
Physica A 390 (2011) 1695–1703

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Enforcing social behavior in an Ising model with complex neighborhoods

D.O. Cajueiro ∗

Department of Economics, University of Brasilia, DF, 70910-900, Brazil

National Institute of Science and Technology for Complex Systems, Brazil

a r t i c l e i n f o

Article history:

Received 31 October 2010

Received in revised form 3 January 2011

Available online 16 January 2011

Keywords:

Centrality measure

Complex network

Control theory

Ising model

Opinion formation

Optimization

Political choice

a b s t r a c t

We consider the problem of enforcing desired behavior in a population of individuals
modeled by an Ising model. Although there is a large literature dealing with social
interaction models, the problem of controlling behavior in a system modeled by the Ising
model seems to be an unexplored field. First, we provide and analytically characterize an
optimal policy that may be used to achieve this objective. Second, we show that complex
neighborhoods highly influence the decision making process. Third, we use Lagrange
multipliers associated to some constraints of a related problem to identify the role of
individuals in the system.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A growing literature with roots in economics, sociology and statistical physics has approached individual decision-
making focusing on group interaction, as opposed to individual specific determinants of behavior [1]. This literature has
been used to model the process of opinion formation among individuals [2–8], selling and buying of assets [9,10], political
choices [11–13], technological choices by companies [14], the preferences of consumers for a given product [15], the choice
towards criminal behavior [16] and the decision of smoking [17]. Several of these models consider Ising spin chains in order
to model opposite opinions. An overview of the methods of statistical and computational physics in social dynamics may be
found in Refs. [18–20]. Empirical issues related to these models may be found in Ref. [21].

We consider the problemof optimally enforcing behavior of individuals or groups of individuals belonging to a population
that interact with each other. This may be useful for instance to marketing companies interested in political marketing,
diffusion of new products or changing habits of consumers in favor of a given company. In fact, although marketing
science literature has already recognized the importance of this issue, most models in marketing science assume a priori
homogeneity of the consumers [22]. Similar approaches can also be useful to interested governments that intend to fight
against habits such as smoking and drug consumption or to reduce criminality in the neighborhood of a city.

Parallel to our paper, there are several attempts that are related to the problem treated here. In the field of economics,
there are some works such as Refs. [23,24] that study punishment for criminal behavior of a small group of individuals that
interact in very simple neighborhoods. Different from them, we work in a population explicitly modeled by a variation of
the Ising model and we work with complex neighborhoods of many agents. In marketing science, there have been some
attempts to characterize how consumer networks are formed such as in Ref. [25]. Therefore, our paper provides a nice
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justification for the importance of these works. Furthermore, our approach follows a growing literature mainly developed
in statistical physics that intends to influence the behavior of complex networked systems. Interesting examples are the
cascade control problem [26], the problem of controlling complex networks via pinning [27], the problem of target deletion
of nodes in complex networks [28,29], the problem of controlling self-organized criticality [30–32] and the anti-bubble
control problem [33]. Our paper is also related to a recent literature that has used optimization principles to understand the
structure and dynamics of several complex systems such as complex networks [34,35] and the complex human dynamics
of task execution [36,37]. In particular, in our paper, optimization principles are used in two different instances. First,
optimization is used to evaluate the enforcement laws that should be used to enforce behavior in a system modeled by
an Isingmodel. Second, optimization is used to identify themost important individuals in the system connected by complex
neighborhoods. This secondpoint is particularly linked to the literature that is concerned about the evaluation of centrality of
nodes that belong to complexnetworks [38–40]. Althoughmost techniques consider only topological properties of networks,
using optimization techniques it is possible to define other types of centrality [41,42].

2. A model of social behavior with interactions among agents

We assume that our system is formed of N agents (or N groups of agents with the same relevant characteristics). Each of
them shares one of the two opposite behaviors, denoted by σi = ±1 (for instance, smoke or not smoke), for i = 1, . . . ,N .
As we explicitly describe below, the decision of each agent towards one of these opinions depends on three different
ingredients. The first ingredient is the agent’s ability to support his own opinion. The second one is a given external influence
towards one of the opinions (such as current media). The third one is the effect of the other agents’ decisions in this agent’s
decision. This setup is standard in the literature of social interactions and opinion formation [1,2,4,7]. In our paper, we
include the possibility that an external interested party (such as a government or a marketing company) is able to control
part of the external influence that an agent is submitted to. This is the main difference from the setup of our paper to the
standard one widely studied.

