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Abstract – We study the robustness of the functionals of probability distributions such as the
Rényi and nonadditive Sq entropies, as well as the q-expectation values under small variations of
the distributions. We focus on three important types of distribution functions, namely i) continuous
bounded, ii) discrete with finite number of states, and iii) discrete with infinite number of states.
The physical concept of robustness is contrasted with the mathematically stronger condition
of stability and Lesche-stability for functionals. We explicitly demonstrate that, in the case of
continuous distributions, once unbounded distributions and those leading to negative entropy are
excluded, both Rényi and nonadditive Sq entropies as well as the q-expectation values are robust.
For the discrete finite case, the Rényi and nonadditive Sq entropies and the q-expectation values
are robust as well. For the infinite discrete case, where both Rényi entropy and q-expectations are
known to violate Lesche-stability and stability, respectively, we show that one can nevertheless
state conditions which guarantee physical robustness.

Copyright c© EPLA, 2009

Introduction. – Thermostatistical quantities such as
entropy are expressed as functionals of probability distri-
butions. For these quantities to be physically meaningful
they should not change drastically if the underlying distri-
bution functions are slightly changed. In practical terms,
the unavoidable experimental uncertainty in determining
the distribution function should not cause the thermo-
dynamical quantities to fluctuate wildly, or even diverge.
It is therefore of elementary interest to clarify and check
that thermodynamical quantities are robust under small
variations of the distribution functions. This interesting
point was first raised by Lesche in 1982 [1]. He proved
that the Boltzmann-Gibbs (BG) entropy is, in its discrete
form, stable (nowadays often referred to as Lesche-stable).
Furthermore, he proved that Rényi entropy is not, which
in principle makes it inappropriate for thermodynamical
purposes (unless one restricts its use to a class of distri-
butions for which the behavior is adequate). Later on,

(a)E-mail: rudolf.hanel@meduniwien.ac.at
(b)E-mail: thurner@univie.ac.at
(c)E-mail: tsallis@cbpf.br

Abe [2] proved that the nonadditive entropy Sq, on which
nonextensive statistical mechanics is based, is, like the
BG entropy, Lesche-stable. This naturally reinforces its
admissibility for thermodynamical purposes.
Before entering into the main purpose of the present

paper, let us briefly review the mathematical formulation
of Lesche-stability. We define probability distributions
on a set of W discrete states, p= {pi}

W
i=1. Let us

denote a variation by p′i = pi+ δpi, the L1 distance

being ‖ p− p′ ‖1=
∑W
i=1 |pi− p

′

i|. Within the class of Lp
distances (or even other types of possible distances), the
L1 distance is adopted because it generically does not
depend on W (see [1] for further details). Of course, the
verification of this convenient fact within the family Lp by
no means proves the uselessness of other possible distances
(e.g., Kulback-Leibler-based, or Jensen-Shannon-based)
within the same or similar context. Nevertheless, the
present Lesche’s criterion certainly constitutes a para-
digmatic one. Another point which obviously is relevant
to physics is whether we desire to apply the stability
criterion to all probabilitiy distributions, or only to a
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restricted class of them, namely those that have physical
relevance, in a sense to be appropriately defined. This
particular point will be addressed in detail later on.
A functional Q[p] (e.g., an entropic form) is called stable

(Lesche-stable) if, for every ǫ, one can find a δ such that
for all W and for all p and p′ one has

‖ p− p′ ‖1< δ ⇒
|Q[p]−Q[p′]|

Qmax
< ǫ. (1)

