graph varying in a short range. In Fig. 1(b), we show
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that the first digits of the decimal part of the coordinates of the Lorenz’s attractor

are concentrated. In Figs. 1(c) and 1(d), we show that the frequency distribution is

practically uniform for the 3rd, 4th, 5th and 6th pairs of digits. We call attention

to the fact that the low significant digits are the head of our algorithm.

To encrypt a plaintext, we propose a new encode function. This function com-

bines an integer (a decimal ASCII of the plaintext) and a float point (obtained

5 10 15 20

number

100

200

300

400

500

600

700

f
r
e
q
u
e
n
c
y

x
y
z

(a)

(b)

Fig. 1. Frequency distribution of the integer part as well as the decimal part of the Lorenz’s

attractor; (a) integer part, (b) first two digits of the decimal part, (c) third and fourth digits of
the decimal part, and (d) fifty and sixth digits of the decimal part.



March 26, 2010 15:21 WSPC/141-IJMPC S0129183110015166

Fast, Parallel and Secure Cryptography Algorithm 373

(c)

(d)

Fig. 1. (Continued)

from the trajectory in the Lorenz’s attractor) in the argument to produce an inte-

ger, between 0 and 255, to represent the coded character. For this reason one has

a structure as: Eα,Ω(Pi) = [Pi + f(α,Ω)] mod 28.

Let us now concentrate in f(α,Ω), with α and Ω are quantities related to the

password π and depend on the Lorenz’s attractor. Here we only use the components

α1 and α2, which are float point numbers and Ω1 and Ω2, which are integer numbers.
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The algorithm to obtain these quantities in the successive iterations is presented in

Sec. 3.2, where we show that α3 and Ω3 are auxiliary quantities.

Our objective is the creation of a ternary operation, which operates on a char-

acter code and on two float point numbers so that an inverse operation exists,

combined with the password π, and one can easily perform the decode operation.

To accomplish this task, consider a float point number α, so that its mantissa has ξ

bits and we convert it to an integer multiplying it to 10ν , where ν = floor(log 2ξ−6)

with the function floor(x) taking the integer part of x. The product floor(α10ν) is

an integer with 16 bytes. Recall that the integer 255, is a byte of 1’s. To move this

eight 1’s to the left, one multiplies it by 2, so that, multiplying 255 to 28, one dis-

places 255 of one byte. To displace 255 of Ω bytes, one must multiply it to 28Ω. The

number 255 × 28Ω is a mask. To obtain the Ωth byte of the quantity floor(α10ν),

apply the logical AND operation, represented by ∧, with the mask 255 × 28Ω. A

resulting large float number is obtained dividing the above result by 28Ω. Consider

the function:

Rν(α, Ω) =
floor(α10ν) ∧ (255× 28Ω)

28Ω
. (8)

Now we are able to write the encode function as:

y = Eα,Ω(x) =

[

x +

2
∑

i=1

Rν(αi, Ωi)

]

mod 28 , (9)

and the function used to decode the information as:

x = Dα,Ω(y) =

[

y −

2
∑

i=1

Rν(αi, Ωi)

]

mod 28 . (10)

To prepare data for the following steps set: α′ = α, µ′ = µ and Ω′ = Ω. We

call attention to the reversibility of the mod operation of Eqs. (9) and (10). We

have chosen to use the mod operator instead of the bitwise XOR operator because

its full reversibility asks for an additional operation (inversion of the argument).

Another important aspect is that the reversibility of mod is not so obvious as a

simple change of the state of bits. These two points combined make the codification

more difficult to be broken in with mod.

We have chosen to use the mod operator, which gives the rest of a division, in-

stead of the bitwise XOR operator because to have a full reversibility, an additional

operation (inversion of the argument) is necessary in mod operation. This makes

the codification more difficult to be broken in.

3.2. Successive iterations

The process of encrypting and decrypting a message can be divided into three steps,

which are shown below. The dynamic system iterates the components of P or C.
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Some parts of the algorithm are different for the first iteration. This is necessary

because the method uses variables calculated in the previous iteration.

Step 1. The function E (encryption) or D (decryption) is used to compute Pi or

Ci: Ci = Eα,Ω(Pi), for encrypting and Pi = Dα,Ω(Ci), for decrypting, where Eα,Ω

and Dα,Ω are given by Eqs. (9) and (10).

Step 2. The chaotic operation mode is carried out. Consider the quantity Ω3, the

password π, and Θ = Pi/103+Ω3 . The Lorenz’s attractor is calculated to shuffle

the elements and ensure that there are no possibility of similarity of cipher blocks

when there is a similarity in the blocks of the plaintext. The chaotic operation mode

changes one of the Lorenz’s parameters, adding Θ to the x component if µ3 = 0,

to y if µ3 = 1 or to z, if µ3 = 2.