Let xi > 0 be the so-called self-support parameter. It is the strength of the member i, i.e., a parameter that measures how
difficult it is to change the opinion of this individual. The external influence on each individual of the population i is divided
in two parts in our paper, namely hi and ui. The real number hi represents the effect of the current campaign that includes
the current efforts of interested parties (such as government or marketing companies), the current efforts of concurrent
tendencies, parents education or family background resulting in a preference towards one of the opinions of the set {−1, 1}.
On the other hand, the control ui is the effect of an aggressive campaign that an interested party (such as a government or
a marketing company) can provide in order to enforce a desired behavior towards one of the opinions of the set {−1, 1} in
a given individual i of the population. The idea of an aggressive campaign is that the interested party wants to increase the
share of the population that is performing the desired behavior. Therefore, the external influence exerted in each agent i
is given by the sum (hi + ui), where hi is the uncontrolled part of this influence and ui is the controlled part. Finally, let rji
be the influence of another individual j on i. Depending on the setup, the number rji may consider the social distance [43]
between two individuals i and j or it can simply say that individuals i and j are connected in a given social network. In our
paper, we assume that rji is 1 when the individuals are connected and 0 otherwise.

We assume here (without lack of generality) that the opinion in favor of this desired behavior is+1.We also assume that
the opinion of agent i changes from σi to σ̃i, from one period to the next one, according to

σ̃i =

{

σi with probability pui
−σi with probability 1 − pui

(1)

where

pui =
exp(−βIui )

exp(−βIui ) + exp(βIui )
, (2)

β = 1/T is the inverse of the social temperature, a measure of the degree of randomness of the agents, and

Iui = −xi − σi(hi + ui) −

N
∑

j=1
j6=i

rjiσjσi = Ii − σiui (3)

is the so-called social impact exerted on every individual [44,1,2,4,7]. If Ii > 0 then the individual is inclined to change his
opinion. On the other hand, if Ii < 0, the opposite happens.

One may note that we have two different types of agents in this population. At a given moment, there are agents that
perform the desired behavior and agents that do not. Furthermore, the aggressive campaign has different effects on different
types of agents. While in the former case it must increase the chance of the agent keeping his opinion, in the latter case, the
opposite should happen.
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3. Optimal policy

We are looking for the optimal level of enforcement ui that the interested party should introduce in the system in
order to influence the behavior of an individual i of the population. Although there are several criteria that can be used
to choose the vector u, we assume that the interested party will choose the aggressive campaign in order to maximize the
probability of the agents in the next period performing the desired behavior. Since resources that can be used to generate

the external effect u are bounded, we assume that the vector u is constrained by
∑N

i=1 ui = K , where K is the total effect
that the interested party can enforce with the available limited resources he has. Therefore, ui is allowed to be positive
or negative. Negative values of ui mean that the current external effect on one individual is reduced in order to increase
the effect on another individual of the population. Based on these assumptions, the problem that we are trying to solve is

maxu1,...,uN P(σ̃1 = 1, . . . , σ̃N = 1|σ1, . . . , σN , u) subject to
∑N

i=1 ui = K where P(σ̃1 = 1, . . . , σ̃N = 1|σ1, . . . , σN , u) is
the joint probability of σ̃1, . . . , σ̃N being in state 1 given σ1, . . . , σN . Since the distribution of σ̃i is independent of σ̃j, then

P(σ̃1 = 1, . . . , σ̃N = 1/σ1, . . . , σN , u) = ΠN
i=1P(σ̃i/σ1, . . . , σN , u) ≡ ΠN

i=1p̃
u
i , where

p̃ui = exp(−σiβIui )/2 cosh(βIui ), (4)

for i = 1, . . . , n, is by definition the probability that σ̃ = 1 in the next period.
Since log(·) is a strictly increasing function, this problem may be replaced by

max
u1,...,uN

N
∑

i=1

log p̃ui subject to

N
∑

i=1

ui = K . (5)

It is important to mention that the optimal policy defined by Eq. (5) is a myopic policy. It does not consider the possible
future states that may occur. It only analyzes the actual state of the system and, based on this state, it makes the optimal
decision in order to maximize the probability of the agents being in state 1. Having said that, even with this property, the
problem presented in Eq. (5) seems to be a consistent approach. In real life, if an interested party wants to enforce some kind
of policy, he would formulate a situation for a given state and keep this policy for a time, as a formulation in a two period
model like here. Furthermore, this optimal policy can be analytically solved and presents several interesting properties.