Here Qmax is the maximum of the functional. Lesche
could show that, under this strict definition of stability,
Rényi entropy is unstable. Indeed, he could find examples
for p and p′ for which —by taking the W →∞ limit—
Lesche-stability is violated [1]. Taking the W →∞ limit
is essential. If one can show that, in the W →∞ limit,
stability is violated, this implies that for some finite
W violation is already emerging, i.e. the bound ǫ in
eq. (1) gets violated for specific distributions p and p′

with ‖ p− p′ ‖1< δ. Hence, the condition is not true for
all W , the functional thus is Lesche-unstable. Lesche-
stability has been used lately to analyze the stability of
various generalized entropies. The use of entropies on that
basis was suggested as a new validity criterion [1–4]. It
is therefore not surprising that it has occasionally lead to
some confusion, see, e.g., [5,6]. The discussion of Lesche-
stability has also been extended to other entropies [7,8].
If one does not divide by Qmax, eq. (1) becomes the
traditional continuity condition for a functional and the
stability criterion becomes a notion of uniform continuity.
The requirement that a functional Q[p] should only be

considered stable if eq. (1) holds for all p and p′ and
W uniformly, is unnecessarily strict for physical systems.
In a physical context it is reasonable to call a functional
Q[p] physically robust if it is continuous on the domain
of physically admissible distributions p. In the case of
continuous distribution functions, admissible requires that
the corresponding BG entropy (−

∫

p ln p) is positive1. In
other words, for physical situations it is sufficient to ensure
robustness of functionals, not necessarily their stability2.
Although unbounded physical distributions exist, we are
not focusing on them here. For all other physically admis-
sible distribution functions robustness is guaranteed. For
finite W any probability distribution is admissible.
The discussion of stability and robustness is not

restricted to entropies [2–8], but also to other quanti-
ties such as the q-expectation values, which naturally
occur in the context of formalisms using generalized
entropic functionals [9–12]. The q-expectation values

1In the continuum, entropy functionals such as the BG, Rényi and
others are well known to become negative for distributions which
include too narrow peaks, a situation which typically corresponds
to the low-temperature limit, where the quantum nature of physical
systems must be taken into account.
2If a functional is stable it is always safe to use. Inversely,

instability points at the fact that the domain of safe usage is
limited. Here, robustness is never used in the sense of trajectories
or attractors, as done in other contexts.

(i.e., standard expectation values with the so-called
escort distribution [13], proportional to pq) naturally
appear in differential thermodynamic relations when-
ever the probability distribution presents power law
behavior. This can be illustrated with the q-exponential

function, eq(x)≡ [1+ (1− q)x]
1

1−q , which, for q > 1,
asymptotically decays like a power law. Indeed, when-
ever one takes derivatives of usual expectation values
escort expectation values cannot be avoided, since the
exponent q emerges due to deq(x)/dx= [eq(x)]

q. For
instance, normalization of the typical q-exponential
distribution ρ(ǫ) = eq(−α−βǫ), where β is the inverse
temperature and α a normalization constant, requires
1 =
∫

∞

0
dǫ eq(−α−βǫ). A simple calculation shows that

the derivative dα/dβ =−
∫

dǫ[ρ(ǫ)]qǫ/
∫

dǫ[ρ(ǫ)]q, which
is exactly the escort expectation of ǫ. Another aspect can
be illustrated with unimodal distributions. For example,
if one has a q-Gaussian distribution [14], its width can
be characterized by the (variance)1/2 as long as q < 5/3.
This is not true anymore if q� 5/3 (e.g. for q= 2, which
corresponds to the celebrated Cauchy-Lorentz distribu-
tion) since the variance diverges. In all cases, however, we
can characterize the width by the inverse of the maximal
value of the distribution. It happens that this inverse
scales like the (q− variance)1/2.
Recently it was shown, using Lesche’s two explicit

examples for p and p′ [1], that q-expectation values are
unstable on discrete infinite distributions [15]. The first
example corresponds to 0< q < 1, the second one to q > 1.
Example 1): 0< q < 1

pi = δi 1, p
′

i =

(

1−
δ

2

W

W − 1

)

pi+
δ

2

1

W − 1
. (2)

Example 2): q > 1

pi =
1

W − 1
(1− δi 1) , p

′

i =

(

1−
δ

2

)

pi+
δ

2
δi 1. (3)

