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Abstract

In the present work we study the Fermi–Pasta–Ulam (FPU) β–model involving long range interactions
(LRI) in both the quadratic and quartic potentials, by introducing two independent exponents α1 and
α2 respectively, which make the system’s forces decay with distance r. Our results demonstrate that
weak chaos, in the sense of decreasing Lyapunov exponents and q–Gaussian probability density functions
(pdfs) of sums of the momenta, occurs only when long range interactions are included in the quartic
part. More importantly, for 0 ≤ α2 < 1, we obtain extrapolated values for q > 1, as N → ∞, suggesting
that these pdfs persist in that limit. On the other hand, when long range interactions are imposed only
on the quadratic part, strong chaos and purely Gaussian pdfs are always obtained.

1 Introduction

In recent years, many authors have examined the effect of long range interactions on the dynamics of
multi–dimensional Hamiltonian systems [1, 2, 3, 4, 5, 6, 7, 8]. It has thus been found that a number
of these systems show a more organized behavior, as exemplified by a decreasing maximal Lyapunov
exponent (MLE) over long integration times. Perhaps the best known example in this class is the so–
called Hamiltonian Mean Field model, where the MLE was shown numerically to decrease with increasing
number of degrees of freedomN , according to a specific power law [2, 3, 6, 7]. More recently, another famous
example in this category, the FPU β–Hamiltonian was studied in the presence of long range interactions.
In the complete absence of harmonic terms the MLE appears to vanish in the thermodynamic limit [9, 10].
Moreover, when harmonic terms are included in the potential, a similar behavior of the MLE is observed
[11], which nevertheless tends to saturate to a non–zero value above a characteristic size N .

It is the purpose of the present paper to investigate more thoroughly the FPU β–model from this point
of view, by studying the effect of the interactions through two parameters α1 and α2 introduced in the
quadratic and quartic terms of the potential respectively. In so doing, we will be able to identify domains of
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strong and weak chaos, by examining whether probability density functions (pdfs) of sums of the momenta
obey Boltzmann Gibbs (BG) statistics or not.

The maximal Lyapunov exponent and other indicators of local dynamics [12] provide useful tools for
chaos detection, but are not well suited for distinguishing between different degrees of weak vs. strong
chaos [13]. For example, if a given orbit is chaotic, its MLE is expected to converge to a positive value.
However, if the orbit is trapped for a long time near islands of regular motion, the MLE does not quickly
converge and when it does, one cannot tell from its value whether the dynamics can be described as weakly
or strongly chaotic.

Now, long range systems are known to possess long living quasi–stationary states (QSS) [14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], whose statistical properties are very different from what is
expected within the framework of classical BG thermostatistics [28]. More specifically, when one studies
such QSS in the spirit of the central limit theorem, one finds that the pdfs of sums of their variables are
well approximated by q–Gaussian functions (with 1 < q < 3) or q–statistics [29, 30, 31, 32, 33]. These
pdfs last for very long times beyond which they are expected to tend to the q = 1 case of pure Gaussians
and BG thermal equilibrium. Thus, we will treat the index q as a measure of the “distance” from a
Gaussian, and study its time evolution to identify when a “phase transition” will occur from weak chaos
and q > 1–statistics to strong chaos and BG thermostatistics.

In this context, it becomes highly relevant to examine the effect of the range of the interactions on the
lifetime of a QSS, and hence the duration of weakly chaotic dynamics. To this end, we recently introduced
and studied numerically a generalization of the FPU β–model, in which we varied the interaction range
by multiplying the quartic terms of the potential by coupling constants that decay with distance as r−α

[11]. The pdfs of the time–averaged momenta were thus found to be well approximated by q–Gaussians
with q > 1, when the range is long enough (i.e. α < 1). This, however, lasts up to a crossover time
t = tc at which q starts to decrease monotonically to 1, reflecting the transition from q–statistics to BG
thermostatistics.