Forming the Lagrangian function associated to the problem given by Eq. (5), onemay show that u that solves this problem
is given by the solution of the first order equations

β(1 + σi tanh(βIu
⋆

i )) = µ⋆, for i = 1, . . . ,N (6)

N
∑

i=1

u⋆
i = K (7)

where u⋆ is the optimal policy and µ⋆ is the Lagrange multiplier associated to the equality constraint (7). Solving these
equations, one may find that the optimal policy u⋆ and µ⋆ that solve problem presented in Eq. (5) are

u⋆
i =

Ii

σi

+
K

N
− I/σ , for i = 1, . . . ,N (8)

atanh

(

µ⋆ − β

β

)

= β

(

I/σ −
K

N

)

(9)

where I/σ = 1
N

∑N

k=1
Ik
σk
. Besides, it is easy to show that

∂ log(p̃u
i
)

dui
= −

β2σ 2

cosh(Iu)2
. Thus, one may easily prove that ui is really a

maximum of problem (5).
For the optimal policy, one gets

p̃u
⋆

i = exp[β(K/N − I/σ)]/2 cosh[β(K/N − I/σ)]. (10)

Therefore, the optimal policy equalizes the probabilities p̃ui , for i = 1, . . . ,N , for both types of agents. Moreover, if N = 2,
then the solution of the problem is given by

u⋆
1 =

I1

2σ1

−
I2

2σ2

+
K

2
and u⋆

2 =
I2

2σ2

−
I1

2σ1

+
K

2
.

Thus, if σ1 = σ2 = +1 and I1 < I2 this implies that the probability of agent 1 keeping his position is greater than the
probability of agent 2 keeping his position. Therefore, u1 < K/2 in order to allow to make u2 > K/2 and to increase the
probability of agent 2 keeping his position. The other situations may be similarly interpreted. In fact, the intuition behind
this policy is simple. If an individual is strongly inclined to the desired decision, the interested party does not need to worry
about him. Furthermore, the interested party may even reduce the resources directed to him. This happens because he has a
high self-support parameter in favor of the desired action, the field has a strong positive effect on him or his peers strongly
affect his behavior towards the desired decision.
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When K = 0, the role of the optimal rule (8) is only to redistribute the resources of the system. An interesting point is

the effect of K in
∑N

i=1 log p̃i. Using the envelope theorem, it is easy to show that

d
N
∑

i=1

log p̃u
⋆

i

dK
= β

{

1 − tanh

[

β

(

K

N
− I/σ

)]}

. (11)

Therefore, if we increase the amount of resources K , we also increase the joint probability of the agents being in state σ̃i = 1,
for i = 1, . . . ,N .

Finally, using the definition (4), we can show that

log

(

p̃u
⋆

i

p̃i

)

= βσiu
⋆
i + log

(

cosh(βIi)

cosh(β(Ii − σiu
⋆
i ))

)

≈ βu⋆
i (1 + σi tanh(βIi)) (12)

for i = 1, . . . ,N , where p̃i without the superscript is used to differentiate the non-enforced system (the systemwith ui = 0,
for i = 1, . . . ,N) from the enforced one. Therefore, if u⋆

i > 0, individual i in the enforced system is more likely to be in
state 1.

4. Complex neighborhoods

Nowwe explore the effect of complex neighborhoods on the enforcement law given by Eq. (8). To play the role of complex
neighborhoods, we consider the Goh et al. (GKK) scale-free networks [45], the Erdős–Renyi (ER) networks and three real
networks of Swedish cities mapped into information city networks [46], namely Stockholm, Malmo and Umeå. The GKK
networks and ER networks are included to take different classes of neighborhood effects into account. Although there are
several networks that could play the role of a real network here, the information networks of the Swedish are included as
models of real neighborhoods where the interested party may want to enforce some kind of social behavior.