Here ‖ p− p′ ‖1= δ, for any value ofW . Specifically, in [15],
instability was shown for the q-expectation of an observ-
able O= {Oi}

W
i=1 on the discrete index set Ĩ = {1, . . . ,W},

i.e., the expectation, with q �= 1, of Q[p] =
∑

i P
(q)
i Oi,

where the escort distribution is given by

P
(q)
i =

pqi
W
∑

j=1

pqj

. (4)

For both examples limW→∞ |Q[p]−Q[p
′]|= |Ō −O1|,

where Ō ≡ limW→∞W
−1
∑

iOi, which proves instability
when O andK are chosen such that |Ō −O1|>K > 0 [15].
This implies that q-expectations are not uniformly
continuous functionals in the limW →∞. It was
concluded in [15] that the instability of the q-expectation
value is the general situation, thus suggesting to
re-think the use of q-expectation values in nonexten-
sive statistical mechanics. While the result in [15]
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is correct in the strict sense of stability used there,
this does not imply that q-expectation values are not
robust either on finite sets —as will be shown here—
or for continuous variables with the mentioned physical
admissibility and boundedness conditions [16]. Therefore,
the final conclusion drawn in [15] that the q-expectation
is in general unstable under small variations of the
probability distributions does not hold for physically rele-
vant cases such as continuum distributions and discrete
distributions on finite support. Even for a discrete infinite
support, robustness is verified, as it will be shown, for
paradigmatic physical distributions. Robustness in the
above sense is sufficient for virtually all practical physical
purposes. In other words the requirements of boundedness
and positive entropy exclude the pathological cases of
singular distributions and singular variations. The exam-
ples used in [15] are representatives of such pathological
cases.
In this contribution we primarily discuss stability and

robustness of q-expectation values and Rényi entropy
for three types of support for distribution functions,
the continuous, discrete finite, and discrete infinite. For
the continuous case, under the requirement of physically
admissible and bounded probability distributions and
variations, we show the robustness of q-expectation values
and Rényi entropy. We then show that the theorems given
in [16] allow to prove robustness for all finite discrete sets.
Even though it is not possible to immediately use the
theorems to make statements about infinite discrete sets,
which have been shown to be unstable for Rényi entropy
and the q-expectation value (for q �= 1) [1,15], we show
how the theorems can be used to derive restrictions so
that robustness can be accomplished there as well. We
finally discuss the situation for Sq entropy for continuous
and discrete finite probability distributions. A discussion
on the distinction of discrete finite and infinite cases
has been presented on numerical grounds in [17]. It is
known that the nonadditive entropy Sq on discrete infinite
distributions is robust because it is Lesche-stable [2].

Stability criteria for the q-expectation value
for admissible continuous distribution functions.

– To make the paper self-contained we first review the
stability criteria for the continuum case as discussed in
two theorems in [16]. These two theorems determine
the robustness criteria for q-expectation values in the
continuum. These theorems will be used below to show
that not only the two examples of Lesche used in [15]
are robust on finite sets, but that this is the case for all
distribution functions on finite sets.
For notation, in the continuum, the escort distri-

bution reads P (q)(x)≡ ρ(x)q∫
dx′ρ(x′)q

, where ρ denotes a

continuous probability distribution. The expectation
value of an observable O(x) under this measure is
Q̃[ρ] =

∫

dxP (q)(x)O(x), and its total variation reads

δQ̃[ρ] = Q̃[ρ+ δρ]− Q̃[ρ]. Here we use Q̃[ρ] to distinguish
from the discrete case.

The case 0< q < 1. The following theorem proves
that, for 0< q < 1, instability only can happen for singular
distributions ρ. In the theorem ‖ O ‖∞= sup{|O(x)| : x∈
[0, 1]} denotes the so-called supremum or uniform norm,
which is just the smallest upper bound of |O|.

