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Abstract. It was recently proven (Hilhorst 2010 J. Stat. Mech. P10023) that
the q-generalization of the Fourier transform is not invertible in the full space of
probability density functions for q > 1. It has also been recently shown that this
complication disappears if we dispose of the q-Fourier transform not only of the
function itself, but also of all of its shifts (Jauregui and Tsallis 2011 Phys. Lett.

A 375 2085). Here we show that another route exists for completely removing
the degeneracy associated with the inversion of the q-Fourier transform of a given
probability density function. Indeed, it is possible to determine this density if we
dispose of some extra information related to its q-moments.
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q-moments remove the degeneracy of the inverse q-Fourier transform
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1. Introduction

Nonextensive statistical mechanics [1], a current generalization of the Boltzmann–Gibbs
theory, is actively studied in diverse areas of physics and other sciences [2, 3]. This theory
is based on a nonadditive entropy, commonly denoted by Sq, that depends, in addition to
the probabilities of the microstates, on a real parameter q, which is inherent to the system
and makes Sq extensive. In the limit q → 1, nonextensive statistical mechanics yields the
Boltzmann–Gibbs theory. This new theory has successfully described many physical and
computational experiments. Such systems typically are nonergodic ones, with long-range
interactions, long memory and/or other nontrivial ingredients: see, for example, [4]–[12].

The development of nonextensive statistical mechanics introduced, in addition to
the generalization of some physical concepts like the Boltzmann–Gibbs–Shannon–von
Neumann entropy, the generalization of some mathematical concepts. Remarkable ones
are the generalizations of the classical central limit theorem and the Lévy–Gnedenko one.
These extensions are based on a generalization of the Fourier transform (FT), namely the
q-Fourier transform (q-FT) [13, 14]. These generalized theorems respectively establish,
for q > 1, q-Gaussians and (q, α)-stable distributions as attractors when the considered
random variables are correlated in a special manner.

If 1 < q < 3, a q-Gaussian is a generalization of a Gaussian defined as a function
Gq,β : R → R such that

Gq,β(x) =

√
β

Cq[1 + (q − 1)βx2]1/(q−1)
≡

√
β

Cq

expq(−βx2), (1)

where β > 0 and Cq is a normalization constant given by

Cq =

√
πΓ((3− q)/2(q − 1))√

q − 1Γ(1/(q − 1))
. (2)

A q-Gaussian is not normalizable for q ≥ 3. Its variance is finite for q < 5/3; above
this value, it diverges. When correlations can be neglected, q → 1 and Gq,β(x) →
(β/π)1/2 exp(−βx2), which is a Gaussian.

doi:10.1088/1742-5468/2011/10/P10016 2
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q-moments remove the degeneracy of the inverse q-Fourier transform

The q-FT of a non-negative measurable function f , denoted by Fq[f ], is defined, for
1 ≤ q < 3, as

Fq[f ](ξ) =

∫

supp f

f(x) expq(iξx[f(x)]
q−1) dx, (3)

where supp f stands for the support of f , and expq(ix) = pv [1 + (1− q)ix]1/(1−q) for any
real number x, pv being the notation for principal value. This is a nonlinear integral
transform when q > 1. Its relevance in [13] is that it transforms a q-Gaussian into another
one. Hence the q-FT is invertible in the space of q-Gaussians [15]. However, it was recently
proven, by means of counterexamples, that the q-FT is not invertible in the full space of
probability density functions (pdf’s) [16]. In connection with this problem, it is worth
mentioning that it has been found an interesting property of the q-FT which enables the
determination of a given pdf from the knowledge of the q-FT of an arbitrary translation
of such pdf’s [17].

Here we will discuss the counterexamples given in [16], and we will show that it is
possible to determine the pdf’s considered in the counterexamples from the knowledge of
their q-FT and some extra information related with their q-moments, defined here below.

Let Q be a real number and f be a pdf of some random variable X such that the
quantity

νQ[f ] =

∫

supp f

[f(x)]Q dx (4)

is finite. Then, we can define an escort pdf [18] for X, denoted by fQ, as follows:

fQ(x) =
[f(x)]Q

νQ[f ]
. (5)

The moments of fQ, which are called Q-moments of f , are given by

Π
(n)
Q [f ] =

∫

supp f

xnfQ(x) dx =
µ

(n)
Q [f ]

νQ[f ]
, (6)

where µ
(n)
Q [f ] is the unnormalized nth Q-moment of f , defined as follows:

µ
(n)
Q [f ] =

∫

supp f

xn[f(x)]Q dx, (7)

n being a positive integer.
The characteristic function of X is basically given by the Fourier transform of f , F [f ].

