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Asymptotic behavior (with respect to the number of trials) of symmetric gener-
alizations of binomial distributions and their related entropies is studied through
three examples. The first one has the q-exponential as the generating function, the
second one involves the modified Abel polynomials, and the third one has Hermite
polynomials. We prove analytically that the Rényi entropy is extensive for these three
cases, i.e., it is proportional (asymptotically) to the number n of events and that
q-exponential and Hermite cases have also extensive Boltzmann-Gibbs. The Abel
case is exceptional in the sense that its Boltzmann-Gibbs entropy is not extensive and
behaves asymptotically as the square root of n. This result is obtained numerically
and also confirmed analytically, under reasonable assumptions, by using a regular-
ization of the beta function and its derivative. Probabilistic urn and genetic models
are presented for illustrating this remarkable case. C 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4939917]

I. INTRODUCTION

The content of our previous papers1–4 was devoted to a comprehensive study of discrete distri-
butions generalizing the familiar binomial distributions. The generalization consists in substituting
the ordinary integers on which is based the binomial distribution by arbitrary sequences of positive
numbers. These distributions can be symmetrical or asymmetrical. Such generalizations introduce
correlations among the events, as was shown through an example in Section 3.1.1 in Ref. 2. The
study concerned the positiveness of those formal distributions in order to view them as having
a real probabilistic content. We have given many examples, which run from Delone sequences,
q-sequences, sequences based on family of polynomials (modified Abel, Hermite, etc.). A key point
of our works was to display manageable generating functions. The existence of such functions
allows to easily control positiveness and makes a series of computations easier. Hence, we have
shown in the above references a palette of interesting properties. Nevertheless, except in one case,
we did not explore systematically their asymptotic behaviors, their associated entropies (Shannon or
Boltzmann-Gibbs (BG), Tsallis, Rényi, etc.), and related questions like extensiveness.

In the present article, we analyze the asymptotic behaviors of three di↵erent generalized
distributions4 and their respective Boltzmann-Gibbs and Rényi entropies. In particular, we focus
our study on the extensiveness properties of the latter and we present a special case where the
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extensive entropy is the Rényi and not the Boltzmann-Gibbs one. We recall that a statistical entropy
is extensive (respectively, asymptotically extensive) if it is proportional (respectively, asymptoti-
cally proportional) to the number n of events (respectively, at large n). The generalized probability
distributions mentioned above are denoted in this paper by

P =
⇣
p(n)1 ,p(n)2 , . . .p(n)

n

⌘
. (1.1)

In the binomial distribution, these probabilities can be written as p(n)
k

(⌘) =
�
n

k

�
⌘k(1 � ⌘)n�k, where

⌘ is a parameter belonging to the interval [0,1]. Due to symmetry, the multiplicity of states in the
generalized case is the same as for the binomial distribution. When we deform the binomial in the
way of Refs. 1 and 2, correlations among events are introduced. In our evaluations of entropies, we
adopt a “microscopic” point of view by ignoring the multiplicity, i.e., we look at the probability of a
particular event with k “wins” and n � k “losses,” $(n)

k

⌘ p(n)
k

/
�
n

k

�
.

The first statistical entropy studied here is the BG or Shannon5,6 entropy,

SBG = �
nX

k=0

✓ n
k

◆
$(n)

k

log$(n)
k

. (1.2)

The second one is the Rényi entropy SRe;q,7 which is a deformation of (1.2), SRe;q ! SBG as q ! 1,
at least for finite n,

SRe;q =
1

1 � q
log

266664
nX

k=0

✓ n
k

◆ ⇣
$(n)

k

⌘
q

377775 . (1.3)

In this article, we prove that the Rényi entropy is extensive for these three cases and that the
former (q-exponential) and the latter (Hermite) have also extensive Boltzmann-Gibbs. On the other
hand, the second case (modified Abel) is exceptional since its Boltzmann-Gibbs entropy is not
extensive and behaves asymptotically as the square root of the number of events. This result is ob-
tained numerically and also confirmed analytically, under reasonable assumptions, by regularizing
the beta function and its derivative.

The organization of the paper is the following. In Section II, the necessary background for
symmetric deformations of the binomial distribution and issued from Ref. 4 is recalled. In Sec-
tion III, we complete this material with a study of asymptotic behaviors of expectation values
calculated with these distributions. In Section IV, we present three examples of generalized sym-
metric distributions, having, respectively, as generating functions, the so-called q-exponential, in
Subsection IV A, the Lambert function, the most interesting case, in Subsection IV B and, finally,
the function exp

�
t + a

2 t2� in Subsection IV C. The Lambert function gives rise to a generalized
distribution which depends on a modified version of Abel polynomials. Due to the importance of
this case within the question of extensivity of entropies, we present in Subsection IV B 3 a an
urn-like probabilistic model based on counting of words made with letters picked in several alpha-
bets. This model is quite elaborate and we illustrate it in Subsection IV B 3 a a with a more realistic
example extracted from Genetics. In Subsection IV C, our example involves Hermite polynomials.
In Section V, we analyze the behavior of the Boltzmann-Gibbs and Rényi entropies concerning their
extensivity properties for the three generalized distributions presented here. In Subsection V A, we
derive those two entropies for the generalized distributions from the q-exponential and find that
not only Boltzmann-Gibbs is extensive but also the Rényi one. Subsection V B is devoted to our
main result: for the generalized distribution given by modified Abel polynomials, the entropy which
is asymptotically extensive is not Boltzmann-Gibbs, but instead the Rényi one, and its asymptotic
behavior does not depend on the Rényi parameter. Finally, Subsection V C is devoted to the analysis
of Boltzmann-Gibbs and Rényi entropies for our third generalized distribution, involving Hermite
polynomials. With this case, we return to the standard situation for which both Boltzmann-Gibbs
and Rényi are extensive. In Section VI, we present our conclusions and final comments. The
Appendix is devoted to regularization methods employed in this work in order to get rid of singu-
larities as the number n of events goes to infinity. These regularizations are requested in the study
of the Abel case and concern the function beta and its derivatives when their integral representations
become divergent.
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II. SYMMETRIC DEFORMATIONS OF BINOMIAL DISTRIBUTIONS

We remind in this section the notations and main results of Ref. 4.
Let X = (x

n

)
n2N be a sequence of positive numbers x

n

for n > 0 and x0 = 0. The “factorial” of
x
n

is defined as x
n

! = x1 x2 . . . x
n

, x0!
def
= 1 , and from it, we build the binomial coe�cient
 

x
n

x
k

!
B

x
n

!
x
n�k!x

k

!
.

We now associate toX the formal distribution

p(n)
k

(⌘) =
 

x
n

x
k

!
q
k

(⌘)q
n�k(1 � ⌘), (2.1)

where the q
k

(⌘) are polynomials of degree k and the p(n)
k

(⌘) are constrained by the normalization
condition

8n 2 N, 8⌘ 2 [0,1],
nX

k=0

p(n)
k

(⌘) = 1, (2.2)

and by the non-negativeness condition

8n, k 2 N, 8⌘ 2 [0,1], p(n)
k

(⌘) � 0. (2.3)

The normalization implies

8⌘ 2 [0,1], p(0)0 (⌘) = q0(⌘)q0(1 � ⌘) = 1) q0(⌘) = ±1.