Step 3. The quantities µi are calculated as: µ′

i = [µi + Rν(αi, Ωi)] mod 3

where Rν is given by Eq. (8). The components of α are given by Eq. (6). Con-

sider now k3 an integer in the range 0 < k3 < ν − 2 and calculate Ωi =

[Ω′

i + Rν(α[(i+2) mod 3]+1, Ω
′

i)] mod ki, where Rν is given by Eq. (8). Finally set:

α′ = α, µ′ = µ and Ω′ = Ω, rn = rn + a′.

We stress that this algorithm may be adapted to use other dynamical system

that presents chaos as the maps obtained from discrete population models.31

4. Experiments and Results

Perhaps, there is no cipher that cannot be broken into, and never will be, at least,

using conventional computers and numerical mathematics. History demonstrates

that, many ciphers, which were considered invincible were in fact broken into. In-

deed, the cryptography and cryptoanalysis are in constant conflict, in which there

are no permanent winners. New ciphers are always appearing and new cryptoanal-

ysis methods emerging to break into them (the red queen effect). As a result, it is

hard to predict, how difficult it is to break into a cipher. Nevertheless, there are

some metrics that can help the analysis and can estimate how much the cipher

makes the ciphertext shuffled and unintelligible, allowing for a supposition about

how strong the cipher is.

In the following, two experiments with the proposed algorithm are presented.

Firstly, the algorithm encrypts a text message and an image. The analysis of the

shuffled capability of the method is presented. Besides the security, the computer

performance is another important point for a cipher to be able to be used in real

world applications. Secondly, the results of the performance for the two versions of

the sequential and parallel algorithm are presented. The results are compared with

a popular AES method, which is used commercially nowadays.

When a ciphertext is yielded, several analysis estimating the strength of the

cryptography are made. In the text experiment, the book “The Return of Sherlock
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Fig. 2. The frequency analysis of the book “The Return of Sherlock Holmes” using slightly
different passwords. (a) Histogram of the plaintext the circle 1 represents the frequency of character
“space” and the circle 2 represents the frequency of character “e,” (b) histogram of the ciphertext
using “123456” as a password, and (c) ciphertext histogram using “123457” as a password.
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Holmes” was encrypted. Long texts, such as books, are easier to be broken into

when compared with short messages since statistical patterns may be explored.

One of the most well known methods of cryptoanalysis is the frequency analysis.

It is quite simple and consists of carrying out a histogram, which presents the ASCII

characters frequency, giving tips about their frequency pattern for the cryptoanal-

ysis. The frequency analysis is carried out and displayed in Fig. 2. It illustrates the

histogram of the considered book, comparing the plaintext [Fig. 2(a)] with the ci-

phertext [Figs. 2(b) and 2(c)]. Notice that, the distribution is almost constant in the

ciphertext, like a white noise, which illustrates a good performance for the crypto.

Figures 2(b) and 2(c) present the book’s histogram encrypted with two slightly dif-

ferent passwords: “123456” and “123457.” The two histograms have different plots,

illustrating the way the cryptography result depends on the password.

The Shannon’s entropy is another approach to estimates how unintelligi-

ble the ciphertext is. For an eight-bit codification the text entropy is S =

−
∑28

−1
i=0 pi log2(pi), where pi is the relative frequency of the ith ASCII charac-

ter. The maximum entropy value is obtained when all the pi are the same (pi = 1;

2) leading to Smax = 8. The entropy of the book’s plaintext is 4.5 while the entropy

of the ciphertext attains its maximum value S = Smax = 8. The entropy achieved

by the cryptography is the same as the theoretical prediction for the system. This

result shows that the ciphertext has a very low level of redundancy or predictability.

In Fig. 3 auto-correlation matrices are shown, comparing the plaintext [Fig. 2(a)]

with the ciphertext [Fig. 2(b) and a white noise signal with the same length of the

book (c)].

In the second experiment, the cipher was evaluated encrypting an image. Images

are also appropriate to cryptoanalysis, as they have strong global and local patterns

and redundancy. The experiment is to compare three images: the original one, the

cipher image and white noise image. The frequency analysis has been performed and

compared it to 2D Fourier power spectrum of the images (see Fig. 4). Notice that

while the original image histogram has a lot of information concerning the image

and both the cipher image and noise histograms are similar. This fact shows how

unintelligible the encrypted image is. Unlike the spectrum of the original image,

the spectrum of the noise and the cipher image does not present any frequency

information, which demonstrates that the information cannot be achieved in the

cipher image.

