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a b s t r a c t

We study a decomposition process where all nodes with a targeted degree are removed
from the network. Each removal step results in changes in the degrees of the remaining
nodes, and other nodes may attain the targeted degree. The processes continue iteratively
until no more nodes with the targeted degree are present in the decomposed network. The
network model used in our study is the well known Barabasi–Albert network, that is built
with an iterative growthbased onpreferential attachment. Our results showanexponential
decay of the number of nodes removed at each step. The total number of nodes removed in
the whole process depends on the targeted degree and decay with a power law controlled
by the same exponent as the degree distribution of the network.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

One of themost common properties of real world networks is a power-law shape for the degree distribution, P(k) ∼ k−γ ,
with an exponent gamma typically in the range 2 < γ < 3 [1]. Due to this highly skewed distribution, many processes
that take place on these networks are more influenced by the hub nodes with extreme degrees than by the typical nodes
of average degree [2]. For this reason such networks are called scale-free networks. The preferential attachment scheme,
proposed by Barabasi and Albert [3] is amethod bywhich one can build networks that naturally grow to obtain the scale-free
characteristic. In this method nodes are introduced to the network one by one. The network starts with m + 1 nodes fully
connected to each other. At each step a new node is added andmakesm new connections to the nodes already present in the
network. The parameter m is called here the aggregation coefficient. The key ingredient to obtain a scale-free distribution
is the preferential attachment where the connections are directed with higher probability to the nodes with higher degree.
Specifically, the probability of a node to receive a newconnection is directly proportional to its degree.Manyproperties of the
Barabasi–Albert (BA) networks have been studied, including random and targeted attack [4], extremumdegree statistics [5],
and cluster growth phenomena [6].

2. Model

In this paper we investigate a method of deconstructing BA networks. Our iterative decomposition process is performed
by removing in successive steps all the nodes of a network that have a certain targeted degree K . At the initial step we
identify all the nodes with degree K and remove from the network these nodes and their connections. This removal changes
the degrees of the remaining nodes, and someof the nodes, that hadmore thanK connections before,might have their degree
changed to the targeted degree. As shown in Fig. 1, all the nodes that now have degree K are removed in the following step,
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Fig. 1. Schematic illustration of the iterative decomposition process. In (a) we show a network with N = 10 nodes. The decomposition process starts by
removing all the nodes with targeted degree K = 3, shown in gray. In (b) we show the network after the first removal step. Two other nodes now have
k = 3, and will be removed. In (c) no nodes with degree k = 3 are present and we reach the final configuration of the iterative decomposition process.

Fig. 2. Fraction of removed nodes at the end of the iterative process 〈SK 〉 as a function of the targeted degree K . The decomposition is performed on a
Barabási–Albert (BA) network with N = 223 nodes built with different aggregation coefficients m. We can see a power-law decay with slope close to 3.0,
independent ofm. The data for different values ofm can be collapsed by multiplying by a factorm−η , with η = 1.8, as seen in the main panel. In the inset
we show the original data.

and the process continues until we reach a networkwithout any nodewith the targeted degree. This iterative decomposition
method bears some resemblance, but is different from the k-core decomposition [7–9] where all the nodes with degree
smaller than a certain value k are successively removed.

3. Results and discussion

The fraction of nodes removed at step t is given by sK (t), and the total fraction of removed nodes SK is given by

SK =
Tk∑
t=1

sK (t), (1)

where TK is the number of steps when the end of the decomposition process is reached.
Similar to what is observed in the k-core decomposition [8–11], the total fraction of nodes removed from the

Barabási–Albert (BA) network follows a power-law decay

〈SK 〉 = CSK−αm−η, (2)

with CS ≈ 3.76, η ≈ 1.8 and α ≈ 3. The exponent α is independent on the aggregation coefficient m and on the network
size N , as seen in Fig. 2. One can note that 〈SK 〉 decays with the same exponent as the degree distribution. The curves for the
fraction 〈SK 〉 can be collapsed by rescaling by a factormη . A similar rescaling with the parameterm can also be observed for
the degree distribution, however with an slightly different exponent [12].
Fig. 3 shows that the average fraction of nodes removed at each step decays exponentially

〈sK (t)〉 = CKe−λK t . (3)

Although we present results for m = 3, similar behavior is observed for any value of m. The parameters λK and CK give
the characteristic decay and the initially removed fraction respectively, and are both dependent on the targeted degree K .
In Fig. 4 we show the dependence of λK on the targeted degree and on the parameter m. We observe that λk displays a
logarithmic growth,

λK = δ ln(CλKm−ν), (4)
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Fig. 3. The fraction of nodes removed at each step of the iterative process 〈sK (t)〉. The iterative decomposition process was applied to BA networks with
m = 3 and N = 225 . Each curve is obtained for a different value of the targeted degree K and with an average of 200 network realizations. The number
of removed nodes decreases at each step. The symbols are the results from simulations and the lines are exponential fits for the results. The slope of the
decay λK depends on the targeted degree.

Fig. 4. Dependence of λK on the targeted degree K for different values ofm. The values of λK are obtained from the slope of 〈sK 〉 versus t (see Fig. 3). We
obtain a logarithmic dependence λK ∼ δ ln(K), with δ = 0.89. In the inset we show the collapse of the data for different m rescaling K by a factor m−ν ,
with ν = 1.25.

with δ ≈ 0.89, ν = 1.25, and Cλ = 0.41. Some deviations from this logarithmic growth are observed for small values of K ,
specially in the case form = 1. The curves for different values ofm can be collapsed by the factormν as seen in the inset of
Fig. 4.
To demonstrate the consistence of our findings we can verify that the sum of the fractions removed at each step,

given by Eq. (3) amounts to the total removed fraction, given by Eq. (2). Approximating the sum by an integral we have
〈SK 〉 =

∫ TK
1 CKe

−λK tdt = CKλ−1K K
−δ , where we have neglected the term of order e−λK TK . From Eq. (2) we obtain that

CK = λKeλK 〈SK 〉 ∼ K δ−αλK . (5)

This prediction is confirmed by the numerical results of Fig. 5.
Finally we can investigate the behavior of the total duration Tk of the decomposition process. The total duration is the

number of steps until no more nodes with the targeted degree are present. A crude estimation of TK can be made by finding
the first step where on average only one node is removed from the network sK (TK ) = N−1. Taking this together with Eq. (3)
we obtain

TK = ln(NCK )/λK . (6)

In Fig. 6 we compare the average duration obtained by sampling 200 network realizations with the prediction of Eq. (6).
One can see that, for large values of K , the numerical result follows closely the expected behavior providing evidence for the
consistency of our results.
We have investigated amethod of iterative decomposition of BA scale-free networks. Ourmethod consists of successively

removing all the nodes with a certain targeted degree. We observe that the fraction of nodes removed at each step decays
exponentially with a characteristic parameter controlling the decay λK depending on the desired targeted degree. The total
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Fig. 5. Dependence of the initial fraction of removed nodes as a function of the targeted degree K . We show data for m = 3 and different network sizes.
The continuous line is given by Eq. (5).

Fig. 6. Average total removal duration as a function of the targeted degree K . The total removal duration is the number of steps until the process stops.
The continuous line is given by Eq. (6).

fraction removed at the end of the process decays as a power law with the same exponent as the degree distribution of the
original Barabasi–Albert network.
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