In the present paper, we extend our study and investigate additional properties connected with the
occurrence of weakly chaotic QSS, taking a closer look at their dynamics as well as associated statistics.
In particular, we consider the FPU β–chain [34] of N particles, whose potential includes harmonic as well
as quartic interactions, and employ two different exponents α1 and α2, for the r−α coupling constants
of the quadratic and quartic terms respectively. Furthermore, we vary these exponents independently to
investigate their effect on the thermostatistics of the orbits at increasingly long times. A recent study on
long range interactions applied only on the harmonic terms can be found in [35].

In Section 2, we write the Hamiltonian of our model as the sum of its kinetic and potential energies
and explain the two exponents that determine the range of the interactions. Next, in Section 3, we present
a detailed study on the behavior of the maximal Lyapunov exponents when long range is applied either to
the quadratic (linear LRI) or the quartic (nonlinear LRI) part of the potential. We choose random initial
conditions and compare the dynamics and statistics of these cases computing the pdfs of the sums of their
momenta for sufficiently long times.

In Section 4, we examine the value of q, and other parameters on which the pdf depends, focusing
especially on the thermodynamic limit, where the total energy E and N tend to infinity at fixed specific
energies ε = E/N . We thus discover, for 0 ≤ α2 < 1, a linear relation between q and 1/ logN , which allows
us to extrapolate the value of q = q∞ in the limit N → ∞. Since we thus end up with values q∞ > 1, we
conclude that q–Gaussian pdfs behave as if they were attractors and hence that q–statistics prevails over
BG thermostatistics in that limit. Finally in Section 5 we present our conclusions.
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2 The FPU β–model with different ranges of interaction

Let us consider the famous Fermi–Pasta–Ulam β–model of a 1–dimensional lattice of N nonlinearly coupled
oscillators governed by the Hamiltonian

HFPU =
1

2

N∑

n=1

p2n +

N∑

n=0

V2(xn+1 − xn) +

N∑

n=0

V4(xn+1 − xn) , (1)

involving nearest–neighbor interactions, where V2 and V4 represent the quadratic and quartic functions
V2(u) = au2/2 and V4(u) = bu4/4. The pn, xn are the canonical conjugate pairs of momentum and
position variables assigned to the nth particle, with n = 1, 2, ..., N and fixed boundary conditions, i.e.
x0 = xN+1 = p0 = pN+1 = 0.

In this paper we modify the above classical form of the FPU β–model by introducing the parameters
α1 and α2, which enter in the linear and nonlinear parts of the equations of motion, to determine the
particle interactions that decay with distance as 1/rα1 and 1/rα2 respectively. In particular, the modified
Hamiltonian function that describes the generalized FPU β–system has the form

HLRI =
1

2

N∑

n=1

p2n +
a

2Ñ1

N∑

n=0

N+1∑

m=n+1

(xn − xm)2

(m− n)α1

+
b

4Ñ2

N∑

n=0

N+1∑

m=n+1

(xn − xm)4

(m− n)α2

, (2)

where a and b are positive constants.
Note that there are three ways to introduce long range interactions (LRI) in our model: (a) only in

the quadratic potential V2, (b) only in the quartic potential V4 and (c) both in V2 and V4. Case (b) was
the one studied in [11] and gave the results mentioned above, where a “phase transition” occurs between
q–statistics and BG thermostatistics near the value α2 = 1 that separates the short term α2 > 1 from the
long term 0 ≤ α2 < 1 interaction range.

As explained above, the critical value α1 = α2 = 1 is expected to determine the crossover between
long and short range interactions. When αi < 1, i = 1, 2 the interactions are long range, with the lower
bound αi = 0 signifying that each particle interacts equally with all others, exactly as in a fully connected
network. In contrast, when αi > 1, i = 1, 2, the interactions are short range and in the limit αi → ∞

only the nearest neighbor terms survive in the sums and the classical form of the FPU β–Hamiltonian is
recovered.