From now on, we keep the choice q0(⌘) = 1. This implies

8n 2 N, 8⌘ 2 [0,1], p(n)0 (⌘) = q
n

(1 � ⌘),p(n)
n

(⌘) = q
n

(⌘).
Therefore, the non-negativeness condition is equivalent to the non-negativeness of the polynomials
q
n

on the interval [0,1]. The quantity p(n)
k

(⌘) can be interpreted as the probability of having k
wins and n � k losses in a sequence of correlated n trials. Besides, as we recover the invariance
under k ! n � k and ⌘ ! 1 � ⌘ of the binomial distribution, no bias in the case ⌘ = 1/2 can exist
favoring either win or loss.

We now associate to the sequenceX a deformed “exponential” defined as the power series

N (t) =
1X

n=0

tn

x
n

!
⌘
1X

n=0

a
n

tn, x
n

= a
n�1/a

n

, (2.4)

which is supposed to have a non-vanishing radius of convergence. Hence, N (t) is an element of ⌃
defined as the set of power series

P1
n=0 a

n

tn possessing a non-vanishing radius of convergence and
verifying a0 = 1 and 8n � 1, a

n

> 0.
Starting from N (t) 2 ⌃ and ⌘ 2 [0,1], we consider the series N (t)⌘. It is easy to prove from

N (t) = N (t)⌘N (t)1�⌘ that it is a generating function for polynomials q
n

obeying (2.1) and (2.2),

8⌘ 2 [0,1], GN ,⌘(t) B N (t)⌘ =
1X

n=0

q
n

(⌘)
x
n

!
tn. (2.5)

More precisely, the polynomials q
n

issued from (2.5) have the following properties:

(a) q0(⌘) = 1, q1(⌘) = ⌘ and more generally,

8n 2 N , 8⌘ 2 [0,1], q
n+1(⌘) = ⌘

x
n+1

n + 1
⇥

nX

k=0

*
,

x
n

x
k

+
-

n � k + 1
x
n�k+1

q
k

(⌘ � 1). (2.6)

(b) The q
n

’s are polynomials of degree n obeying

8n 2 N, q
n

(1) = 1, and 8n , 0, q
n

(0) = 0,

and they fulfill the normalization condition.
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(c) The q
n

’s fulfill the functional relation

8z1, z2 2 C, 8n 2 N,
nX

k=0

*
,

x
n

x
k

+
- q

k

(z1)qn�k(z2) = q
n

(z1 + z2). (2.7)

These polynomials, suitably normalized, are of binomial type.8 Indeed, with the definition q̃
n

(⌘) =
n!
x

n

! q
n

(⌘), we have the property

q̃
n

(z1 + z2) =
nX

k=0

✓ n
k

◆
q̃
k

(z1)q̃n�k(z2)

which defines such polynomials.
Since we already know that q0(⌘) = 1 and 8 n , 0,q

n

(0) = 0, the non-negativeness condition
is equivalent to specify that for any ⌘ 2]0,1], q

n

(⌘) > 0 and then the function t 7! N (t)⌘ belongs
to ⌃. Defining ⌃0 as the set of entire series f (z) = P1

n=0 a
n

zn possessing a non-vanishing radius of
convergence and verifying the conditions a0 = 0, a1 > 0 and 8n � 2, a

n

� 0, it was proved in Ref. 4
that

⌃+ B {N 2 ⌃ |8⌘ 2 [0,1), 8n � 0, q
n

(⌘) > 0 } = {eF | F 2 ⌃0} (2.8)

is the set of deformed exponentials such that the generating functions GN ,⌘(t) solve the non-
negativeness problem.

III. ASYMPTOTIC ESTIMATES

Since we are concerned in this paper with asymptotic behaviors of distributions and their entro-
pies, it is opportune to give already some hints about the asymptotic behavior at large n of sums
(expectation values) of the type

nX

k=0

�
n

(k)p(n)
k

(⌘), (3.1)

where R 3 x ! �
n

(x) are C1 functions. These preliminary results will be used for implementing
our regularization procedures. To obtain the dominant term, we first determine the asymptotic
expression ⇢

n

(x) of p(n)
nx

(⌘) at large n (with x 2 (0,1)), and then replace the sum
P

n

k=0 with the
integral n

⇤ 1
0 dx. We obtain

nX

k=0

�
n

(k)p(n)
k

(⌘) ⇠
large n

n
⌅ 1

0
�
n

(nx)⇢
n

(x,⌘)dx. (3.2)

In the case of modified Abel polynomials, which is examined in Subsections IV B and V B, the
above integral

⇤ 1
0 is improper: it diverges at one or at both endpoint(s). This happens because, at

the endpoint(s), we are violating the condition(s) nx � 1 or/and n(1 � x) � 1. A regularization
procedure is needed and is detailed in the Appendix. It involves two regularization parameters ✏1(n)
and ✏2(n), which vanish as n goes to infinity. Estimate (3.2) becomes

nX

k=0

�
n

(k)p(n)
k

(⌘) ⇠
large n

n
⌅ 1�✏2(n)

✏1(n)
�
n

(nx)⇢
n

(x,⌘)dx. (3.3)

In the Appendix, we give the expressions of ✏1(n) and ✏2(n) by using our previous result Eq. (32) in
Ref. 4 concerning the expectation value of the k variable,

nX

k=0

k p(n)
k

(⌘) = n⌘. (3.4)

Then, the general regularized expression in Eq. (3.3) is partially validated (in the Abel case) by
comparing the asymptotic behavior of elementary expressions obtained in Ref. 4 (like the expecta-
tion values hk2i

n

and hk(n � k)i
n

) with their estimates given in Eq. (3.3). However, we are unable
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to prove analytically the validity of our regularization procedure for functions �
n

which have sin-
gular behavior at the endpoints 0 and 1 of the integral. Indeed, in the Abel case considered in
Subsection V B, we have to deal with functions which have a mild (logarithmic) singularity in the
endpoints. In this particular case, we rely upon the numerical validation.

IV. THREE CASES OF GENERALIZED SYMMETRIC DISTRIBUTIONS

A. Symmetric distribution from “q-exponential”

1. Definition and probabilistic model

We consider here the following family of functions belonging to ⌃+:

N (t) =
✓
1 � t

↵

◆�↵
, ↵ > 0 (4.1)

that are q-exponentials in the sense that eq(x) = [1 + (1 � q)x](1/(1�q)), where the parameter q =
1 + 1/↵ with the notations in Ref. 9. We first note that if ↵ ! 1, then N (t)! et, i.e., we return to
the ordinary binomial case. The corresponding sequence is bounded by ↵ and given by

x
n

=
n↵

n + ↵ � 1
, lim

n!1
x
n

= ↵. (4.2)

For the factorial, we have

x
n

! = ↵n

�(↵)n!
�(n + ↵) =

↵nn!
(↵)

n

=
↵n

⇣
n+↵�1

n

⌘ , (4.3)

where (z)
n

= �(z + n)/�(z) is the Pochhammer symbol. The corresponding polynomials are given
by

q
n

(⌘) = �(↵)
�(n + ↵)

�(n + ↵⌘)
�(↵⌘) =

(↵⌘)
n

(↵)
n

(4.4)

and satisfy the recurrence relation

q
n

(⌘) = n + ↵⌘ � 1
n + ↵ � 1

q
n�1(⌘), with q0(⌘) = 1. (4.5)

The distribution p(n)
k

(⌘) defined by these polynomials is given by

p(n)
k

(⌘) =
✓ n

k

◆ �(↵)
�(⌘↵)�((1 � ⌘)↵)

�(⌘↵ + k)�((1 � ⌘)↵ + n � k)
�(↵ + n) (4.6)

=

 
⌘↵ + k � 1

k

!  
(1 � ⌘)↵ + n � k � 1

n � k

!