It is well known that all the moments of f can be obtained from the successive derivatives of
the characteristic function of X at the origin. It was shown that the successive derivatives
of the q-FT of f at the origin are related to specific unnormalized Q-moments of f by the
following equation [19]:

dnFq[f ](ξ)

dξn

∣

∣

∣

∣

ξ=0

= in

{

n−1
∏

j=0

[1 + j(q − 1)]

}

µ(n)
qn
[f ], (8)

where qn = nq − (n − 1). We can see from this relation that, if the q-FT of f does not
depend on a certain parameter that appears in f , then the unnormalized nth qn-moments

doi:10.1088/1742-5468/2011/10/P10016 3
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Figure 1. Representation of hq,λ,a for λ = 1.1 and different values of q and a.

also do not depend on such a parameter. Therefore, these unnormalized moments are
unable to identify the pdf f from its q-FT. As will soon become clear, this difficulty does
not exist for the set of {νq}, which will then provide the desired identification procedure.

2. Hilhorst’s examples

We discuss in this section two examples proposed by Hilhorst [16], where the pdf depends
on a certain real parameter, which disappears when we take its q-FT. Therefore, at the
step of looking at the inverse q-FT, we face an infinite degeneracy. Next we illustrate, in
both examples, how the degeneracy is removed through the values of the {νq}.

2.1. First example

Let us consider the function hq,λ,a : R → R such that [16]

hq,λ,a(x) =

(

λ

|x|

)1/(q−1)

(9)

if a < |x| < b, where q > 1, and (a, b, λ) are positive real numbers; otherwise hq,λ,a(x) = 0
(see figure 1). We can impose the following normalization condition for this function:

∫ +∞

−∞

hq,λ,a(x) dx = 1. (10)

From this, it follows that one parameter among q, λ, a, b depends on the other ones.
Choosing b as the dependent parameter, we get

b =

[

q − 2

2(q − 1)
λ1/(1−q) + a(q−2)/(q−1)

](q−1)/(q−2)

q �= 2 (11a)

= ae1/2λ q = 2. (11b)

doi:10.1088/1742-5468/2011/10/P10016 4
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Figure 2. The dependence on a of FQ[h1.7,1.1,a](1) for different values of Q.

Given Q such that 1 ≤ Q < 3, the Q-FT of hq,λ,a can be easily reduced to the following
expression:

FQ[hq,λ,a](ξ) = 2

∫ b

a

(

λ

x

)1/(q−1)

cosQ

(

ξx

(

λ

x

)(Q−1)/(q−1)
)

dx, (12)

where cosq is the q-generalization of the trigonometric function cos which is defined by [20]
cosq x = ℜ(expq(ix)). When q �= 1, we have that

cosq x = [1 + (1− q)2x2]1/2(1−q) cos

(

arctan((1− q)x)

1− q

)

. (13)

It is easy to notice from (12) that theQ-FT of hq,λ,a depends on a ifQ �= q. However, it
does not depend on a whenQ = q (see figure 2), when it is given by Fq[hq,λ,a](ξ) = cosq(ξλ).

Consequently, there exist infinite functions hq,λ,a with the same q and λ but different
a, which have the same q-FT. Therefore, it is not possible to determine hq,λ,a just from
the knowledge of its q-FT. However, it may be possible to obtain hq,λ,a from its q-FT and
some extra information. For example, we would be able to determine hq,λ,a if we knew
the q-FT of an arbitrary translation of hq,λ,a [17]. Here we will give another approach to
this problem.

As hq,λ,a is a non-negative function, which obeys the normalization condition (10), it
can be interpreted as a pdf of some random variable. Moreover, for any real number Q,
we have that

νQ[hq,λ,a] = 2λQ/(q−1)[b1−Q/(q−1) − a1−Q/(q−1)]
(q − 1)

q − 1− Q
Q �= q − 1 (14a)

= 2λ ln(b/a) Q = q − 1 (14b)

is finite. With n being an even positive integer, we have also that the unnormalized
nth Q-moment of hq,λ,a is given by

doi:10.1088/1742-5468/2011/10/P10016 5
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Figure 3. The dependence on a of the quantities (a) µ
(2)
Q [h1.7,1.1,a] and

(b) µ
(2)
Q [h2,1.1,a] for different values of Q.