Theorem 1. Let 0< q < 1. Let 0< ρ be a non-
singular probability distribution on I = [0, 1]. Let G=
∫

I
dx ρ(x)q and let 0< δ̃q = μG/4, for 0<μ< 1, and δρ be

a variation of the distribution such that,
∫

I
dx|δρ|= δ� δ̃,

and 0< ρ+ δρ is positive on I. Furthermore, let 0<O be a
strictly positive bounded observable on I, then there exists
a constant 0< c<∞, such that

|Q̃[ρ]− Q̃[ρ+ δρ]|< cδq. (5)

Moreover, c= 4G−2 ‖O ‖∞ (1+ ‖O ‖∞‖O
−1 ‖∞)/(1−μ).

The theorem states that, for positive bounded observ-
ables, q-expectation values are robust whenever the
distribution ρ is non-singular3. The class of singular
distributions is therefore the only class of distributions
that contain all possible violations to stability for
0< q < 1, as long as the observable O is bounded on
domain I. The corresponding example in [15] explicitly
converges toward a singular distribution in the W →∞
continuum limit and thus violates stability.

The case q > 1. In contrast to the 0< q < 1 case,
instability for q > 1 is not primarily due to singular
distributions ρ, but due to the variation δρ having singular
parts, i.e., due to an unbounded δρ. Note, that for
bounded δρ to exist, ρ also has to be non-singular. To keep
∫

dx[ρ(x)]q and
∫

dx[ρ(x)]qO finite, we further restrict ρ
to be bounded.

Theorem 2. Let q > 1 and let m> 0 be an arbi-
trary but fixed constant. Let 0< ρ be a probability
distribution on I = [0, 1]. Let δρ be variations of ρ,
i.e. ρ+ δρ > 0. Let B > 0 be an arbitrary but fixed
constant. Let the variations δρ be uniformly bounded in
the m-norm, i.e. ‖ δρ ‖m<B, by this constant B. Further,
let ‖ δρ ‖1= δ and let 0<O be a strictly positive bounded
observable on I. Let δ̃ be an upper bound for the size of
the variations δ such that, (21/q − 1)q/γ(Bq−γ ‖O ‖∞‖
O−1 ‖∞)

−1/γ > δ̃ > 0, where γ = (m− q)/(m− 1), then
there exists a constant 0<R<∞, such that

|Q̃[ρ]− Q̃[ρ+ δρ]|<Rδγ/q, (6)

and R does not depend on the choice of ρ.
Theorem 2 states that, for positive bounded observ-

ables, q-expectation values are robust whenever the
distributions ρ are uniformly bounded4. Excluding
unbounded variations from consideration therefore is

3When all considered ρ are bounded by the same bound 0< ρ<
B, then the constant c does not depend on the choice of ρ and Q̃ is
absolutely continuous on this domain.
4When all considered distributions are bounded by the same

upper bound (m→∞ and γ→ 1), then R can be chosen independent
of ρ and Q̃ becomes uniformly continuous.
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sufficient to guarantee stability for the q > 1 case in a
general setting. In the corresponding example in [15],
when formulated in the continuum limit, stability is
violated by using unbounded variations5.
Both theorems in [16] are analytical statements about

the continuity properties of the q-expectation value as a
non-linear functional without any reference to thermo-
dynamics. They provide a useful and flexible mathematical
tool to analyze continuity properties for discrete sets as
well as for the continuous case on [0,∞].

Stability criteria for the q-expectation value
for discrete finite probability functions. – We can
now use the above theorems to prove the robustness
of q-expectations for bounded observables on finite
discrete sets i∈ IW ≡ {1, 2, . . . ,W}. For this we map
the discrete probability distribution onto the continuous
interval x∈ [0, 1] by identifying probabilities {pi}

W
i=1 with

probability densities ρ(x) =Wpi for x∈ [(i− 1)/W, i/W ],
i.e. step functions on [0, 1]. The observable {Oi}