 
↵ + n � 1

n

! . (4.7)

This is precisely the Pólya distribution,10 also called “Markov-Pólya” or “inverse hypergeometric”
and more. It was considered by Pólya (1923) in the following urn scheme.11 From a set of b black
balls and r red balls contained in an urn, one extracts one ball and returns it to the urn together with
c balls of the same color. The probability to have in the urn k black balls after the nth trial is given
by ratio (4.7) with

⌘ =
b

b + r
, ↵ =

b + r
c

, (4.8)

which holds for rational parameters ⌘ and ↵. In this notation, distribution (4.6) reads, in terms of
Pochhammer symbol,
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p(n)
k

(b,c,r) =
✓ n

k

◆

 
b
c

!

k

✓ r
c

◆

n�k
 

b + r
c

!

n

. (4.9)

We notice that if we take the medium value ⌘ = 1/2 and redefine the parameters according to
↵ ! 2⌫, n ! N , and k ! n in the distribution given by Eq. (4.6), we recover the distribution rN

n

studied in Ref. 12, see Eqs. (4) and (10) therein, within the framework of the Laplace-de Finetti
representation.

2. Asymptotic behavior at large n

Let us now study the asymptotic behavior of (4.6) at large n. The probability distribution is
given by

p(n)
k

(⌘)=
✓ n

k

◆ �(↵)
�(⌘↵)�((1 � ⌘)↵)

�(⌘↵ + k)�((1 � ⌘)↵ + n � k)
�(↵ + n)

=
✓ n

k

◆ B(⌘↵ + k, (1 � ⌘)↵ + n � k)
B(⌘↵, (1 � ⌘)↵) ,

where 0  ⌘  1, ↵ > 0, and B(p,q) = �(p)�(q)/�(q + p) is the beta function. We put k = nx, with
0  x  1. Using the Stirling formula, n! ⇠

p
2⇡ e�n nn+1/2 or �(z) ⇠

p
2⇡ e(z�1/2) log z�z, we find

B(⌘↵ + k, (1 � ⌘)↵ + n � k) ⇠
r

2⇡
n

x⌘↵�1/2 (1 � x)(1�⌘)↵�1/2 e�nC(x),

where we introduced

C(x)B �x log x � (1 � x) log(1 � x),

with

C 0(x) = � log
x

1 � x
, C 00(x) = � 1

x(1 � x) . (4.10)

For x 2 (0,1), this function is non-negative, concave, and symmetric with respect to its maximum
value log 2 at x = 1/2. In fact, C(x) is the basic BG (or Shannon) entropy in the case of two
possibilities with probabilities x and 1 � x. Also note its relation to the rate or Cramér (also
named for this particular case as Kullback-Leibler information or relative entropy) function I(x) =
log 2 � C(x) appearing in the large deviation theory for the familiar fair coin-tossing model.15 A
similar function will appear in our third example (“Hermite”) below. Such a relation is somewhat
expected when we deal with “smooth” deformations of the binomial law. (Nevertheless, this does
not apply to the Abel case where C(x) is equal to 0.)

As a matter of fact, the asymptotic behavior of the binomial coe�cient at large n is
✓ n

k = nx

◆
⇠ 1

p
2⇡nx(1 � x)

enC(x)). (4.11)

Therefore, the limit distribution we find is the following:

p(n)
k=nx

(⌘) ⇠ 1
n

1
B(⌘↵, (1 � ⌘)↵) x⌘↵�1 (1 � x)(1�⌘)↵�1. (4.12)

We easily check that our estimate for sums of Eq. (3.2) is valid here for the normalization of
probabilities, i.e., putting �

n

(k) = 1 in Eq. (3.2). Moreover, our asymptotic formula (4.12), in the
case ⌘ = 1/2 and after centering in the origin, becomes proportional to a q-Gaussian13,14 with
q = (↵ � 4)/(↵ � 2). This result was recently obtained numerically by Ruiz and Tsallis.16
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B. Symmetric distribution from modified Abel polynomials

1. Definition

We take here the specific generating functionN (t) given by

N (t) = e�↵W (�t/↵), ↵ > 0, (4.13)

where W is the Lambert function,17 i.e., solving the functional equation W (t)eW (t) = t. We first note
that if ↵ ! 1, thenN (t)! et. The corresponding sequence is bounded by ↵/e and given by

x
n

=
n↵

n + ↵

 
1 � 1

n + ↵

!
n�2

, lim
n!1

x
n

= ↵/e. (4.14)

We also note that x
n

! n as ↵ ! 1. The corresponding factorial is

x
n

! = n!
↵n�1

(n + ↵)n�1 . (4.15)

The polynomials q
n

’s read as

q
n

(⌘) = ⌘
�
⌘ + n

↵

�
n�1

�
1 + n

↵

�
n�1 . (4.16)

We verify that q0(⌘) = 1 and q1(⌘) = ⌘. The polynomials above are a modified version of Abel
polynomials.8 The latter are defined as

P
n

(x) = x(x + na)n�1, a 2 Q. (4.17)

The di↵erence between polynomials (4.17) and (4.16) is due to the presence of a normalization
factor in the denominator of the latter and the relaxing of the rational condition on a.

The corresponding probability distribution is found to be

p(n)
k

(⌘) =
✓ n

k

◆
⌘(1 � ⌘) (⌘ + k/↵)k�1(1 � ⌘ + (n � k)/↵)n�k�1

(1 + n/↵)n�1 , (4.18)

with 0  ⌘  1.

2. Regularization at the limit n ! 1
By putting k = nx in (4.18), with 0  x  1, and using the Stirling formula with the assump-

tion that nx � 1 and n(1 � x) � 1 while keeping n constant, we find the limit distribution

p(n)
nx

(⌘) ⇠
large n

↵⌘(1 � ⌘)p
2⇡

(nx(1 � x))�3/2 ⌘ ⇢
n

(x). (4.19)

In Figure 1 are shown the graphs of p(n)
nx

(1/2)/p(n)
n/2(1/2) in function of x for the analytic asymptotical

expression, Eq. (4.19), and discrete representations of Eq. (4.18) for ↵ = 20 and n = 5000, 10 000,
and 20 000. We can see in the inset that the discrete representations tend to the analytic asymptotic
curve when n increases.