The rescaling factors Ñi, i = 1, 2 in (2) are given by the expression

Ñi(N,αi) ≡
1

N

N∑

n=0

N+1∑

m=n+1

1

(m− n)αi

, (i = 1, 2) (3)

and are necessary for making the Hamiltonian extensive. Indeed, without this factor the sums of V2 and
V4 in (2) would increase as (N + 1)(N + 2)/2 in the thermodynamic limit, thus rendering the kinetic
energy (which grows like N) irrelevant [11]. Notice that Ñi ≃ 1 in the limit αi → ∞, and thus for large N
Hamiltonian (2) reduces to Hamiltonian (1).
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3 Conditions for weak chaos and q–thermostatistics

3.1 Linear versus non-linear long range interactions

It has been known for some time (see e.g. [2, 3]) that Hamiltonian systems possessing LRI display a more
organized behavior in the thermodynamic limit. It is also well established that the maximal Lyapunov
exponent λ of the FPU β–system converges to a positive constant in the thermodynamic limit, that depends
only on the coupling constant b and on the system’s specific energy ε. What happens, however, when linear
and/or non-linear interactions between distant particles are taken into account? Choosing to work on the
FPU β–model in the present paper, provides the advantage of making a direct comparison between linear
and non-linear LRI and allows us to examine in detail their effect on the system’s dynamics.

Note that system (2) can be studied in the presence of only linear LRI by taking α2 → ∞ and letting
α1 act as a free parameter that controls the range of interaction. This means that the potential V4 in that
case is equivalent to the one used in the classical FPU β–model. By contrast, if we wish to study the effect
of nonlinear LRI alone, we take α1 → ∞ and α2 becomes the free parameter.

Let us now display in Fig.1 the behavior of the maximal Lyapunov exponent MLE = λ, in the above
cases, first in terms of the system size N and then as a function of the specific energy ε (a = 1 in every
case). Panels (a) and (b) are for b = 1, ε = 1 and b = 10, ε = 9 respectively. Both of them include values
λFPU of the classical FPU β–model as a point of reference, which separate the two LRI cases: Under λFPU

we find the maximal Lyapunov exponents λV 4 of the nonlinear LRI case, while above we encounter the
λV 2 exponents. Note that the longer the range of interaction, the higher the λV 2 values. For α1 = α2 = 10
the λV 2 and λV 4 curves collapse to the λFPU values.

In Fig.1(a) the MLEs λV 2 and λV 4 grow very slowly and even tend to tend to saturate as N → ∞.
By contrast, in Fig.1(b,) for ε = 9 and b = 10, this tendency is reversed in the case of the λV 4 exponents
which are seen to decrease with N . The reason this is not observed in Fig.1(a) is because it requires high
bε values, as pointed out already in [11]. An additional remark is that, for α2 = 0 the exponents λV 4 of
Fig.1(b) seem not to vanish for N → ∞, but tend to saturate at a positive value. Only when the quadratic
part V2 (a = 0 in (2)) is completely eliminated from the Hamiltonian, the Lyapunov exponents continue
to fall to zero as N keeps increasing (see [9] for a detailed numerical study of this issue and [10] for a
theoretical justification in the limit N → ∞).

So, what are the bε values that yield a power–law decrease of λV 4 vs. ε? When is the system weakly
chaotic and why? To find out we have computed the MLEs at various specific energies, keeping the
parameter b = 1 fixed and the number of particles N = 8192. As Fig.1(c) clearly shows, linear LRI
(represented by the upper curve of squares) make the system much more chaotic than the classical nearest
neighbor FPU case (represented by the middle curve of circles). We believe that this is due to the fact
that the implementation of LRI on the linear part of the Hamiltonian results in a “compression” of the
phonon band ωk = 2 sin kπ

2(N+1) of the nearest neighbor case (α1 = ∞) from the interval [0, 2] to a single

point with frequency Ω =
√
2(N + 2)/(N + 1), as α1 tends to zero. This suggests that no sizeable region

of quasiperiodic tori exists to sustain regular motion, while the periodic oscillations of the lattice (with
frequency Ω) that become unstable due to the presence of nonlinear terms should have large scale chaotic
regions regions about them that dominate the dynamics in phase space.