The scale-free networks were built based on the algorithm provided by Ref. [45] that can be described as follows: Start
with N nodes i ∈ {1, . . . ,N} and assign to each of them a weight equal to wi = i−α , where α ∈ [0, 1) is related to the
degree exponent according to γ = 1 + 1/α. Then select two different nodes i, j ∈ {1, . . . ,N} with probability equal to

the normalized weights wi/
∑N

k=1 wk and wj/
∑n

k=1 wk, respectively, and connect them if they are not already connected.
This process is repeated until mN edges are made in the system, where 2m is the mean degree. The Erdős–Renyi networks
were built assuming that all nodes of the network have the same constant probability p of being connected. Furthermore,
both GKK and ER networks were built in order to obtain the same average degree 4. The information networks of cities are
networks with roads mapped to nodes and intersections to links between nodes [46].

We nowproceedwith our analysis based onMonte Carlo simulations using Eq. (10). More precisely, we pick up randomly
an agent i and we set spin σ̃i = 1 with probability p̃i or σ̃i = −1 with probability (1 − p̃i), where p̃i is given by Eq. (10). The
optimal policy u⋆ is evaluated using Eq. (8). Since, in this section, we are interested in the effect of the neighborhoods on the
enforcement law given by Eq. (8), we consider here that most variables of Eq. (8) are constant. In particular, we assume that
hi = h = 0.1 for i = 1, . . . ,N . When there is an edge between nodes i and j, for i, j = 1, . . . ,N, rij = r = 1 and 0 otherwise.
The parameters xi = 0, for i = 1, . . . ,N , and K = N , which on the average gives an enforcement of size K/N = 1 for each
agent.

Figs. 1 and 2 show the empirical probability distributions of the absolute values of the optimal enforcement law for the
case T = 6 and different networks, for a typical equilibrium configuration of {σi}i=1,...,N . In particular, Fig. 1 shows that the
GKK network with γ = 2.05 and the ER network present very different behaviors. In the inset of this figure, we show the
GKK networks for γ = 3.0 and γ = 2.5. The behaviors of the absolute values of the enforcement laws that take place in
these networks with larger exponents are quite similar to the one that arises in the GKK network with γ = 2.05. The only
difference is the range of determination of the power law. Fig. 2 suggests that absolute values of the enforcement laws that
take place in the real networks of the Swedish cities are also distributed like power laws in a very short range.

These figures suggest that the distributions of the enforcements laws for the GKK and the real networks are power laws.
The same does not happen to the ER network.We have investigated these distributions in the range T ∈ (0, 20]. We have
found that as long as the parameters of the agents h, r and x are kept constant with the same values, the qualitative picture
presented in Figs. 1 and 2 is the same (not shown). The only clear differences are that when T increases (decreases) and the
associated randomness also increases (decreases), the slopes of the power laws increase (decrease) and the intervals used to
determine the exponents of the power laws are smaller (larger). Furthermore, the standard model for the study of opinion
formation is the Ising model. It is well known that the Ising model presents a phase transition between an ordered state
and a disordered state [47]. The same happens here at a low temperature of the interval T ∈ (0, 20] (the specific critical
temperature depends on the network topology). This fact does not affect our results. Since the role of the enforcement law
is to redistribute resources, the robustness of these results is expected. In fact, in the examples presented in Figs. 1 and 2, the
only source of heterogeneity that affects the agents is the position in the network and in this case the enforcement law u⋆
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Fig. 1. Probability distribution of the absolute values of the optimal enforcement law u⋆ for computer generated networks. Points were obtained by

logarithmic size bins over the whole range of |u⋆|. These simulations were performed for T = 6. Symbol types indicate the following values of (N , network

model, η, I), where η is the exponent of the power law and I is the interval used to determine this exponent: circles (104 , GKK with α = 0.95 and

γ = 2.05, 1.84, [100, 103.0]) and crosses (104 , ER, –, –). In the inset, squares (104 , GKK with α = 0.5 and γ = 3.0, 2.35, [100.1, 102]), triangles (104 , GKK

with α = 0.66 and γ = 2.5, 2.19, [100, 102.5]).

Fig. 2. Probability distribution of the absolute values of the optimal enforcement law u⋆ for information networks of cities. Points were obtained by

logarithmic size bins over the whole range of |u⋆|. These simulations were performed for T = 6. Symbol types indicate the following values of (N , network

model, η, I), where η is the exponent of the power law and I is the interval used to determine this exponent: circles (10713, Stockholm city, 2.91,

[100.5, 102.0]). In the inset, squares (3735, Malmo, 2.22, [10−0.01, 102.0]), triangles (566, Umeå, 2.68, [100, 101.6]).

is strongly dependent on the topology of the neighborhood that the agents interact to each other. Therefore, representative
agent models, models where there is only one agent representing on average the entire population (a kind of mean field
approach), commonly used in economics and social science do not work here. This scenario has also arisen in other complex
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system distributed control problems such as in the cascade control problem [26], the problem of target deletion of nodes
in complex networks [28,29], the problem of controlling self-organized criticality [30–32] and the anti-bubble control [33].
In all these above-cited control problems, it is essential to consider the spatial nature of the problem when choosing the
control strategy.