As mentioned in Section III, the calculations at large n of the expectation values h�
n

(k)i
n

by
following the same approach as in Eq. (3.2) need some refinement in the present case, because of
the divergence of the asymptotic expression ⇢

n

(x) at the endpoints x = 0 and x = 1. This refinement
is based on a regularization involving two parameters ✏1(n) and ✏2(n) introduced in Eq. (3.3). These
parameters are calculated in the Appendix and the estimate of Eq. (3.3) is successfully checked for
di↵erent functions �

n

(k).
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5000

10 000

20 000

anal ytic

FIG. 1. Plot of p(n)
nx

(1/2)/p(n)
n/2(1/2) in function of x for ↵ = 20 and ⌘ = 1/2. The continuous line (fuzzy blue) is the

asymptotic analytic expression, Eq. (4.19), the dashed line (green) is the curve given by Eq. (4.18) for n = 5000, the
dotted-dashed line (blue) is for n = 10 000, and the dotted line (pink) is for n = 20 000. The inset is a zoom on the larger figure
from 0.92 to 1; note that when n increases, the curves approach the asymptotic analytic expression given by Eq. (4.19).

3. Probabilistic interpretation

Choosing the parameters ↵ and ⌘ in expression (4.18) as

↵ =
p + q

c
and ⌘ =

p
p + q

, (4.20)

where p, q, and c are three positive integers, we obtain

p(n)
k

=
✓ n

k

◆ p(p + kc)k�1q(q + (n � k)c)n�k�1

(p + q)(p + q + nc)n�1 . (4.21)

From the sum of probabilities, we deduce the finite expansion formula
nX

k=0

✓ n
k

◆
p(p + kc)k�1q(q + (n � k)c)n�k�1 = (p + q)(p + q + nc)n�1. (4.22)

We now present a counting interpretation of this expansion and its resulting urn model. We define a
finite set for which the numbers

�
n

k

�
p(p + kc)k�1q(q + (n � k)c)n�k�1 for k = 0,1 . . . ,n correspond

to counting of partitions. As our main interest is to present at least one sound probabilistic model,
for the sake of simplicity, we consider the case c = 1.

The model. Let A(2n,p,q) = A
C`(2n) [A`(p) [AC

(q) be an alphabet of 2n + p + q letters
viewed as the union of three sub-alphabets:

• A`(p), p � 1, is a set {b1,b2, . . . ,bp

} of p letters which are only lowercase, by convention
A`(0) = ;.
• A

C

(q), q � 1, is a set {C1,C2, . . . ,Cq

} of q letters which are solely capital, by convention
A

C

(0) = ;.
• The family {A

C`(2n)}1
n=1, where A

C`(2n) = S
n

i=1{a
i

, A
i

} made of 2n mixed letters, built
from a possible infinite sequence of pairs

(a1, A1), . . . (ai

, A
i

), . . . .
Each pair (a

i

, A
i

) is made from the same letter in both sizes (lowercase and capital), and the
letters are assumed to be di↵erent in di↵erent pairs, independent of their size. The inclusion
A

C`(2n) ⇢ A
C`(2m) holds for any n  m.

In the following, we introduce also the lowercase part of A
C`(2n) as A`

C`(n) =
S

n

i=1{a
i

}
and the capital part ofA

C`(2n) asAC

C`(n) =
S

n

i=1{A
i

}.
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• All letters, independent of their size, are assumed to be di↵erent: in A(2n,p,q), we have n + p
di↵erent lowercase letters and n + q di↵erent capital letters.

We consider the set of words W
n

, with n letters picked from A(2n,p,q), built as W
n

=S
n

k=0Wn

k

, where the subsetsWn

k

contain the words with n letters, k of them being lowercase and
n � k capital. The words are built with the following rules:

(i) Di↵erent orderings of letters are assumed to give di↵erent words.
(ii) In a word in Wn

k

, starting from the left, the first lowercase letter encountered (if k , 0)
belongs toA`(p), and the first capital letter encountered (if k , n) belongs toA

C

(q).
(iii) In a word in Wn

k

, all the lowercase letters (k , 0) belong to A`(p) [A`
C`(k), and all the

capital letters (k , n) belong toA
C

(q) [AC

C`(n � k).

Now let us evaluate the number of wordsN n

k

inWn

k

.

• If k = 0, the words contain exactly n capital letters. The first one (from the left) belongs to
A

C

(q) and the n � 1 remaining ones belong toA
C

(q) [AC

C`(n). This gives

N n

0 = q(q + n)n�1. (4.23)

• If k = 1, the words contain a unique lowercase letter that belongs to A`(p) and n � 1 capital
letters. The first capital letter belongs to A

C

(q), the n � 2 remaining (capital letters) belong to
A

C

(q) [AC

C`(n � 1). Since there is n =
�
n

1

�
ways to locate the lowercase letter in the word, we

have

N n

1 =
✓ n

1

◆
pq(q + n � 1)n�2. (4.24)

• For 2  k  n � 2, we first choose the k positions of the lowercase letters in the word, there
are

�
n

k

�
possibilities. The first lowercase letter belongs to A`(p), the following k � 1 ones

belong to A`(p) [A`
C`(k), then for each choice of the k positions, we have p(p + k)k�1 possi-

bilities for the lowercase letters. For the capital letters, we obtain similarly q(q + n � k)n�k�1

possibilities. We deduce

N n

k

=
✓ n

k

◆
p(p + k)k�1q(q + n � k)n�k�1. (4.25)

• The cases k = n � 1 and k = n are analyzed by following the same rules, leading to

N n

n�1 =
✓ n

n � 1

◆
pq(p + n � 1)n�2 and N n

n

= p(p + n)n�1. (4.26)

We conclude that the formula of Eq. (4.25) is valid for k = 0,1, . . . ,n � 1,n. Using Eq. (4.22), we
deduce that the total numberN

n

of words ofW
n

isN
n

= (p + q)(p + q + n)n�1.

Remark. The value of N
n

can be easily understood. A generic word of W
n

contains the
following:

• One letter that belongs either toA`(p) or toA
C

(q): this gives p + q possibilities.
• Each remaining letter is either lowercase belonging to A`(p) [A`

C`(k) or capital belonging to
A

C

(q) [AC

C`(n � k) for some k. This gives (p + k) + (q + n � k) = p + q + n possibilities for
each n � 1 letter.

Therefore,N
n

= (p + q)(p + q + n)n�1.

Conclusion. The probabilities p(n)
k

of Eq. (4.21) are the probabilities to extract a word with k
lowercase letters after a draw at random from the “urn”W

n

.