µ
(n)
Q [hq,λ,a]=2λ

Q/(q−1)[bn+1−Q/(q−1)−an+1−Q/(q−1)]
(q−1)

(n+1)(q−1)−Q
Q �=(n+1)(q−1) (15a)

=2λn+1 ln(b/a) Q = (n+ 1)(q − 1).

(15b)

Then, finally, the nth Q-moment of hq,λ,a is given by

Π
(n)
Q [hq,λ,a] =

bn − an

n ln(b/a)
Q = q − 1 (16a)

=
nanbn

bn − an
ln(b/a) Q = (n+ 1)(q − 1) (16b)

=

[

bn+1−Q/(q−1)−an+1−Q/(q−1)

b1−Q/(q−1)−a1−Q/(q−1)

]

(q − 1− Q)

(n + 1)(q − 1)− Q
otherwise. (16c)

It is clear that µ
(m)
Q [hq,λ,a] = 0 and Π

(m)
Q [hq,λ,a] = 0 for any odd positive integer m, since

hq,λ,a(x) is an even function.
As the q-FT of hq,λ,a does not depend on a, then, according to (8), the nth qn-moment

of hq,λ,a does not depend on a either, where qn = nq−(n−1). In fact, if q �= 2, we have that

µ(n)
qn
[hq,λ,a] =

2(q − 1)

q − 2
λn+1/(q−1)[b(q−2)/(q−1) − a(q−2)/(q−1)]. (17)

Then, using (11a), we obtain that µ
(n)
qn [hq,λ,a] = λn. If q = 2, we have that µ

(n)
n+1[hq,λ,a] =

2λn+1 ln(b/a) and, using (11b), we obtain that µ
(n)
n+1[hq,λ,a] = λn.

While the unnormalized Q-moments of hq,λ,a may not depend on a (see figure 3), we
can straightforwardly verify from (14a) and (14b) that the quantity νQ[hq,λ,a] depends

doi:10.1088/1742-5468/2011/10/P10016 6
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Figure 4. The dependence on a of the quantities (a) νQ[h1.7,1.1,a] and
(b) νQ[h2,1.1,a] for different values of Q.

Figure 5. The dependence on a of the quantities (a) Π
(2)
Q [h1.7,1.1,a] and

(b) Π
(2)
Q [h2,1.1,a] for different values of Q.

monotonically on a for any Q �= 1 (see figure 4). The same is true for the normalized
Q-moments (see figure 5). Hence, the knowledge of the q-FT of hq,λ,a and the value of
some νQ[hq,λ,a] with Q �= 1 (extra information) is sufficient to determine the pdf hq,λ,a.
We should notice that ν1[hq,λ,a] = 1 (it does not depend on a), then the extra information
in this case is trivial.

2.2. Second example

Let us consider now the function fq,A : R → R such that [16]

fq,A(x) =
[αq,A(x)]

1/(1−q)

Cq{1 + (q − 1)x2[αq,A(x)]−2}1/(q−1)
(18)

doi:10.1088/1742-5468/2011/10/P10016 7
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Figure 6. Representation of f5/4,A for different values of A.

Figure 7. The dependence on A of FQ[f1.4,A](1) for different values of Q.

if |x|(q−2)/(q−1) > A, where 1 < q < 2, A ≥ 0:

αq,A(x) = [1− A|x|(2−q)/(q−1)](q−1)/(2−q), (19)

and Cq is the normalization constant of a q-Gaussian given by (2); otherwise fq,A(x) = 0
(see figure 6). We can easily notice that fq,0(x) = Gq,1(x), where Gq,β(x) is defined in (1).

Let 1 < Q < 3 and A > 0. The Q-FT of fq,A is given by (see figure 7)

FQ[fq,A](ξ) =

∫ A(q−1)/(q−2)

−A(q−1)/(q−2)

fq,A(x) expQ(iξx[fq,A(x)]
Q−1) dx. (20)

doi:10.1088/1742-5468/2011/10/P10016 8
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In order to compute this integral in the particular case Q = q, we should notice first that

expq(iξx[fq,A(x)]
q−1) = expq

(

iξx[αq,A(x)]
−1

Cq−1
q {1 + (q − 1)x2[αq,A(x)]−2}

)

= pv {1 + (q − 1)x2[αq,A(x)]
−2}1/(q−1)

×
{

1 + (1− q)