5. Howmay one identify the role of each individual in the network?

Another interesting point is how to identify the role of each individual in the network. We have seen that the role of the
optimal enforcement law is to equalize the probability that the agents in the system behave as desired. In order to equalize
the system, the optimal enforcement law transfers external resources or resources from the agents that are already likely
to perform the desired behavior to the ones that need some enforcement. In this section we present a method to identify
the role of each agent in the system, i.e., we want to identify the most important providers and beneficiaries of resources
in the system. This problem is very related to the problem of determining centrality of nodes in complex networks [38–40].
However, as we will see below, the problem here depends on other characteristics of the agents not uniquely determined
by their relations in the network. Since we have the vector of optimal enforcement laws given by Eq. (8), one way to test the
quality of the method is to evaluate the correlation between the solution provided by the method and the vector of optimal
enforcement laws. If there is a high correlation between these two vectors, this implies that the method works. Otherwise,
the method does not provide a good answer to this question.

Since we have considered that the neighborhoods of the agents are provided by complex networks, one question that
arises is if the vector of the degree of the nodes κ = (κ1, . . . , κN) is a good proxy to identify the roles of these individuals
in the system. A simple way to answer this question is to evaluate the correlation coefficient ρ between the vector of
optimal enforcement laws u⋆ and the vector of degrees of the nodes κ . In order to test this issue, we assume a setup with
T = 1, hi = h = 0 for i = 1, . . . ,N and the other parameters are the same ones used in Section 4. Furthermore, if we
consider that the neighborhood of the agents was built using a GKK network with γ = 2.05, we find that the Spearman
correlation between the vector of optimal enforcement laws and the vector of degrees is ρ = −0.99. The Spearman
correlation coefficient was used since it assesses how well the relationship between two variables can be described using a
monotonic function.1 This result means that more connected nodes are associated to smaller enforcement laws. This can be
easily explained. If there is a global field in the direction of the desired behavior, most individuals are expected to show the
desired behavior and consequently themost connected individuals will receive a larger reinforcement in this direction from
their peers. Therefore, in this context, these individuals have a singular role in the system, since they are the providers of
resources. The interested party reduces the optimal enforcement law directed to these individuals in order to increase the
probability of the less connected individuals choosing the desired option. Therefore, in this situation we can assert that the
degree of the individual is an easy way to identify the role of each individual in the network. Consider now that we keep the
same parameters of the simulation presented above, but we increase the temperature for T = 4. As expected the Spearman
correlation coefficient between the values of the enforcement laws and degrees decreases (in terms of absolute value) to
ρ = −0.84, since the randomness of the system increases. In the above-mentioned situation we have considered that all
individuals in the system have the same parameters, but different neighborhoods. Therefore, the results that we are finding
is that, excluding the randomness of the system, in this case all that matters is how well connected the individual is. What
happens if the self-support parameter xi of each individual i is independently distributed? Is the degree of each individual
still a good way to characterize each individual in the network? As we show below, we will provide a negative answer to
this question.

Here, we suggest thatwe could identify these individuals using some kind of information inherited from the optimization
problem presented by Eq. (5) that takes place in the complex network. To do this, we define an associate optimization
problem where the only difference from the problem presented in Eq. (5) is that this new problem has a set of additional
positivity constraints, namely 0 ≤ ui for i = 1, . . . ,N . The idea here is to use the Lagrange multipliers associated to
these positivity constraints ui ≥ 0, for i = 1, . . . ,N , in order to identify the role of each individual in the system. In fact,
Lagrange multipliers associated to positivity constraints measure how much the optimum of the system would increase,
if the constraint were relaxed [48]. In our context, this means that the set of Lagrange multipliers {λi}i=1,...,N associated
to the constraint 0 ≤ ui measures the effect of relaxing the constraint 0 ≤ ui to δi ≤ ui, for i = 1, . . . ,N , where δi
is infinitesimally less than zero. Therefore, the individuals who have larger Lagrange multipliers are the most important
resource providers (see the example below in order to get the big picture). It is worth mentioning that this idea reminds
closely the one considered in Ref. [49] that uses Lagrangemultipliers to set personalized intradaymonetary policies in order
to reduce idleness of money in a payment system defined in a Banach space.