W
i=1

gets identified with the step function f(x) =Oi for
the associated interval x∈ [(i− 1)/W, i/W ]. Clearly,
0� ρ�W for all possible distributions of this kind and
so are all possible variations since |ρ(x)− ρ′(x)|<W .
Since the observable f(x) is bounded, all conditions
needed for Theorems 1 and 2 are met. Let γ = q
for 0< q < 1 and γ = 1/q for q > 1. For some given
constant 0< δ̃ there exists a constant C, such that for
all |ρ− ρ′|< δ < δ̃ it follows that Cδγ > |Q̃[ρ]− Q̃[ρ′]|

where Q̃[ρ] =
∫ 1

0
dx [ρ(x)]qf(x)/

∫ 1

0
dx [ρ(x)]q is the

q-expectation for the continuous case. Now Q̃[ρ] =
∑W
i=1 W

−1 [Wpi]
q Oi /

∑W
i=1 W

−1 [Wpi]
q =
∑W
i=1 piOi /

∑W
i=1 p

q
i =Q[p], where Q[p] is the q-expectation on IW .

Moreover, ‖ ρ ‖1=
∫ 1

0
dx |ρ(x)|=

∑W
i=1 |pi|=‖ p ‖1 and

consequently one can pull back the result to the discrete
case, which completes the proof.

Comments on discrete infinite probability func-

tions. – For discrete infinite distribution functions it
was shown [15] that the q-expectation value is unstable.
However, it is possible to state conditions under which
robustness can be ensured. This can be done, for instance,
in the following way.
Discrete finite sets are closely related to continuous

compact sets in the sense that discrete sequences can be
mapped into the compact interval with step functions,
as discussed above. In the same spirit, discrete infinite
sets are intimately related to the continuous unbounded
set [0,∞], since again one can map the discrete infi-
nite sequence into the continuous case in terms of
step functions. If one can find conditions which define
classes of distribution functions on [0,∞] that guarantee

5The proof was carried out on the unit interval I ∈ [0, 1]. This does
not present a loss of generality, since the proofs can be extended
to any bounded interval. For unbounded intervals, the proof gets
more involved and requires to fix conditions that relate boundedness
conditions of the observable and the decay properties of ρ.

continuity or absolute continuity of the functional, i.e.,
the q-expectation, the same conditions are sufficient
for probabilities on infinite discrete sets. Such classes
can simply be derived by using suitable differentiable
monotonous functions, g : [0,∞]→ [0, 1]. Let g′ denote
the derivative of g and g−1 the inverse function of g. This
maps the distribution function ρ, defined on [0,∞], to
a distribution function ρ̃(y) = ρ(g−1(y))g′(g−1(y))−1 on
[0, 1] and also the observable O on [0,∞] gets mapped to
Õ(y) =O(g−1(y))g′(g−1(y))q−1. Now one can apply the
conditions used for the Theorems 1 and 2 on [0, 1] and
pull them back to [0,∞]. It should be noted that different
maps g lead to different, yet consistent boundedness
conditions and decay properties for observables O and
distributions ρ on [0, 1].
To give an explicit example, let us consider the following

problem. Suppose we consider q̄ -exponential distributions

of the form ρ(x)∝ eq̄(−βx)≡ [1− (1− q̄)βx]
1

1−q̄ for q̄� 1
and some β > β0, and we want its first N moments under
the q-expectation,

〈xm〉q ≡

∫

dx[ρ(x)]qxm

∫

dx[ρ(x)]q
, (7)

to be robust with respect to g, (m�N). For a more
detailed discussion on moments under q-expectations,
see [18]. Assuming q > 1, let us take g(x) = 1− 1/(1+x)γ ;
then g′(x) = γ(1+x)−γ−1. The boundedness condition for
the observables immediately requires γ >N/(q− 1)− 1
and the decay property for the distributions implies
q̄ < 1+1/(γ+1). For q̄= 1 and m= 1 the example is
the q-expectation value of the energy of the quantum
harmonic oscillator,

〈E〉q =

∞
∑

n=1
n[e−βn1 ]q

∞
∑

n=1
[e−βn1 ]q

=
1

4
sinh−2

(

βq

2

)

, (8)

which shows continuity in β and robustness of the
q-expectation under variations of the exponential
distribution6.