On the other hand, when LRI apply only to the nonlinear part of the Hamiltonian and the harmonic
terms are of the nearest neighbor type it is interesting to compare the chaotic behavior of the system with
that of the classical FPU model. As Fig.1(c) clearly demonstrates, the corresponding MLE curves are very
close to each other when ε is small, but begin to deviate considerably for ε > 1. Indeed, the application
of nonlinear LRI is characterized by much weaker chaos in the limit ε → ∞ as its MLE behaves like
λV 4 ∼ ε0.05, in contrast with the FPU model whose corresponding MLE grows a lot faster, as λFPU ∼ ε1/4

(see [36] for an analytical derivation). It is also interesting to note that in this limit the exponents λV 2

4



102 103 104

0.05

0.1

0.15

0.2

0.25

0.3 (a)

2

1=inf

1

2=inf

Nonlinear LRI  

 0
 0.5
 1
 2
 10

 5
 1
 0.5
 0

 

 

N

=1, b=1

Linear LRI  

FPU

102 103 104
0.2

0.4

0.6

0.8

1

1=inf

2

2=inf

FPU 

Nonlinear LRI  

 5
 1
 0.8
 0.6
 0.4
 0

  0
  1
 10

 

 

N

=9, b=10

Linear LRI  
1 (b)

0.1 1 10
0.01

0.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.00

-0.75

-0.50

-0.25

0.00

0.25

 LRI on V2
 FPU
 LRI on V4

 

 N=8192
(c)

 

 

Lo
g 

Log 

slope = 1/4

slope =0.05

Figure 1: Log–log plots of MLE values at t = 106: (a) For increasing N , with b = 1 and ε = 1, (b) as N
increases with b = 10 and ε = 9 and (c) as a function of ε at N = 8192, b = 1, for 3 cases: An upper curve
of black squares for LRI on V2 only with (α1, α2) = (0,∞), the middle one of red circles for the classical
FPU case with (α1, α2) = (∞,∞) and a lower one of blue triangles for LRI on V4 only for (α1, α2) = (∞, 0).
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and λFPU become indistinguishable.
Remarkably, the above picture of the maximal Lyapunov exponent λV 4 slowing down as the specific

energy grows is accompanied by the emergence of q–Gaussian distributions in the momenta associated
with the presence of weakly chaotic behavior. In the next subsection we examine this phenomenon more
carefully as we concentrate our study on the statistical aspects of the LRI models.

3.2 Emergence of q–Gaussian distributions

Besides this striking difference of the level of chaoticity in the above two (short and long range) situations,
there is also a remarkable difference in their statistics, as we are going to explain.

The pdfs we shall study correspond to orbits specified by the momentum vectors p = (p1, . . . , pN )
evaluated at discrete times starting from a uniform distribution. In particular, these time averaged pdfs
are calculated from the collection of data at t > t0, where the kinetic energy has stabilized and at multiples
of a time interval τ large enough to avoid correlations. We then assign to the i–th band of our histograms
the number of times that the momenta pi(kτ), i = 1, . . . , N fall in that band and rescale.

In the four panels of Fig. 2 typical momentum histograms are shown, which correspond to the applica-
tion of different interaction ranges contained separately in V2 and V4. More specifically, in panels (a) and
(c) a classical Gaussian shape is observed, either under purely short range interactions or when LRI apply
only to the quadratic part by setting a1 = 0.7 and a2 → ∞ in the Hamiltonian (2). In panels (b) and (d)
a clear q–Gaussian shape emerges when long range applies to the quartic interactions, independently of
interactions in the quadratic part, i.e. for a1 → ∞, a2 = 0.7 and a1 = 0.7, a2 = 0.7 in (2) respectively.