Unfortunately, this new problem given by the problem defined in Eq. (5) with the additional positivity constraints cannot
be solved analytically. Even numerically it can be hardly solved for the case of low heterogeneity and a very small number
of individuals. One way to circumvent this difficulty is to approximate this problem by a linear programming problem. In
order to do this, we use the linear approximation of log p̃i (defined in Eq. (4)) given by log p̃i ≈ −βσiIi − log(2 cosh(βIi)) +

1 We use the Spearman correlation since we are not concerned about the values of these variables, but about their ranks. The Spearman correlation

coefficient is actually the Pearson correlation coefficient (the most standard measure of correlation) between the ranked variables.
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βui + βσiui tanh(βIi). Therefore, using this linear approximation without the constant terms (since they do not influence
the optimization process), we define the problem

max
u1,...,un

n
∑

i=1

βui[1 + σi tanh(βIi)] (13)

subject to

N
∑

i=1

ui = K (14)

0 ≤ ui for i = 1, . . . ,N (15)

where the solution of this problem is a vector uo = (uo
1, . . . , u

o
n), a Lagrange multiplier µ0 associated to the equality

constraint and a vector of Lagrange multipliers λo = (λo
1, . . . , λ

o
N) associated to the positivity constraints. We have used

the superscript ‘‘o’’ instead of ‘‘⋆’’ (previously used to define the solutions of the problem (5)) in order to stress that they are
solutions of different problems.

First, note that this problem is well specified, since the objective function is bounded due to the boundedness of ui for
i = 1, . . . ,N . Second, although the objective function of this problem does not represent probabilities any more, it still has
an interesting taste. Note, for instance, that if σi > 0 and Ii ≪ 0, then less enforcement is applied to the individual i. Third,
we do not intend to use the solution of this problem to enforce the behavior of agents, but only to identify the role of each
individual in the system. However, if one claims that in some situations it makes no sense to use negative enforcement laws,
the solution uo can be a useful approximation. Fourth, in order to evaluate u0, µ0 and λ0, as in the case of problem (5), we
only need the parameters of the system and the configuration of the agents in a given time.We do not need any information
about u⋆! Fifth, the quality of the solution depends on the quality of the linear approximation that is valid for small values
of enforcement laws.

In order to get the big picture of the idea, consider thatwewant to solve this problem for a systemwithN = 3 individuals,
K = 1, β[1+ σ1 tanh(βI1)] = 1, β[1+ σ2 tanh(βI2)] = 2 and β[1+ σ3 tanh(βI3)] = 3. Therefore, this problemwith these
specifications is given by

max
u1,u2,u3

u1 + 2u2 + 3u3

subject to

u1 + u2 + u3 = 1, u1 ≥ 0, u2 ≥ 0, u3 ≥ 0.

It is easy to show that the solution of this problem is given by (u1, u2, u3, λ1, λ2, λ3, µ) = (0, 0, 1, 2, 1, 0, 3). Note that if
we could have u1 = δ1 < 0 and u2 = δ2 < 0, we would be able to increase the maximum of the function u1 + 2u2 + 3u3

by −2δ1 − δ2 units. Furthermore, the effect of reducing the value of u1 by −δ1 units is larger than the effect of reducing the
value of u2 by −δ2 units. Therefore, individual 1 is a better resource provider than individual 2. Thus, λ1 > λ2. This very
simple example shows that it is possible to identify the best resource providers of the network using the information of the
Lagrange multipliers associated to the positivity constraints.