Remark. Other interesting probabilities emerge from this urn model. For example, let us call
P({l1, l2, . . .}) the probability that a word of W

n

contains at least one of the letters of the family
{l1, l2, . . .}. We have the following results:
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8>>>>>>>><>>>>>>>>:

P(A`(p)) = 1 � p(n)0

P(A
C

(q)) = 1 � p(n)
n

8k � 2 , P(A`(p) [A`
C`(k)) =

X
n

i=k
p(n)
i

P(A`(p) [A`
C`(1)) =

1
2

P(A`(p) [A`
C`(2))

. (4.27)

An example. Let us illustrate the above counting with the manageable although not trivial case
n = 3, p = q = 1, and the alphabet

A = {a, b, c, d, A, B, C, D} ⌘ A
C`(6) [A`(1) [AC

(1),
A

C`(2) = {a, A}, A
C`(4) = {a, A} [ {b, B}, A

C`(6) = {a, A} [ {b, B} [ {c, C},
A`

C`(1) = {a}, A`
C`(2) = {a, b}, A`

C`(3) = {a, b, c},
AC

C`(1) = {A}, AC

C`(2) = {A, B}, AC

C`(3) = {A, B, C},
A`(1) = {d}, A

C

(1) = {D}.

The total number of possible words ofW3 is N3 = 50. The set of allowed words with 3 letters built
from the above rules is described as follows:

• The subset of wordsW3
0 is

*.....
,

DAA DAB DAC DAD
DBA DBB DBC DBD
DC A DCB DCC DCD
DDA DDB DDC DDD

+/////
-
,

corresponding toN 3
0 = 16 words.

• The subset of wordsW3
1 is

*...
,

dDA dDB dDD
DdA DdB DdD
DAd DBd DDd

+///
-
,

corresponding toN 3
1 = 9 words.

• The subset of wordsW3
2 is

*...
,

dDa dDb dDd
daD dbD ddD
Dda Ddb Ddd

+///
-
,

corresponding toN 3
2 = 9 words.

• The subset of wordsW3
3 is

*.....
,

daa dab dac dad
dba dbb dbc dbd
dca dcb dcc dcd
dda ddb ddc ddd

+/////
-
,

corresponding toN 3
3 = 16 words.

The total number of words is 2 ⇥ 16 + 2 ⇥ 9 = 50. Finally, the probabilities p(3)
k

corresponding to
these 4 situations are given in Table I.

a. Another example. Another example can be found in Genetics. First, we need to translate
our set of words into the corresponding language:19 The nucleotide sequence of a gene (the genetic
code) is a (linear) structure made of “letters” called “codons.” Additionally, a “start codon” and
three “stop codons” indicate the beginning and end of the protein coding region.
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TABLE I. Values of p(n)
k

for n = 3, ↵ = 2= p+q, ⌘ = p/(p+q)= 1/2,
p = q = 1.

k p
(n)
k

0 8/25
1 9/50
2 9/50
3 8/25

We can use this definition to interpret our set of words as a set of nucleotide sequences. Further-
more, if we assume the three “stop codons” at the end of each sequence to be always the same, they
can be omitted in our reasoning.

So, we are interested into setsW
n

of nucleotide sequences made of n e↵ective codons (includ-
ing the start codon), the three last fixed “stop codons” being ignored. Moreover, we assume that the
n e↵ective codons possess a special chemical (or biological) property that allows to classify them as
being “lowercase” or “capital.”

The setsWn

k

are the set of sequences of n codons, k of them being “lowercase.” The possible
“start codons” belong to two possible sets: A`(p) or A

C

(q), while the remainder of codons belong
to A`(p) [AC

(q) [A
C`(2n). The last rule specifies that in Wn

k

, the “lowercase” codons only
belong to A`(p) [A`

C`(k) and the “capital” codons belong to A
C

(q) [AC

C`(n � k). The possible
reasons for such kind of structural properties are of course not specified.

Note that this model is consistent only if the role played by a codon depends on its ordering in
the sequence. Actually, nucleotides used as start codons are possibly present in the sequence (in this
model). So, we must assume that these codons are interpreted as the beginning of a sequence only if
they are not preceded by another one of the family.

C. Symmetric distribution from Hermite polynomials

1. Definition

Here, the functionN (t) is chosen as

N (t) = exp
✓
t +

a
2

t2
◆
, 0 < a < 1. (4.28)

The corresponding sequence x
n

has the following factorial form:

x
n

! =
266664
in
�
a

2

�
n/2

n!
H

n

 �ip
2a

!377775
�1

=

26666664
b n

2 cX

m=0

(a/2)m
m!(n � 2m)!

37777775

�1

B
1

'
n

(a) .

(4.29)

In particular, x1! = x1 = 1, x2! = 2/(a + 1). Also, x
n

= '
n�1(a)/'n

(a), and we know from Ref. 2
that x

n

⇡ pn/a as n ! 1. The corresponding polynomials and probability distributions are, respec-
tively, given by

q
n

(⌘) = x
n

!
n!

 
i
r

a⌘
2

!
n

H
n

 
�i

r
⌘

2a

!
(4.30)

and

p(n)
k

(⌘) = ⌘k(1 � ⌘)n�k 'k

(a/⌘)'
n�k(a/(1 � ⌘))
'
n

(a) . (4.31)
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2. Asymptotic behavior at large n

We now evaluate the asymptotic behavior of probability distribution (4.31). For that, let us
rewrite it in terms of Hermite polynomials,

p(n)
k

(⌘) =
✓ n

k

◆
⌘

k

2 (1 � ⌘) n�k2

H
k

✓
�i

q
⌘
2a

◆
H

n�k
✓
�i

q
1�⌘
2a

◆

H
n

✓
�i

q
1

2a

◆ . (4.32)

Putting k = nx, with 0 < x < 1, using the Stirling formula, and the asymptotic behavior of Hermite
polynomials versus their respective degree when the argument is not real18 (page 255; actually, a
factor 2 in front of |H

n

(t)| is missing there),

|H
n

(t)| ⇠ n!
2 �

�
n

2 + 1
� e
p

2n |Im(t)|, (4.33)

we find

p(n)
k=nx

⇠ 1
2

 
n

2
nx

2

!
⌘

k

2 (1 � ⌘) n�k2 exp
"r

n
a
(px⌘ +

p
(1 � x)(1 � ⌘) � 1)

#

⇠ 1
2

1
p

n⇡x(1 � x)
enA(x) ⌘ ⇢

n

(x), (4.34)

where

A(x) = x
2

log
⌘

x
+
(1 � x)

2
log

1 � ⌘
1 � x

+
1p
na

(px⌘ +
p
(1 � x)(1 � ⌘) � 1). (4.35)

Using Laplace’s method, it is easily checked that introducing asymptotic distribution (4.34) in our
estimate of Eq. (3.2) with �

n

(k) = 1 leads to the correct normalization, that is,
⌅ 1

0
⇢
n

(x) ndx =
1
2

r
n
⇡

⌅ 1

0
[x(1 � x)]�1/2 enA(x) dx ⇠ 1. (4.36)

V. THE ENTROPIES

A. Entropies for the symmetric distributions from “q-exponential”

1. Boltzmann-Gibbs entropy

From the Boltzmann-Gibbs microscopic definition of entropy, given by (1.2), let us now
establish its analytic formula in the asymptotic limit as n ! 1. We use the estimate of Eq. (3.2)
with �

n

(k) = log
⇣
p(n)
k

/
�
n

k

�⌘
= log$(n)

k

. In the present generalized distribution, which has the q-
exponential as generating function, it behaves as