In practice, we have employed an algorithm which uses the least squares method to calculate q, de-
termines the intercept and estimates β from the slope of the resulting straight line. Dividing then the q
interval [1,3] into 1000 possible values, we apply the least squares method to all of them. The appropriate q
value is chosen as the one corresponding to the minimum standard error and is estimated with an accuracy
of at least 3 digits.

As is evident from these results, the mechanism of LRI drives the system’s behavior away from BG
statistics, only if the quartic potential is long range. Instead, when LRI apply only to the quadratic part,
purely Gaussian pdfs are obtained.

In what follows, we will focus on the q values of the model under LRI with different exponents α1, α2.
When these exponents are equal, as in Fig. 2(d), the value of q is practically unchanged. What we wish to
examine now is how does q change when we apply LRI to the quartic potential and vary only the range of
interactions in the quadratic part.

Thus, in the next section we proceed to examine which of the system’s fundamental parameters affect
the shape of the q–Gaussian pdfs and how the interaction range of the quadratic part of the potential
affects the system’s chaotic behavior.

4 Variation of q for different ranges and system parameters

As is well–known, q–Gaussian distributions are often associated with weak chaos and are linked to QSS
which persist for very long times, until the system achieves energy equipartition at complete thermalization.
In this regard, the precise value of q is significant, since it represents an entropic index. More specifically,
the higher the value of q the more the solution remains at a QSS, as the orbits get trapped for long times
in weakly chaotic regimes of phase space.

Our main purpose here is to investigate numerically the dependence of q on the system size N , the
specific energy ε and the coupling constant b of the Hamiltonian (2). Let us mention at the outset that
the parameters ε and b are not independent. Indeed, a simple rescaling of the Hamiltonian shows that the
relevant parameter is bε. Let us plot in Fig. 3 the dependence of q on ε for N = 2048 and α1 → ∞. Note
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Figure 2: The momentum distributions for N = 2048 particles for the system (2). The upper panels show
the cases: α1 → ∞, α2 → ∞, i.e. FPU (left) and α1 → ∞, α2 = 0.7 (right). Lower panels show: α1 = 0.7,
α2 → ∞ (right) and α1 = α2 = 0.7 (right). The yellow lines correspond to the uniform distribution, from
which the momenta where randomly extracted.

that the distribution becomes wider as ε increases (or b increases) nevertheless q tends to remain almost
constant. In fact, Fig.3 clearly shows that q fluctuates around 1.23 and displays a greater tendency to
converge as the specific energy increases.

When the linear LRI are switched on, the value of q, as shown in [11], is not affected and hence does
not alter the statistical behavior of the system. As a consequence, the entropic parameter q turns out to
be independent of the parameters ε, b and α1.

On the other hand, when the system size increases, the value of q no longer remains a constant but
also increases with N . From Fig. 4 it becomes evident that the corresponding q–Gaussian representing
the statistics of the model spreads as N grows. Thus, choosing α2 = 0.7, a = 1, b = 10 and ε = 9 we
find that the momentum histogram for low values of N is very close to a Gaussian, as shown in Fig. 4 for
N = 256. It then deviates for N = 512 to a q–Gaussian with q(N = 512) = 1.17, which further increases

0 1 2 3 4 5 6 7 8 9

1.15

1.20

1.25

1.30

 

 

q

Figure 3: The dependence of q on ε, when LRI are applied to V4 with α2 = 0.7, α1 = ∞, a = 1, b = 10
and N = 2048. The dashed line corresponds to a mean value of about q = 1.23.
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Figure 4: Momentum distributions for the system with b = 10, α2 = 0.7 and various N values. Note how
the pdfs are described by a q–Gaussian of higher index q as N grows. More specifically, q ranges from 1.17
for N = 512 until 1.25 for N = 8192.

to q(N = 1024) = 1.19 and so on, as the weakly chaotic properties of the dynamics become more evident.