{

−x2

[αq,A(x)]2
+
iC1−q

q ξx

αq,A(x)

}}1/(1−q)

= {1 + (q − 1)x2[αq,A(x)]
−2}1/(q−1) expq

(

−x2

[αq,A(x)]2
+
iC1−q

q ξx

αq,A(x)

)

. (21)

Then

Fq[fq,A](ξ) =
1

Cq

∫ A(q−1)/(q−2)

−A(q−1)/(q−2)

1

[αq,A(x)]1/(q−1)
expq

(

−x2

[αq,A(x)]2
+
iC1−q

q ξx

αq,A(x)

)

dx

=
1

Cq

∫ A(q−1)/(q−2)

−A(q−1)/(q−2)

1

[αq,A(x)]1/(q−1)

× expq

(

−
[

x

αq,A(x)
−
iC1−q

q ξ

2

]2

− C
2(1−q)
q ξ2

4

)

dx. (22)

Finally, using the change of variables

y =
x

αq,A(x)
−
iC1−q

q ξ

2
, (23)

we obtain that

Fq[fq,A](ξ) =
1

Cq

∫ +∞−iC1−q
q ξ/2

−∞−iC1−q
q ξ/2

expq

(

−y2 − C
2(1−q)
q ξ2

4

)

dy, (24)

which does not depend on A. Moreover, the RHS of (24) is equal to the q-FT of the
q-Gaussian Gq,1 (see details in [13]), which, naturally, does not depend on A. Then, the
knowledge of only the q-FT of fq,A would not be sufficient information to determine fq,A.
Hence, as in the first example, extra information is needed.

Let Q be a real number. Considering fq,A as a pdf of some random variable, we have
that

νQ[fq,A] =

∫ A(q−1)/(q−2)

−A(q−1)/(q−2)

[αq,A(x)]
Q/(1−q)

CQ
q {1 + (q − 1)x2[αq,A(x)]−2}Q/(q−1)

dx

=
1

CQ
q

∫ A(q−1)/(q−2)

−A(q−1)/(q−2)

1

[αq,A(x)]Q/(q−1)

[

expq

(

− x2

[αq,A(x)]2

)]Q

dx, (25)

which is finite and depends on A when Q �= 1 (see figure 8). The unnormalized nth Q-
moment of fq,A for any positive integer n is given by

µ
(n)
Q [fq,A] =

1

CQ
q

∫ A(q−1)/(q−2)

−A(q−1)/(q−2)

xn

[αq,A(x)]Q/(q−1)

[

expq

(

− x2

[αq,A(x)]2

)]Q

dx, (26)

doi:10.1088/1742-5468/2011/10/P10016 9
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Figure 8. The dependence on A of the quantity νQ[f1.4,A] for different values of
Q.

Figure 9. The dependence on A of the unnormalized fourth Q-moment of f1.4,A

for different values of Q.

which depends on A except when Q = qn = nq − (n− 1) (see figure 9). In this case, using
the change of variables y = x/αq,A(x), we obtain that

µ(n)
qn
[fq,A] =

∫ +∞

−∞

yn

[

1

Cq
expq(−y2)

]nq−(n−1)

dy, (27)

which is equal to the unnormalized nth qn-moment of the q-Gaussian Gq,1. Therefore, we
see that, as in the first example, the knowledge of any νQ[fq,A] with Q �= 1 enables the
determination of the pdf fq,A from its q-FT.

doi:10.1088/1742-5468/2011/10/P10016 10
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3. Conclusions

Both functions hq,λ,a and fq,A show that the q-FT is not invertible in the full space of
pdf’s, since their q-FT’s do not depend on a and A, respectively. However, if Q �= q,
this problem would not occur for the Q-FT of both functions (see figures 2 and 7). In
other words, the Q-FT of both functions with Q �= q would, in principle, be invertible.
Furthermore, in the case Q = q, figures 4 and 8 show that the quantities νQ[hq,λ,a] and
νQ[fq,A] depend monotonically on a and A, respectively, which removes the degeneracy.
Therefore, the knowledge of the q-FT of both functions and a single value of νQ[hq,λ,a]
and νQ[fq,A] is sufficient to determine the functions hq,λ,a and fq,A.

If we were in the case that a pdf f depends on two or more parameters and its q-
FT does not depend on more than one such parameter, we would expect this method of
identification of the inverse q-FT to work as well as in the case of the functions considered
in this paper. However, it might be possible that more than one value of νQ is needed.
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