SBG ⇠
at large n

nI1 +
1
2

log n + I2, (5.1)

with

I1 =
1

B(⌘↵, (1 � ⌘)↵)

⌅ 1

0
dx x⌘↵�1 (1 � x)(1�⌘)↵�1C(x), (5.2)

I2 = log
 

B(⌘↵, (1 � ⌘)↵)p
2⇡

!
� 1

B(⌘↵, (1 � ⌘)↵)

⌅ 1

0
dx

x⌘↵�1 (1 � x)(1�⌘)↵�1
" 
⌘↵ � 1

2

!
log x +

 
(1 � ⌘)↵ � 1

2

!
log(1 � x)

#
.

(5.3)

Let us calculate the integrals appearing in the above expressions. They are all of the type
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LB(p,q)B
⌅ 1

0
dx xp�1 (log x) (1 � x)q�1

=

⌅ 1

0
dx (1 � x)p�1 (log(1 � x)) xq�1

=
@

@p
B(p,q) = [ (p) �  (p + q)] B(p,q), (5.4)

where  (t) = �
0(t)
�(t) is the digamma function.18 Finally, we find that

SBG ⇠ n [ (↵ + 1) � (⌘ (⌘↵ + 1) + (1 � ⌘) ((1 � ⌘)↵ + 1)] + 1
2

log n+

+ log
 

B(⌘↵, (1 � ⌘)↵)p
2⇡

!

+ ↵ (↵) �
" 
⌘↵ � 1

2

!
 (⌘↵) +

 
(1 � ⌘)↵ � 1

2

!
 ((1 � ⌘)↵)

#

⇠ n [ (↵ + 1) � (⌘ (⌘↵ + 1) + (1 � ⌘) ((1 � ⌘)↵ + 1)]. (5.5)

Being the value of positive integral (5.2), the slope of this linear behavior versus n is positive for any
↵ > 0 and ⌘ 2 [0,1]. Hence, the Boltzmann-Gibbs entropy is proved to be extensive in the present
case for any ↵ > 0 and ⌘ 2 [0,1].

2. Rényi Entropy

We now explore, for the present case, the Rényi entropy, given by (1.3). Using the asymptotic
formula for the binomial coe�cient at large n, (4.11) and (4.12), the approximation

P
n

k=0 ⇠
⇤ 1

0 ndx,
and the Laplace formula (see (5.25)), we obtain the asymptotic expression for q < 1,

nX

k=0

✓ n
k

◆ ⇣
$(n)

k

⌘
q ⇠ 1

2
p

1 � q

"
25�2↵⇡

nB2(⌘↵, (1 � ⌘)↵)

#
q/2

en(1�q) log 2. (5.6)

By taking the logarithm of (5.6), we see that the dominant term is

SRe;q ⇠ n log 2, (5.7)

and the Rényi entropy is obviously extensive. A point to be noticed is that this asymptotic behavior
is independent of the Rényi parameter q. Actually, this remarkable feature is encountered in many
distributions,20 including the next two cases considered in this paper. We will give a special atten-
tion to this fact in the Conclusion.

B. Entropies for the symmetric distribution from modified Abel polynomials

1. Boltzmann-Gibbs entropy

We now examine the Boltzmann-Gibbs entropy for distribution (4.18). We start with the numer-
ical study of the behavior of finite sum (1.2) versus

p
n as shown in Figures 2 and 3. Linear behavior

(1.2) versus
p

n at large n, say n ⇠ 5 ⇥ 104, is clearly apparent and the slope tends asymptotically to
its theoretical value given below. In order to mathematically validate this result, we turn our atten-
tion to the analytic expressions derived from regularized estimate (3.3), where the regularization
parameters are those specified in the Appendix and where ⇢

n

(x) is given by Eq. (4.19), the functions
�
n

being �
n

(k) = log
⇣
p(n)
k

/
�
n

k

�⌘
= log$(n)

k

(or more precisely their asymptotic expression). From
(4.11), �

n

(nx) behaves asymptotically as

�
n

(nx) ⇠ log
f
↵⌘(1 � ⌘)(nx(1 � x))�1e�nC(x)

g
. (5.8)

Using Eq. (3.3), the BG entropy behaves as the sum of three terms

SBG ⇠
large n

1p
n
(R1;n + R2;n) +

p
nR3, (5.9)
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FIG. 2. Asymptotic behavior versus
p
n of the Boltzmann-Gibbs entropy for the distribution (4.18) (“Abel” case), with

n  50 000, ↵ = 3, and ⌘ = 0.5 (top), ↵ = 5, and ⌘ = 0.3 (bottom). Clearly, it behaves as
p
n, with a slope which tends to the

theoretical value 2
p

2⇡↵⌘(1�⌘)⇡ 3.76 (top) ⇡5.264 (bottom).

where

R1;n = �
↵⌘(1 � ⌘)p

2⇡
log

 
↵⌘(1 � ⌘)

n

!
B
n

,

R2;n = 2
↵⌘(1 � ⌘)p

2⇡
LB

n

,

R3= �2
↵⌘(1 � ⌘)p

2⇡

⌅ 1

0
x�1/2 (log x) (1 � x)�3/2 dx.

Here, we introduce the notations

B
n

=

⌅ 1�✏2(n)

✏1(n)

dx
(x(1 � x))3/2 ,

LB
n

=

⌅ 1�✏2(n)

✏1(n)

log x dx
(x(1 � x))3/2 .

(5.10)

We find

B
n

=
2 � 4✏1p
✏1(1 � ✏1)

+
2 � 4✏2p
✏2(1 � ✏2)

,

LB
n

= F(1 � ✏2) � F(✏1),
(5.11)

with

FIG. 3. Behavior versus n of the slope of the log-log plot of the Boltzmann-Gibbs entropy versus n for distribution (4.18)
(“Abel” case), with n  50 000, ↵ = 5, and ⌘ = 0.3 (top). It tends (slowly) to the theoretical value 1/2 given by (5.18).
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F(a) = 12 arcsin
p

1 � a � 2 � 4a
p

a(1 � a)
log a � 4(1 � a)

p
a(1 � a)

. (5.12)

Taking into account the expressions of ✏1 and ✏2 given in Eqs. (A9) and (A8), we obtain

B
n

⇠
p

2⇡n
↵⌘(1 � ⌘) and LB

n

⇠
p

2⇡n
↵⌘

log n. (5.13)

Therefore, we obtain

R1;n ⇠
p

n log n and R2;n ⇠ 2(1 � ⌘)
p

n log n. (5.14)

The value of R3 is easily found from Ref. 21,

LI
p

B
⌅ 1

0
xp�1 (log x) (1 � x)�p�1 dx = �⇡

p
csc p⇡, 0 < p < 1. (5.15)

In the present case, p = 1/2 and so LI
p

= �2⇡ and

R3 = 2
p

2⇡↵⌘(1 � ⌘). (5.16)

From these results, we find that the dominant terms in (5.9) are

SBG ⇠ (3 � 2⌘) log n +
p

n 2
p

2⇡ ↵ ⌘ (1 � ⌘) ⇠
p

n 2
p

2⇡ ↵ ⌘ (1 � ⌘), (5.17)

and finally,

SBG ⇠
p

n 2
p

2⇡ ↵ ⌘ (1 � ⌘). (5.18)

We conclude that the Boltzmann-Gibbs entropy is not extensive for this type of deformation of the
binomial distribution. It behaves as

p
n with slope equal to 2

p
2⇡ ↵ ⌘ (1 � ⌘), in agreement with the

numerical calculations shown in Figures 2 and 3. This surprising result shows that the extensivity of
the Boltzmann-Gibbs entropy can change depending on the correlation among the events, a theoretical
question debated in the literature for many years.22–24 Here, we have a confirmation of that.