4.1 Asymptotic behavior of q in the limit N → ∞

Extrapolating the value of q in the limit N → ∞, we can now estimate the asymptotic value q = q∞ and
also vary α2 to determine the dependence of q∞ on the interaction range applied to the quartic part of the
potential at the thermodynamic limit. To this end, we consider a given value of α2 < 1 and systematically
calculate the q dependence on N . In Fig. 5(a) we plot these q values versus 1/ logN and find that their
dependence is accurately described by the following expression:

q(N,α2) = q∞(α2)− c(α2)/ logN , (4)

where c(α2) is some constant. Each of the data in Fig. 5(a) has been plotted after performing 3 independent
realizations of the momentum distributions and taking their average in the time window [105, 5 · 105].

This is important because it shows that the q∞(α2) obtained from Fig. 5(a) by the intercept of the
straight line Eq. (4) with the vertical axis (as N → ∞) is larger than 1, which implies that the q–Gaussians
are attractors in that limit. Next, plotting q∞(α2) vs. α2 in Fig. 5(b), we observe that it starts from 5/3
for α2 = 0, as predicted numerically and theoretically in [30], and then, after about α2 = 0.2, falls linearly
towards 1. In particular, for 0.2 ≤ α2 ≤ 0.8 the values of q∞(α2) decrease as q∞(α2) = 1.79 − 0.475α2.

Note that the value of q reaches unity at α2 = 1.5 and not at the expected α2 = 1 threshold between
short and long range interactions. This is a very interesting phenomenon and may be explained by the
fact that q takes a very long time to converge to 1 over the range 1 ≤ α2 ≤ 1.4.

5 Conclusions

In the present paper a generalization of the 1-dimensional Fermi-Pasta-Ulam β–model was studied, where
two non–negative exponents α1 and α2 are introduced in the quadratic V2 and quartic V4 part of the
potential to control the range of interactions. The role of long range interactions (LRI) on the system’s
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Figure 5: (a) The linear dependence of q on 1/ logN for N = 4096, 8192, 16384 depicted here provides
an estimate for q∞ in the thermodynamic limit, as α2 changes. (b) The values of q∞ are plotted here
versus α2. We have not included α2 = 0.8 in the above results due to the “noisy” behavior of q in the
neighborhood α2 = 1. Nevertheless, for α2 above 1.4, we definitively obtain q = 1. (ε = 9 in both panels.)

dynamical properties as well as its statistical behavior were examined in detail. In particular we concluded
that only when LRI apply on V4 and at high enough bε values: (a) the maximal Lyapunov exponent
λV 4 decreases as a power-law with N (but eventually slows down and saturates to a positive value in the
thermodynamic limit) and increases very slowly, as λV 4 ∼ ε0.05 (b = 1) with the specific energy, while at
the same time (b) q–Gaussian pdfs of the momenta appear with q > 1. Both of these results indicate that
LRI on V4 is a necessary condition for what we call weak chaos in the FPU β–model, especially at high
energies.

On the contrary, when LRI are applied to the harmonic part of the potential a much stronger type
of chaos is encountered if the nonlinear interactions are short range. This is especially evident at low
energies, indicating that the transition to large scale chaos occurs at much lower levels than in the classical
FPU case. The corresponding MLE=λV 2 tends to saturate as a function of N , while, for small ε, λV 2 is
much higher than the MLE=λFPU of the classical FPU model, with λFPU tending to λV 2 from below as
ε → ∞. All this is related to momentum pdfs of the purely Gaussian type (q = 1) and is associated with
the strongest possible chaos and BG thermostatistics.

We also focused on the value of q in the momentum pdfs, when the main parameters of the problem
vary. It turns out that q changes with N and α2, while it remains unaltered if we increase the specific
energy ε or widen the linear interactions, letting α1 go closer to zero. In this direction, when 0 ≤ α2 < 1
we find a linear relation between q and 1/ logN , which allows us to extrapolate the value of q to q∞ > 1 at
N → ∞. This is important because it suggests that under these conditions BG thermostatistics no longer
hold and q–Gaussian pdfs with q > 1 describe the true statistics in the thermodynamic limit.
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