5. Fast and Parallel Version

Performance is the most important obstacle that prevents practical use of chaos

based cryptography algorithms. In fact, they need float point and numerous cal-

culations, which make the chaos cryptography programs much slower than the

traditional ones. To make the proposed algorithm feasible, we have improved its

performance using parallel computation, which is in current use nowadays via the
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(a)

(b)

(c)

Fig. 3. The auto-correlation matrices of the book “The Return of Sherlock Holmes.” (a) Auto-
correlation matrix of the plaintext, (b) auto-correlation matrix of the ciphertext, and (c) auto-
correlation matrix of a white noise signal.
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Fig. 4. Comparison of a plain image, cipher image and white noise. In the first row, the matrices
analyzed are shown: (a) plain image, (b) cipher image, and (c) white noise. In the second, the
histogram analysis of the: (d) plain image, (e) cipher image, and (f) white noise. And in the last
row, there is the Fourier power spectrum of: (g) plain image, (h) cipher image, and (i) white noise.

increase of multiple cores in the computer processor or with the use of graphical

cards with multiple GPUs (Graphical Processing Unit).

The nature of our algorithm allows an intuitive parallelization. Consider a mes-

sage of size n and a machine with p processors. The parallel algorithm splits the

message into p parts and executes each part into a different processor. For each

process a particular initial condition is selected.

The computer performance of the cryptography algorithm is an important item

to make it feasible for real applications. The algorithm has been implemented in

Java and also in C (fast version). The choice of Java was made due to its portabil-

ity and capability to run on multiple operational systems and computer hardware

(also small devices such as mobile phones). Two versions of the algorithm have
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Fig. 5. Performance graphs. (a) Sequential performance of the proposed algorithm size in MBytes
versus time in seconds. (b) Comparison of the performance of the proposed algorithm in the GPU
version and the AES cryptography method. Line 1 represents the performance of the proposed
algorithm in a Nvidia geforce 8800 GT. Line 2 represents the performance of the AES algorithm
in an Intel Pentium 4 3.4 Ghz. Line 3 represents the performance of the AES algorithm in an Intel
QuadCore Q8200 and line 4 represents the performance of the proposed algorithm in a Nvidia
GTX 285.

been implemented: the full proposed method as described in Sec. 3 and its par-

allel version described above. In the parallel version, the chaotic operation mode

has been adapted to make the algorithm easy to be parallelized. This version is

weaker than the original version, but it is faster and also highly parallelized. There

is also a performance comparison of this implementation with the popular AES

cryptography method4 shown in Fig. 5.

Figure 5(a) shows the plot of the time consumption versus the size of the file

encrypted for the sequential strong version. The machine used was a Pentium 4–

3.40 GHz, with 3 GB of memory and which runs Gentoo Linux distribution and

a Intel QuadCore Q8200 with 4 GB of memory and which runs Debian Linux 5.0

distribution. The algorithm has an average rate of approximately 1.5 MB/min. Note
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that the program was implemented in Java and can achieve a performance of three

or four times faster if it is built using the C language. Although this performance

is very slow, it can be considered usable for high security purpose tasks.

To improve the performance of the algorithm, a simpler (but still strong), fast

and parallel version has been developed (Subsec. 5). The fast parallel version was

implemented in C and, to explore mass computer parallelism, the GPU (Graphics

Processing Unit) architecture was adopted (8800 GT graphical card) and the CUDA

(www.nvidia.com), a GPU programing tool for C, was used. Figure 5(b) presents

the performance of the program compared with the AES. Both programs run on the

same computer (described previously). The performance of the chaos based algo-

rithm, which is approximately (approximate 2.5 MB/s in a Nvidia Geforce 8800 GT

and approximate 4.3 MB/s in a Nvidia GTX 285) is close to the AES (approximate

8.3 MB/s in an Intel Pentium 4 3.4 Ghz and approximate 18 MB/s in a Intel Quad-

Core Q8200). The great performance of the fast and parallel implementation allows

immediate use of the chaos cryptography algorithm in real life applications, which

has an advantage of being more secure then the traditional cryptography approach.

6. Conclusion

In this paper, a new cryptograph algorithm based on the Lorenz’s attractor and

a novel method to carry out the operation mode with chaos (Chaotic Operation

Mode) were proposed. The proposed algorithm in combination with the Chaotic

Operation Mode achieves a strong cipher. The novel method has been implemented

in Java (sequential strong version) and also in CUDA (parallel fast version) and

experiments present the performance of cryptography and as well as the time of the

algorithm has been presented and discussed. The performance of the method and

the comparison with the AES algorithms demonstrate that the method is suitable

and prepared for real life applications. The analysis of the algorithm and of the

results, we notice that the algorithm is strong and perhaps very difficult to break

into. However, it is very difficult to determine in fact, how hard it is to break into

a cipher. Besides the set of experiments conducted and presented, a web version

of the algorithm has been implemented. We would like to invite cryptoanalysts

to try to break into the proposed cipher, and help us to determine the reliabil-

ity of the method and of course, to help develop new methods. Cryptology is a

dynamic science which is forever changing. The cryptography page can be found

at http://www.mandelbrot.ifsc.usp.br/crypto lorenz, and the reader can find an

interface for encode and decode messages and files.
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