2. Rényi Entropy

Using the estimate of Eq. (3.2) in (1.3) (under the condition q < 1) followed by a Laplace
approximation yields

nX

k=0

✓ n
k

◆ ⇣
$(n)

k

⌘
q ⇠ 1

p
|q � 1|

22q(↵⌘(1 � ⌘))q n�q en(1�q) log 2, (5.19)

and we derive immediately

log
266664

nX

k=0

✓ n
k

◆ ⇣
$(n)

k

⌘
q

377775 ⇠ log *,
1

p
|q � 1|

22q(↵⌘(1 � ⌘))q+-+
� q log n + n(1 � q) log 2. (5.20)

Therefore, the Rényi entropy is extensive for q < 1,

SRe;q ⇠ n log 2. (5.21)

We recover the asymptotic q-independence already noticed in the “q-exponential” case.

C. Entropies for the symmetric distribution from Hermite polynomials

1. Boltzmann-Gibbs entropy

From asymptotic behavior (4.34) and (4.11), we infer the following behavior:
✓ n

nx

◆
$(n)

nx

log$(n)
nx

⇠ 1
2
p

n⇡
h(x) enA(x), (5.22)

where A(x) is given by (4.35) and the function h(x) is given by
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h(x) =
p

x(1 � x)
"
�1

2
log 2 +

n
2
[x log(x⌘) + (1 � x) log((1 � x)(1 � ⌘))]+

+

r
n
a
[px⌘ +

p
(1 � x � (1 � ⌘) � 1]

#
. (5.23)

After the usual replacement
P

n

k=0 7!
⇤ 1

0 ndx, we get for BG entropy (1.2),

SBG ⇠ �
1
2

r
n
⇡

⌅ 1

0
h(x) enA(x) dx. (5.24)

Applying the Laplace approximation method,

SBG ⇠
1
2

log 2 � n[⌘ log ⌘ + (1 � ⌘) log(1 � ⌘)] ⇠ n[⌘ log(1/⌘) + (1 � ⌘) log(1/(1 � ⌘))].

So, we can conclude that SBG is extensive in this model.

2. Rényi entropy

To estimate the asymptotic behavior of the Rényi entropy, we first use the approximation
resulting from (4.34) and (4.11),

✓ n
k = nx

◆�1�q ⇣
p(n)
k=nx

⌘
q ⇠ 1

p
2q+1n⇡x(1 � x)

enB(x), (5.25)

with

B(x) = qA(x) � (q � 1)C(x) = q
2
[x log ⌘ + (1 � x) log(1 � ⌘)]+

+
✓ q

2
� 1

◆
[x log x + (1 � x) log(1 � x)]+

+
qp
na

[px⌘ +
p
(1 � x)(1 � ⌘) � 1].

(5.26)

Next, we transform the sum into an integral, as usual,
nX

k=0

✓ n
k

◆�1�q ⇣
p(n)
k

⌘
q ⇠

r
n

2q+1⇡

⌅ 1

0
dx (x(1 � x))�1/2 enB(x). (5.27)

In order to implement the Laplace method, we calculate B0 and B00,

B0(x) = q
2
[log ⌘ � log(1 � ⌘)] +

✓ q
2
� 1

◆
[log x � (1 � x) log(1 � x)]+

+
q

2
p

na

266664
r
⌘

x
+

r
1 � ⌘
1 � x

377775 , (5.28)

B00(x) =
✓ q

2
� 1

◆ 1
x(1 � x) �

q
4
p

na

2666664
r

⌘

x3 +

s
1 � ⌘

(1 � x)3

3777775
. (5.29)

We see that for q < 2, we have B00(x) < 0 for all x 2 (0,1). Hence, if q < 2 and if we find one and
only one x0 2 (0,1) such that B0(x0) = 0, the Laplace approximation method is valid, and we obtain
the behavior of the sum at large n,

X

k

✓ n
k

◆�1�q ⇣
p(n)
k

⌘
q ⇠

s
1

2q |B00(x0)|
(x0(1 � x0))�1/2 enB(x0). (5.30)

Now, for the median value ⌘ = 1/2, we find immediately the unique solution x0 = 1/2. Then,
B00(1/2) = 2(q � 2) � q/

p
na, B(1/2) = (1 � q) log 2, and so,

X

k

✓ n
k

◆�1�q ⇣
p(n)
k

⌘
q ⇠

at large n

2(3�q)/2(q � 2)�1/2 en(1�q) log 2. (5.31)
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Therefore, for ⌘ = 1/2, the Rényi entropy is extensive,

SRe;q ⇠ n log 2. (5.32)

One can easily show that with ⌘ = 1/2 + �, |�| ⌧ 1/2, the value of the root x0 is x0 =
q

2�q � +O(�2)
and that behavior (5.32) holds too. We have checked numerically that it holds for all ⌘ 2 (0,1). We
notice that this behavior (which is simply ⇠n if we adopt the original Rényi choice log2) is the same
as for the two other cases considered in this paper, Eqs. (5.7) and (5.21), and also for the binomial
and Laplace de Finetti distributions considered in Ref. 20. We will come back to this important
point in the Conclusion.

VI. CONCLUSION(S)

In this paper, our main interest is the extensivity property of di↵erent entropies constructed
from generalized binomial distributions. We examine the behavior of two entropies, namely, the
Boltzmann-Gibbs and Rényi ones, for the three examples of generalized binomial distributions
presented in Ref. 4, based on the probabilities of the possible states. For that sake, we examined
the asymptotic behavior of the deformed probability distributions in question, which are those
whose generating functions are the q-exponential, the exponential of the Lambert function, and the
exponential of a second-degree polynomial: the probabilities obtained are, respectively, the Pólya
distribution, a product of modified Abel polynomials and a product of Hermite polynomials. The
study is analytical for two examples (q-exponential and Hermite) and both numerical and analytical
for the Abel case.

The results found for those two entropies are interesting on three di↵erent levels.

(i) First, the Rényi entropy is extensive for the three probability distributions. An important
aspect of the result found here is that for all the three studied distributions, its asymptotic
value at large n is the same, n log 2, and therefore, does not depend on its parameter q 2 (0,1).

(ii) Second, we observe that the two limits n ! 1 and q ! 1 do not commute in the three cases.
For the q-exponential and Hermite cases, the two entropies are extensive but have di↵erent
amplitudes.