Let us now test these ideas in theGKKnetwork.Weuse the same setup of the simulation presented in the beginning of this
section with T = 1, but here K = 1000 (which on the average gives an enforcement of size K/N = 0.1 for each individual)
and the self-support parameter xi = cξ , where ξ ∈ [0, 1] is a uniform random variable and c is a constant. We use a smaller
value of K in order to increase the heterogeneity among the individuals and tomake amore precise valuation of themethod
used to identify the role of each node in the system. We have used c ∈ [0, 50], because if we use c larger than that, then the
effect of the enforcement is totally insignificant. In fact, note that when c = 50, 50% of the individuals have on the average
the self-support parameter larger than 25,which on the average is 250 times the size of the average enforcementK/N = 0.1.
Fig. 3 shows the effect of c on the Spearman correlation coefficients between the vector of the degrees of the nodes κ and
the vector of Lagrange multipliers of the positivity constraints λo, the Spearman correlation coefficients between the vector
of the degrees of the nodes κo and the vector of optimal enforcement laws u⋆ and the correlation coefficients between the
vector of Lagrange multipliers of the positivity constraints λo and the vector of optimal enforcement laws u⋆. From this
figure, we are able to answer the question posed in the beginning of this section. When c increases, the degree is no longer
a good proxy for identifying the role of each individual in the system. However, we are able to determine the best resource
providers (and also beneficiaries) using the vector of Lagrange multipliers λo, with perfect correlation for a large range. One
may also see that if c > 20, the correlation between the vector of Lagrangemultipliers and the best resource providers is not
perfect anymore. This is not due to a fault of the method, but, as mentioned above, the average enforcement law applied to
each individual is almost insignificant. In conclusion, the vector of Lagrange multipliers λo may be used in the same way we
are used to applying the centrality measures very common in complex networks—just to identify the kinds of individuals in
the system, without necessarily thinking in enforcing the behavior of the individuals.
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Fig. 3. This figure shows the Spearman correlation coefficients ρ between two vectors as a function of c . Solid curve: The Spearman correlation coefficients

between the vector of the degrees of the nodes κ and the vector of Lagrange multipliers of the positivity constraints λ. Dashed curve: The Spearman

correlation coefficients between the vector of the degrees of the nodes κ and the vector of optimal enforcement laws u⋆ . Dotted–dashed curve: The

correlation coefficients between the vector of Lagrange multipliers of the positivity constraints λ and the vector of optimal enforcement laws u⋆ .

6. Summary and further research

We have considered the problem of enforcing social behavior in a systemmodeled by the Isingmodel. We have provided
a method to control the Ising model suggesting that this can be controlled by simple resource distribution rules. We have
also studied the effects of complex neighborhoods in enforcement laws providing a fair justification for studying problems of
social interactions using complex networks. Finally, we have used Lagrangemultipliers to identify the role of each individual
in the system.

Further research may consider concurrent techniques to solve similar control problems taking place in Ising models.
In particular, we have assumed that we have information about all agents in the network and we are able to control the
behavior of all of them. There are two interesting cases that have not been considered here. The first one is to consider
that although we have complete information about all agents in the network, we control only a small fraction of them and
expect that the manipulation of these agents are enough to influence the behavior of the entire network. This problem is
a particular case of the problem studied in this paper and it is actually very related to the problem of target deletion of
nodes in complex networks [28,29]. The second one is to assume that we cannot control all agents of the network and we
do not have information about all agents. This problem is much more complicated and one should consider a kind of robust
strategy in order to deal with the uncertainty that arises in this setup. In our paper, we have considered that our objective is
tomaximize the probability of the agentswill perform the desired behavior. There are other possibilities for the performance
index such as to maximize the magnetization of the system that can be considered in the future. Another important point
is that we have presented here an enforcement strategy that was derived considering only the efficiency of the distribution
of resources. There may be some particular situations where ethical or incentive issues may require the inclusion of other
criteria. Moreover, if one assumes that performing a desirable behavior is a public good, some agents could be willing to
pay for that kind of behavior. The contribution of each agent could follow a demand revealing mechanism such as the one
provided by the Groves–Clarke method [50]. Therefore, the government could supply a Pareto optimal quantity of public
goods based on this information and constraint K could be make endogenous.

In this paper, we have considered only few examples of networks as models of the neighborhoods of agents. A future
work may also study the effect of different classes of networks in the problem. One may investigate explicitly the effect of
hierarchical or assortative (disassortative) neighborhoods on enforcement laws.

Another interesting path is to adapt the setup presented here in order to deal with the particularities of a specific area
such as control of criminality or marketing science.

Finally, the idea of identifying the role of a node in the system using Lagrangemultipliers can be useful in other networks
that present other kinds of fluxes such as biological networks [29]. In some situations, the problem may be naturally linear
and linear approximation will not be necessary.
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