Robustness of Rényi entropy for continuous

and discrete finite distribution functions. – Here it
suffices to discuss the case 0< q < 1 since for q > 1 Rényi
entropy

SRq =

ln
W
∑

i=1

pqi

1− q
(9)

6In what concerns the use of continuous distributions for calculat-
ing entropies and similar quantities, such as eq. (7), the reader must
be aware of a relatively well-known difficulty. If we make a change of
variables y= f(x), say in eq. (7), we immediately see that the result
is not invariant. In the spirit of Kullback and Leibler entropy [19] the
problem is easily resolved in terms of a reference distribution r(x),
which, except at infinity, nowhere vanishes. For example, for q > 0,

the quantity in eq. (7) would be replaced by
∫
dxr(x)[ρ(x)/r(x)]qxm∫
dxr(x)[ρ(x)/r(x)]q

.
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Table 1: Table of stability/Lesche-stability and robustness for the functionals Sq, S
R
q and the q-expectation value for the

underlying nature of the distribution function, i.e. continuous, discrete finite or discrete infinite. In the continuum, admissible
means that a non-negative entropy is required. Boundedness automatically guarantees robustness [16]. The term Lesche-stable
is used for infinite distribution functions when eq. (1) holds, stable is used when there is no division by a maximum taken
in eq. (1). Robustness is used for bounded distributions in the continuum and for discrete finite probability functions. For the
q-expectations for the discrete infinite case, robustness is understood under the decay properties of the distributions, as specified
in the text. Lesche-stability and stability are sufficient but not necessary for robustness. SBG and standard expectation values
(q= 1) are Lesche-stable and stable, respectively.

Sq, for q > 0 SRq , for q > 0 q-expectation value, for q > 0

bounded continuous
(physically admissible)

robust robust robust [16]

discrete finite
(W finite) robust robust robust

discrete infinite Lesche-unstable [1]; robust unstable [15]; robust for
(limW →∞) Lesche-stable [2] for typical physical cases typical physical cases

strictly speaking ceases to be a proper entropy because it
is not concave. Substituting the probabilities pi by step
functions ρ(W )(x) =Wpi �W for x∈ [(i− 1)/W, i/W ]
which represent the discrete probability pi as a probability
density on [0, 1], we get

SRq = lnW +

ln

∫ 1

0

dx [ρ(W )(x)]q

1− q
. (10)

Boundedness of the distributions allows to use propo-
sitions (4), (6) and (8) in [16] which have been used to
prove Theorem 1. Note that, due to the upper bound W ,
it follows that

∫

dxρ(x)�W q−1. Let δ̃= μW q−1/4 and

‖ δρ ‖1= δ < δ̃, as in [16]. Now we get

|SRq [ρ]−S
R
q [ρ+ δρ]|=

∣

∣

∣

∣

∣

∣

∣

∣

ln

∫ 1

0

dx [ρ(x)]q

∫ 1

0

dx [ρ(x)+ δρ(x)]q

∣

∣

∣

∣

∣

∣

∣

∣

. (11)

Using propositions (4) and (6) from [16] one finds

1−aδq < |
∫ 1

0
dx ρ(x)q/

∫ 1

0
dx (ρ(x)+ δρ(x))q|< 1+ aδq and

a= 4W 1−q/(1−μ). Since |ln(1+x)|< 2|x|, for |x| ≪ 1 it
follows that for sufficiently small δ,

|SRq [ρ]−S
R
q [ρ+ δρ]|< 2aδ

q. (12)

This shows both the uniform continuity of the contin-
uous Rényi entropy for the class of uniformly bounded
probability distributions in L1([0, 1]), and the absolute
continuity of Rényi entropy for probabilities on finite sets.
Similar arguments show robustness also for q > 1, despite
lack of concavity of SRq .