(iii) Finally, and this is surprising, the Boltzmann-Gibbs one is extensive for two cases, those
related to the q-exponential and to the Hermite polynomials, but not when the probability
distribution is given by modified Abel polynomials. That this latter fact be related to regular-
ization techniques is an interesting question to be examined in further investigations.

This example of non-extensivity of Boltzmann-Gibbs is a result that deserves further investigation,
as it has so far been considered as the universally extensive entropy, see Refs. 20 and 22–24 for
recent discussions and developments about this crucial point. Actually, this extensivity is probably
due to the nature of the three distributions examined here, which are smooth deformations of the
binomial one. We have shown in Ref. 20 that both Boltzmann-Gibbs and Rényi are extensive
entropies for the binomial case. Deformations of the binomial distribution introduce correlations,
and these correlations may or may not be strong enough to substantially modify the asymptotic
behaviors. The fact that extensivity holds for Rényi and for its BG limit at q = 1 when the deformed
probability is either the Pólya distribution or a product of Hermite polynomials indicates that in
these cases, the related correlations are not strong enough to modify the extensivity property of the
Boltzmann-Gibbs entropy. Otherwise, the behavior of the deformed probability given as products
of modified Abel polynomials is di↵erent as the Boltzmann-Gibbs limit of the Rényi entropy is
asymptotically not extensive. This distribution deserves a further investigation on the correlations it
introduces and we might expect them to be stronger than the two former mentioned cases; this issue
will be the subject of future work. Due to this exceptionality of the modified Abel polynomials case,
we illustrated it here with a concrete and non-trivial probabilistic model.
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APPENDIX: REGULARIZATION FOR THE MODIFIED ABEL POLYNOMIALS

1. Finding the regularization parameters

As mentioned in Section III, we introduce the regularization parameters ✏1(n) and ✏2(n) (van-
ishing for large n) that lead to the estimate of Eq. (3.3). Using the asymptotic expression of
Eq. (4.19), we obtain

nX

k=0

�
n

(k)p(n)
k

(⌘) ⇠
n!1

↵⌘(1 � ⌘)p
2⇡n

⌅ 1�✏2(n)

✏1(n)

dx
(x(1 � x))3/2�n(nx). (A1)

The normalization of probability and the expectation value hki
n

= n⌘ (see Eq. (32) in Ref. 4) lead to
the constraints

↵⌘(1 � ⌘)p
2⇡n

⌅ 1�✏2(n)

✏1(n)

dx
(x(1 � x))3/2 ⇠

n!1
1 (A2)

and

↵⌘(1 � ⌘)p
2⇡n

⌅ 1�✏2(n)

✏1(n)

dx
(x(1 � x))3/2 nx ⇠

n!1
n⌘. (A3)

Equation (A2) reads

↵⌘(1 � ⌘)p
2⇡n

*
,

2 � 4✏1(n)p
✏1(n)(1 � ✏1(n))

+
2 � 4✏2(n)p

✏2(n)(1 � ✏2(n))
+
- ⇠n!1 1. (A4)

Furthermore, the integral involved in Eq. (A3) is regular at the endpoint x = 0. Therefore, Eq. (A3)
simplifies as

↵⌘(1 � ⌘)
r

n
2⇡

⌅ 1�✏2(n)

0

dx
(x(1 � x))3/2 nx ⇠

n!1
n⌘ (A5)

or

2
p

n ↵⌘(1 � ⌘)p
2⇡

p
1 � ✏2(n)p
✏2(n)

⇠
n!1

n⌘. (A6)

Since ✏2(n) is vanishing for large n, we obtain the behavior

✏2(n) ⇠
n!1

2↵2

⇡n
(1 � ⌘)2. (A7)

Our purpose being to obtain estimates only for large values of n, we deduce that the sought
parameter ✏2(n) is given by

✏2(n) =
2↵2

⇡n
(1 � ⌘)2. (A8)

Introducing this expression of ✏2(n) in Eq. (A4) and taking into account the vanishing character of
✏1(n), we obtain the following expression of ✏1(n):

✏1(n) =
2↵2

⇡n
⌘2. (A9)
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2. Checking the general formula

The regularization parameters being given by Eqs. (A9) and (A8), one can wonder if the gen-
eral estimate of Eq. (A1) holds true for any C1 functions �

n

, but we are unable to prove a so strong
statement.

By construction, the estimate holds true for �
n

(k) = 1 and �
n

(k) = k, and we can only check
the formula for other particular cases as �

n

(k) = k2 and �
n

(k) = k(n � k).
Indeed, using our previous paper4 (Eqs. (33), (36), (59), and (62)), we have

hk2i
n

= ⌘n2 + ⌘(1 � ⌘)c
n

and hk(n � k)i
n

= ⌘(1 � ⌘)c
n

, (A10)

where h.i
n

holds for expectation values, and with

c
n

=
↵n(n � 1)
(n + ↵)n�1 e↵+n�(n � 1,↵ + n), (A11)

�(a, x) being the incomplete gamma function.
Therefore, we obtain the following asymptotic expressions for large n:

hk2i
n

⇠
n!1

⌘ n2 and hk(n � k)i
n

⇠
n!1

r
⇡

2
↵⌘(1 � ⌘)n3/2. (A12)

a. Checking hk2in
The general formula of Eq. (A1) reads

nX

k=0

k2p(n)
k

(⌘) ⇠
n!1

n2↵⌘(1 � ⌘)p
2⇡n

⌅ 1�✏2(n)

✏1(n)

x2dx
(x(1 � x))3/2 . (A13)

Since the integral is convergent at the endpoint x = 0, we can remove ✏1, then

n2↵⌘(1 � ⌘)p
2⇡n

⌅ 1�✏2(n)

✏1(n)

x2dx
(x(1 � x))3/2 ⇠

n!1

n3/2↵⌘(1 � ⌘)p
2⇡

⌅ 1�✏2

0

p
xdx

(1 � x)3/2 .

(A14)

After integration by parts, we obtain

n2↵⌘(1 � ⌘)p
2⇡n

⌅ 1�✏2(n)

✏1(n)

x2dx
(x(1 � x))3/2 ⇠

n!1

2n3/2↵⌘(1 � ⌘)p
2⇡

p
1 � ✏2p
✏2

.

(A15)

Taking into account the expression of ✏2, we get the expected result

n2↵⌘(1 � ⌘)p
2⇡n

⌅ 1�✏2(n)

✏1(n)

x2dx
(x(1 � x))3/2 ⇠

n!1
n2⌘. (A16)

b. Checking hk (n � k )in
The general formula of Eq. (A1) reads

nX

k=0

k(n � k)p(n)
k

(⌘) ⇠
n!1

n2 ↵⌘(1 � ⌘)p
2⇡n

⌅ 1�✏2(n)

✏1(n)

x(1 � x)dx
(x(1 � x))3/2 . (A17)

The integral being now convergent on both ends, the regularization can be removed leading again to
the expected expression

n2 ↵⌘(1 � ⌘)p
2⇡n

⌅ 1�✏2(n)

✏1(n)

x(1 � x)dx
(x(1 � x))3/2 ⇠

n!1

r
⇡

2
↵⌘(1 � ⌘)n3/2. (A18)
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