Robustness of the entropy Sq for continuous and
discrete finite distribution functions. – One can
prove robustness of the nonadditive entropy

Sq =

1−
W
∑

i=1

pqi

q− 1
(13)

for discrete finite sets by mapping the probabilities {pi}
W
i=1

onto a distribution on ρ on [0, 1] by step functions, as
above. Since all step functions ρ that represent some
{pi}

W
i=1 are bounded byW , it is sufficient to prove robust-

ness for the continuous case. ρ is from a uniformly bounded
class of distribution functions on [0, 1], i.e., there is a
constant W > 0 such that all ρ are bounded by W .
Consider variations δρ= ρ′− ρ such that both ρ and ρ′ are
bounded byW and ‖ δρ ‖1= δ, where δ is sufficiently small.

Now, |Sq[ρ]−Sq[ρ+ δρ]|= |q− 1|
−1|
∫ 1

0
dx ρq −

∫ 1

0
dx (ρ+

δρ)q|. It therefore is an immediate consequence of propo-
sitions (6) and (4) in [16], that for 0< q < 1, |Sq[ρ]−Sq[ρ+
δρ]|< 4δq. For q > 1 we use propositions (11) and (13) to

find |Sq[ρ]−Sq[ρ+ δρ]|<Rδ
1

q .
In what concerns discrete infinite distribution functions,
Sq has been shown to be Lesche-stable [2].

Conclusion. – To summarize, we discussed the
concept of physical robustness in contrast to the more
restrictive mathematical stability of thermostatisti-
cal functionals under variations of their underlying
distribution functions. We argue that while several
important functionals, such as the Rényi entropy or
the q-expectation value are unstable in the strict sense,
restriction to physically relevant distribution functions,
ensures robustness of these functionals. For a distribution
to be physically relevant we require that its associated
entropy be non-negative. We further restrict to distribu-
tions which are bounded in the continuum. This excludes,
for example, distributions involving Dirac deltas. Our
results are summarized in table 1, where we indicate the
type of stability, Lesche-stability or robustness for the
functionals Sq, Rényi entropy S

R
q and the q-expectation

value, for the paradigmatic types of distribution functions
—continuum, discrete finite, and discrete infinite— that
we have focused on here. The term Lesche-stable is
used when eq. (1) holds, stable refers to the situation
where no division by a maximum is taken in eq. (1), and
robustness —in the above-defined sense— is found for

20005-p5



R. Hanel et al.

admissible (non-negative entropy) and bounded distribu-
tions in the continuum and for discrete finite probability
functions. In the case for discrete infinite distribution
functions which are known to cause instabilities for
some functionals [1,15], one can show that there exist
paradigmatic robust examples once decay properties of
the distributions are specified. In this context one can
show that systems such as the harmonic oscillator are
robust under variations of the (inverse) temperature. One
can of course think of physical distribution functions
which have positive BG entropy but are unbounded, such
as, e.g., power law divergences. These cases remain to be
discussed but exceed the present scope.
We conclude by stating that the concept of stability

might be overly strict for physical applications. This
is in accordance to conclusions drawn in [20]. When
limited to the class of physically admissible and bounded
distribution functions, it is conceivable that physical
robustness of virtually all thermodynamic functionals will
be guaranteed.
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[13] Beck C. and Schlögl F., Thermodynamics of Chaotic

Systems - An Introduction (Cambridge University Press,
Cambridge) 1993.

[14] Prato D. and Tsallis C., Phys. Rev. E, 60 (1999) 2398.
[15] Abe S., EPL, 84 (2008) 60006.
[16] Hanel R. and Thurner S., arXiv:0808.4158.
[17] Tsallis C. and Brigatti E., Contin. Mech. Thermodyn.,

16 (2004) 223.
[18] Tsallis C., Plastino A. R. and Alvarez-Estrada

R. F., arXiv:0802.1698.
[19] Kullback S. and Leibler R. A., Ann. Math. Stat., 22

(1961) 79.
[20] Jizba P. and Arimitsu T., Phys. Rev. E, 69 (2004)

026128.

20005-p6


